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Abstract

We discuss the single-parton and double-parton scattering (SPS or DPS)
effects in four-jet production at the LHC. The calculations of both single-
parton and double-parton scattering components are done in the high-energy
(or kT )-factorization approach. Here we follow our recent developments of
relevant methods and tools. The calculations are performed for kinematical
situations relevant for two experimental measurements (ATLAS and CMS)
at the LHC. We compare our results to those reported by the ATLAS and
CMS collaborations for different sets of kinematical cuts. A special attention
is given to the optimization of kinematical conditions in order to enhance
the relative contribution of DPS in four-jet sample. Several differential dis-
tributions are calculated and carefully discussed in the context of recent and
future searches for DPS effects at the LHC. The dependences of the relative
DPS amount is studied as a function of rapidity of jets, rapidity distance, and
various azimuthal correlations between jets. The regions with an enhanced
DPS contribution are identified.

1 Introduction

So far, complete four-jet production via single-parton scattering (SPS) was discussed
only within collinear factorization. Results up to next-to-leading (NLO) precision
can be found in [1, 2]. Recently we discussed for the first time production of four
jets within high-energy (kT -)factorization (HEF) approach with 2 → 4 subproceses
with two off-shell partons [3].
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Four-jet production seems a natural case to look for hard double-parton scat-
tering (DPS) effects (see e.g. Ref. [4] and references therein). Some time ago
we analyzed how to find optimal conditions for the observation and exploration
of DPS effects in four-jet production [5]. In this analysis only the leading-order
(LO) collinear approach was applied both to single and double-parton scattering
mechanisms.

Very recently, we have performed for the first time a calculation of four-jet pro-
duction for both single-parton and double-parton mechanism within kT -factorization
[3]. It was shown that the effective inclusion of higher-order effects leads to a sub-
stantial damping of the double-scattering contribution with respect to the SPS one,
especially for symmetric (identical) cuts on the transverse momenta of all jets.

So far, most practical calculations of DPS contributions were performed within
the so-called factorized ansatz. In this approach, the cross section for DPS is a prod-
uct of the corresponding cross sections for single-parton scatterings (SPS). This is
a phenomenologically motivated approximation which is not well under control yet.
A better formalism exists in principle, but predictions are not easy, as they require
unknown input(s), e.g. double-parton distributions that should contain informations
about space-configuration, spin, colour or flavour correlations between the two par-
tons in one hadron [6]. These objects are explored to a far lesser extent than the
standard single PDFs. However, the factorized model seems to be a reasonable tool
to collect empirical facts to draw useful conclusions about possible identification of
the DPS effects in several processes.

As discussed in Ref. [5], jets with low cuts on the transverse momenta and a
large rapidity separation seem more promissing in exploring DPS effects in four-jet
production. In the following we shall show our recent results for SPS and DPS
calculations obtained for first time in kT -factorization approach and concentrate on
the study of optimal observables to pin down DPS contributions.

2 A sketch of the theoretical formalism

The theoretical formalism used to obtain the following predictions was discussed in
detail in [3]. All details related to the scattering amplitudes with off-shell initial
state partons as well as with the Transverse Momentum Dependent or unintegrated
parton distribution functions (TMDs) can be found in our original paper.

Here we only very briefly recall the basic high-energy (or kT )-factorization (HEF)
formula for the calculation of the inclusive partonic four-jet cross section:

σB
4−jets =

∑
i,j

∫
dx1
x1

dx2
x2

d2kT1d
2kT2 Fi(x1, kT1, µF )Fj(x2, kT2, µF )

× 1

2ŝ

4∏
l=i

d3kl
(2π)32El

Θ4−jet (2π)4 δ

(
x1P1 + x2P2 + ~kT 1 + ~kT 2 −

4∑
l=1

ki

)
|M(i∗, j∗ → 4 part.)|2 .

(2.1)

Above Fi(xk, kTk, µF ) is the TMD for a given parton type, xk are the longitudi-
nal momentum fractions, µF is a factorization scale, ~kTk the parton’s transverse
momenta. M(i∗, j∗ → 4 part.) is the gauge invariant matrix element for 2 → 4
particle scattering with two initial off-shell partons. They are evaluated numerically
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with the help of the AVHLIB [7] Monte Carlo library. In the calculation, the scales
are set to µF = µR = ĤT

2 = 1
2

∑4
l=1 k

l
T

1.
The so-called pocket formula for DPS cross sections (for a four-parton final

state) reads:
dσB

4−jet,DPS

dξ1dξ2
=

m

σeff

∑
i1,j1,k1,l1;i2,j2,k2,l2

dσB(i1j1 → k1l1)

dξ1

dσB(i2j2 → k2l2)

dξ2
,

(2.2)
where the σ(ab → cd) cross sections are obtained by restricting (2.1) to a single
channel and the symmetry factor m is 1/2 if the two hard scatterings are identical,
to avoid double counting. Finally, ξ1 and ξ2 stand for generic kinematical variables
for the first and second scattering, respectively. The effective cross section σeff
can be interpreted as a measure of correlation in the transverse plane of the two
partons inside the hadrons, whereas the possible longitudinal correlations are usually
neglected. In the numerical calculations here we use σeff = 15 mb that is a typical
value known from the world systematics [8].

3 Selected results

First we show some selected examples of the results of the kT -factorization calcu-
lation in Figs. 1 and 2. In this calculations we used the KMR unintegrated parton
distributions. The prediction is consistent with the ATLAS data for all the pT
distributions.
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Figure 1: kT -factorization prediction of the differential cross sections w.r.t.
the transverse momenta of the first two leading jets compared to the ATLAS
data [11]. The LO calculation describes the data pretty well in this hard regime
in which MPIs are irrelevant. In addition we show the ratio of the SPS HEF
result to the ATLAS data.

Not only transverse momentum dependence is interesting. The CMS collabora-
tion extracted for instance a more complicated observables [9]. One of them, which
involves all four jets in the final state, is the ∆S variable, defined in Ref. [9] as the
angle between pairs of the harder and the softer jets,

∆S = arccos

(
~pT (jhard

1 , jhard
2 ) · ~pT (jsoft

1 , jsoft
2 )

|~pT (jhard
1 , jhard

2 )| · |~pT (jsoft
1 , jsoft

2 )|

)
, (3.1)

1We use the ĤT notation to refer to the energies of the final state partons, not jets, despite
this is obviously the same in a LO analysis.
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Figure 2: kT -factorization approach prediction of the differential cross sections
w.r.t. the transverse momenta of the 3rd and 4th leading jets compared to the
ATLAS data [11]. The LO calculation describes the data pretty well in this
hard regime in which MPIs are irrelevant. In addition we show the ratio of the
SPS HEF result to the ATLAS data.

where ~pT (ji, jk) stands for the sum of the transverse momenta of the two jets in
arguments.

In Fig. 3 we present our HEF prediction for the normalized to unity distribution
in the ∆S variable. Our HEF result approximately agrees with the experimental
∆S distribution. In contrast, the LO collinear approach leads to ∆S = 0, i.e. a
Kronecker-delta peak at ∆S = 0 for the distribution in ∆S.
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Figure 3: Comparison of the HEF predictions to the CMS data for ∆S spec-
trum.

Now we wish to show a comparison of our numerical predictions with existing
experimental data for relatively low cuts on jet transverse momenta. In this context,
the CMS experimental multi-jet analysis [9] is the most relevant as it uses sufficiently
soft cuts on the jet transverse momenta. The cuts are in this case |pT | > 50 GeV
for the two hardest jets and |pT | > 20 GeV for the third and fourth ones; the
rapidity region is defined by |η| < 4.7 and the constraint on the jet cone radius
parameter is ∆R > 0.5. The overall situation is shown in Fig. 4, where we plot
rapidity distributions for leading and subleading jets ordered by their pT ’s.

The kT -factorization approach includes higher-order corrections through the re-
summation in the TMDs. However, within this framework fixed-order loop effects
are not taken into account. Therefore, we allow for a K-factor for the calculation
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of the SPS component. The NLO K-factors are known to be smaller than unity
for 3- and 4-jet production in the collinear approximation case [1]. To describe the
CMS data, we also need K-factors smaller than unity for the SPS contributions,
as expected. In contrast to the 4-jet case, the NLO predictions for the 2-jet inclu-
sive cross section are further away from the measured value than the LO ones [1].
The 2-jet K-factor is known to be about 1.2, and it enters squared in the case of
the DPS calculations. However, in our calculations we ignored the relatively small
K-factors for the DPS contribution.
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Figure 4: Rapidity distribution of the leading and subleading jets. The SPS contri-
bution is shown by the dotted line while the DPS contribution by the dashed line.

In Refs. [4, 5] we introduced a set of observables that we find particularly con-
venient to identify DPS effects in four-jet production. Here we present results for
completely symmetric cuts, pT > 20 GeV, for all the four leading jets. The cuts on
rapidity and jet radius parameter are the same as for the CMS case. In Fig. 5 we
show our predictions for the rapidity distributions. In contrast to the previous case
(Fig. 4), where harder cuts on the two hardest jets were used, the shapes of the
SPS and DPS rapidity distributions are rather similar. There is only a small relative
enhancement of the DPS contribution for larger jet rapidities.
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Figure 5: Rapidity distribution of leading jet for
√
s = 7 TeV (left column) and

√
s =

13 TeV (right column) for the symmetric cuts. The SPS contribution is shown by the
dotted line while the DPS contribution by the dashed line. The relative contribution
of DPS is shown in the extra lower panels.

As it was proposed first in Ref. [10] in the context of Mueller-Navelet jet produc-
tion, and then repeated in Ref. [5] for four-jet studies in the LO collinear approach,
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there are two potentially useful observables for DPS effects, such as the maximum
rapidity distance

∆Y ≡ maxi,j∈{1,2,3,4}
i 6=j

|ηi − ηj | (3.2)

and the azimuthal correlations between the jets which are most remote in rapidity

ϕjj ≡ |ϕi − ϕj | , for |ηi − ηj | = ∆Y . (3.3)

One can see in Fig. 6 that the relative DPS contribution increases with ∆Y
which, for the CMS collaboration is up to 9.4. At

√
s = 13 TeV the DPS component

dominates over the SPS contribution for ∆Y > 6. A potential failure of the SPS
contribution to describe such a plot in this region would be a signal of the presence
of a sizable DPS contribution.
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Figure 6: Distribution in rapidity distance between the most remote jets for the
symmetric cut with pT > 20 GeV for

√
s = 7 TeV (left) and

√
s = 13 TeV (right).

The SPS contribution is shown by the dotted line while the DPS contribution by the
dashed line. The relative contribution of DPS is shown in the extra lower panels.

Figure 7 shows azimuthal correlations between the jets most remote in rapidity.
While at

√
s = 7 TeV the SPS contribution is always larger than the DPS one, at

√
s

= 13 TeV the DPS component dominates over the SPS contribution for ϕjj < π/2.
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Figure 7: Distribution in relative azimuthal angle between the most remote jets for
the symmetric cut with pT > 20 GeV for

√
s = 7 TeV (left) and

√
s = 13 TeV (right).

The SPS contribution is shown by the dotted line while the DPS contribution by the
dashed line. The relative contribution of DPS is shown in the extra lower panels.

We also find that another variable, introduced in the high transverse momenta
analysis of four jets production discussed in Ref. [11], can be very interesting for
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the examination of the DPS effects:

∆ϕmin
3j ≡ mini,j,k∈{1,2,3,4}

i 6=j 6=k

(|ϕi − ϕj |+ |ϕj − ϕk|) . (3.4)

As three out of four azimuthal angles are always entering in (3.4), configurations
with one jet recoiling against the other three are necessarily characterised by lower
values of ∆ϕmin

3j with respect to the two-against-two topology; the minimum, in
fact, will be obtained in the first case for i, j, k denoting the three jets in the
same hemisphere, whereas no such a case is possible for the second configuration.
Obviously, the first case would be allowed only by SPS in a collinear tree-level
framework, whereas the second would be enhanced by DPS. In the kT -factorization
approach, this situation is smeared out by the presence of transverse momenta of the
initial state partons. For our unintegrated parton distributions, the corresponding
distributions are shown in Fig. 8. We do not see such obvious effects in the case of
the kT -factorization.
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Figure 8: Distribution in ∆ϕmin
3j angle for the symmetric cut with pT > 20 GeV for√

s = 7 TeV (left) and
√
s = 13 TeV (right). The SPS contribution is shown by the

dotted line while the DPS contribution by the dashed line. The relative contribution
of DPS is shown in the extra lower panels.

4 Conclusions

We have presented our recent results for four-jet production obtained for the first
time within kT -factorization approach. The calculation of the SPS contribution is
a technical achievment. So far only production of the cc̄cc̄ final state (also of the 2
→ 4 type) was discussed in the literature.

We have found that both collinear and the (kT -)factorization approaches de-
scribe the data for hard central cuts, relevant for the ATLAS experiment, reasonably
well when using the KMR TMDs. For the harder cuts we get both normalization
and shape of the transverse momentum distributions. We nicely describe also CMS
distribution for a special variable ∆S.

In this presentation we have discussed also how to look at the DPS effects and
how to maximize their role in four jet production. We found that, for sufficiently
small cuts on the transverse momenta, DPS effects are enhanced relative to the SPS
contribution: when rapidities of jets are large, for large rapidity distances between
the most remote jets, for small azimuthal angles between the two jets most remote
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in rapidity and/or for large values of the ∆ϕmin
3j variable. For more details we refer

the interested reader to our regular article [4].
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