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Abstract

We study differential cross sections for the production of three and four
jets in multi-Regge kinematics, the main interest lying on azimuthal angle
dependences. The theoretical setup is the jet production from a single BFKL
ladder with a convolution of two/three BFKL Green functions, where two
forward/backward jets are always tagged in the final state. Furthermore, we
require the tagging of one/two further jets in more central regions of the
detectors with a relative separation in rapidity. We found, as result, that the
dependence on transverse momenta and rapidities of the central jets can be
considered as a distinct signal of the onset of BFKL dynamics.

∗Speaker.
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1 Introduction

The study of semi-hard processes in the high-energy (Regge) limit represents an
ultimate research field for perturbative QCD, the Large Hadron Collider (LHC)
providing with an abundance of data. Multi-Regge kinematics (MRK), which pre-
scribes final state objects strong ordered in rapidity, is the key point for the study of
multi-jet production at LHC energies. In this kinematical regime, the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) approach, at leading (LL) [1, 2, 3, 4, 5, 6] and
next-to-leading (NLL) [7, 8] accuracy, is the most powerful tool to perform the
resummation of large logarithms in the colliding energy to all orders of the pertur-
bative expansion. This formalism was successfully applied to lepton-hadron Deep
Inelastic Scattering at HERA (see, e.g. [9, 10]) in order to study quite inclusive
processes which are not that suitable though to discriminate between BFKL dy-
namics and other resummations. The high energies reachable at the LHC, how-
ever, allow us to investigate processes with much more exclusive final states which
could, in principle, be only described by the BFKL framework, making it possible
to disentangle the applicability region of the approach. So far, Mueller–Navelet jet
production [11] has been the most studied process. Interesting observables asso-
ciated to this reaction are the azimuthal correlation momenta which, however, are
strongly affected by collinear contaminations. Therefore, new observables indepen-
dent from the conformal contribution were proposed in [12, 13] and calculated at
NLL in [14, 15, 16, 17, 18, 19, 20, 21], showing a very good agreement with ex-
perimental data at the LHC. Nevertheless, Mueller-Navelet configurations are still
too inclusive to perform MRK precision studies. Pursuing the goal to further and
deeply probe the BFKL dynamics by studying azimuthal decorrelations where the
transverse momenta of extra particles introduces a new dependence, we proposed
new observables for semi-hard processes which can be thought as a generalization of
Mueller-Navelet jets1. These processes are inclusive three-jet [24, 25] and four-jet
production [26, 27].

2 Multi-jet production

The class of processes under exam is the inclusive hadroproduction of n jets in the
final state, well separated in rapidity so that yi > yi+1 according to MRK, and
with their transverse momenta {ki} lying above the experimental resolution scale,
together with an undetected gluon radiaton emission. With the aim to generalize the
azimuthal ratios Rnm defined in the Mueller–Navelet jet configuration, we propose
new, generalized azimuthal observables by taking the projection of the differential
cross section dσn−jet on all angles, so having the general expression given in Eq. (3)
of [28]:

CM1···Mn−1
=

〈
n−1∏
i=1

cos (Mi φi,i+1)

〉
=

∫ 2π

0

dθ1 · · ·
∫ 2π

0

dθn

n−1∏
i=1

cos (Mi φi,i+1) dσn−jet

(1)

1Another interesting and novel possibility, the detection of two charged light hadrons:
π±, K±, p, p̄ having high transverse momenta and separated by a large interval of rapidity,
together with an undetected soft-gluon radiaton emission, was suggested in [22] and studied
in [23].
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Figure 1: Y -dependence of R33
12 for

√
s = 7, 13 TeV and kB,min = 35 GeV (left

column) and kB,min = 50 GeV (right column). kA,min is equal to 35 GeV, while
the rapidity of the central jet is fixed to yJ = (yA + yB)/2.

where φi,i+1 = θi − θi+1 − π, and θi is the azimuthal angle of the jet i. From a
phenomenological perspective, we want to provide predictions compatible with the
current and future experimental data. To this purpose, we introduce the kinematical
cuts already in place at the LHC by integrating CM1···Mn−1

over the momenta of all
tagged jets in the form

CM1···Mn−1 =

∫ y1,max

y1,min

dy1

∫ yn,max

yn,min

dyn

∫ ∞
k1,min

dk1 · · ·
∫ ∞
kn,min

dknδ (y1 − yn − Y ) Cn (2)

where the most forward and the most backward jet rapidities are taken in the range
delimited by ymin

1 = ymin
n = −4.7 and ymax

1 = ymax
n = 4.7, keeping their difference

Y = y1− yn fixed. From a theoretical point of view, it is important to improve the
stability of our predictions (see [29] for a related discussion). This can be done by
removing the zeroth conformal spin contribution responsible for any collinear. For
this reason, we introduce the ratios

R
M1···Mn−1

N1···Nn−1
≡
CM1···Mn−1

CN1···Nn−1

(3)

where {Mi} and {Ni} are positive integers.
We performed the numerical computation of the ratios RMN

PQ both in Fortran
and in Mathematica (mainly for cross-checks). The NLO MSTW 2008 PDF
sets [30] were used and for the strong coupling αs we chose a two-loop running
coupling setup with αs (MZ) = 0.11707. We made extensive use of the integration
routine Vegas [31] as implemented in the Cuba library [32, 33]. Furthermore, we
used the Quadpack library [34] and a slightly modified version of the Psi [35]
routine.
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Figure 2: Y -dependence of R111
221 and R112

111 for
√
s = 7 TeV (left column) and

for
√
s = 13 TeV (right column). The rapidity interval between a jet and the

closest one is fixed to Y/3.

In Fig. 1 we show the dependence on Y of the R33
22 ratio, characteristic of the

3-jet process, for
√
s = 7 and 13 TeV, for two different kinematical cuts on the

transverse momenta kA,B of the external jets and for three different ranges of the
transverse momentum kJ of the central jet.

In Fig. 2 we show the dependence on Y of R111
221 and R112

111 ratios, characteristic
of the 4-jet process, for

√
s = 7 and 13 TeV, for asymmetrical cuts on the transverse

momenta kA,B of the external jets and for two different configurations of the central
jet transverse momenta k1,2.

A comparison with predictions for these observables from fixed order analyses
as well as from the BFKL inspired Monte Carlo BFKLex [36, 37, 38, 39, 40, 41, 42]
is underway.

3 Conclusions & Outlook

We studied ratios of correlation functions of products of azimuthal angle difference
cosines in order to study three- and four-jet production at hadron colliders. The
dependence on the transverse momenta and rapidities of the central jet(s) represent
a clear signal of the BFKL dynamics. For future works, more accurate analyses are
needed: higher order effects and study of different configurations for the rapidity
range of the two central jets, together with the analysis of the effect of using different
PDF parametrizations. It would be also interesting to calculate our observables using
other approaches not based on the BFKL approach and to test how they differ from
our predictions. The comparison with experimental data will help to disentangle
the region of applicability of the BFKL approach, therefore we strongly encourage
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experimental collaborations to study these observables in the next LHC analyses.
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