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Abstract

We describe �reballs that rehadronize from a perfectly �uid quark
matter to a chemically frozen, multi-component hadron gas. In the hy-
drodynamics of these �reballs, we utilize the lattice QCD equation of
state, however, we also apply non-relativistic kinematics for simplicity
and clarity. Two new classes of exact, analytic solutions of �reball hy-
drodynamics are presented: the �rst class describes triaxially expanding,
non-rotating ellipsoidal �reballs, while the second class of exact solutions
corresponds to spheroidally symmetric, rotating �reballs. In both classes
of solutions, we �nd evidence for a secondary explosion, that happens
just after hadrochemical freeze-out. A realistic, linear mass scaling of the
slope parameters of the single particle spectra of various hadronic species
is obtained analytically, as well as an also realistic, linear mass scaling of
the inverse of the squared HBT radius parameters of the Bose-Einstein
correlation functions.

1 Introduction

The equations of hydrodynamics contain no internal scale, and the appli-
cations of hydrodynamics range from the largest, cosmological distances to the
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smallest experimentally accessible distances. Hydrodynamical type of equations
characterize the time evolution of our Universe that started from a Big Bang.
Hydrodynamics is also applied to the study of the time evolution on the smallest,
femtometer distances, where the Little Bangs of high energy heavy ion collisions
also create hydrodynamically evolving �reballs. Our Universe about 14 billion
years after the Big Bang expands with an approximately spherically symmetric
Hubble �ow. The hadronic �nal states of heavy ion collisions about a few times
10−23 sec after the Little Bangs expand with directional Hubble �ows and pos-
sibly also with signi�cant angular momentum, due to the typically non-central
nature of high energy heavy ion collisions.

As early as in 1978, Zimányi, Bondorf and Garpman found an exact solution
of hydrodynamics that described a non-relativistic, �nite �reball with a Hub-
ble �ow, expanding to vacuum [1]. Keeping the spherical symmetry and the
Hubble �ow pro�le, the Zimányi-Bondorf-Garpman solution was generalized in
1998, after 20 years, to a spatially Gaussian density and a spatially homoge-
neous temperature pro�le, while maintaining the same equations for the time
evolution of the scales as in the Zimányi-Bondorf-Garpman solution [2]. Soon
it was realized that these solutions can be generalized to arbitrary, but match-
ing temperature and density pro�le functions, while still maintaining spherical
[3] symmetry. Within a few years, the �rst, spherically symmetric solutions
were successfully generalized to include ellipsoidal symmetries [4, 5]. About at
the same time, the Gaussian solutions were utilized to evaluate the �nal state
hadronic observables and their relation to the initial conditions, as it turned
out that these solutions provided exact results for the single particle spectra,
elliptic and higher order �ows, as well as for the Bose-Einstein correlation func-
tions [6]. In this class of solutions, a non-vanishing initial angular momentum
and the corresponding rotation of the expanding �reball can also be taken into
account analytically. The �rst exact solution of rotating �reball hydrodynamics
was found in the relativistic kinematic region [7]. This spheroidally symmetric,
relativistic rotating solution was subsequently generalized to the non-relativistic
kinematic domain [8, 9, 10], including not only spheroidally but also triaxially
expanding and rotating solutions of �reball hydrodynamics. In these solutions,
the hadronic �nal state was typically containing only a given type of particle
with mass m, and the observables like the slope parameters of the single par-
ticle spectra were investigated as a function of this mass, considered to be a
parameter of the solution.

This conference presentation details the �rst steps towards generalizing some
of the recently found expanding as well as rotating, spheroidally and ellipsoidally
symmetric solutions of �reball hydrodynamics [8, 9, 10] to a more realistic
hadro-chemical and kinetic freeze-out stage. These �nal states contain a mix-
ture of hadrons, with di�erent hadronic masses denoted as mi. In this work,
we explore two classes of exact solutions. The �rst class describes triaxially
expanding, non-rotating ellipsoidal �reballs, the second class of exact solutions
corresponds to spheroidally symmetric, rotating �reballs. In both classes of
exact solutions, lattice QCD calculations provide the data for the equations of
state. This allows us to take into account the temperature dependence of the
speed of sound, following refs. [6, 11]. After rehadronization, a subsequent
hadrochemical freeze-out is shown to have a signi�cant e�ect on the expansion
dynamics, corresponding to a secondary explosion, which is seen in in both
classes of exact solutions. The properties and the criteria of such a secondary
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explosion are clari�ed here in an exact and analytic manner.

2 Perfect �uid hydrodynamics for two di�erent

stages

Experimental results of the NA44 [12] as well as the PHENIX collaborations
[13] indicate, for example, that the so called inverse slope parameter of the single
particle spectra is a linear function of the mass m of the observed hadrons:

T = Tf +m〈ut〉2, (1)

where 〈ut〉 stands for the average radial �ow and the freeze-out temperature is
denoted by Tf . This relationship has been derived even for non-central heavy
ion collisions in ref. [6], taking into account a chemically frozen, single com-

ponent hadronic matter (HM). However, the experimental data were taken in
heavy ion collisions where actually several di�erent kind of hadrons are pro-
duced simultaneously. If we introduce an index "i" to distinguish the di�erent
particle types in a multi-component hadron gas, then the experimental data in-
dicate that the slope parameters depend on the particle type only through the
mass mi of particle type i, but the radial �ow 〈ut〉 and the kinetic freeze-out
temperature Tf are both independent of the type of the particles:

Ti = Tf +mi〈ut〉2. (2)

In this work, we analytically derive these relations, for a �reball of a strongly
interacting Quark Gluon Plasma that hadronizes to a multi-component, chemi-
cally frozen hadronic matter or HM.

The basic equations of perfect �uid hydrodynamics are given by the continu-
ity and the Euler equation together with the energy equation, corresponding to
local conservation of entropy, momentum and energy. In the strongly coupled
Quark-Gluon Plasma, also called as perfect �uid of Quark Matter or QM, and at
vanishing baryochemical potential, the number of quarks, anti-quarks and glu-
ons is not conserved individually, only the local conservation of entropy drives
the expansion. However, at a certain temperature various hadrons are produced
due to rehadronization from a QM and we assume in this manuscript that the
inelastic reactions that may transform one hadron to another are negligible,
so we study here the scenario that corresponds to a chemically frozen, multi-
component Hadronic Matter (HM). In this chemically frozen, multi-component
HM phase the number of each type of hadrons is locally conserved.

The equations of motion for these two di�erent forms of matter are sum-
marized in Table 1. These equations generalize the equations of motion for
a chemically frozen, single component hadronic matter equations of (13-16) of
ref. [8] to the case of the chemically frozen, multi-component scenario of HM.
The local momentum and energy conservation, as well as the entropy conser-
vation is valid in both phases, but in the HM phase, local continuity equations
are also obeyed for all hadronic species. We utilize the ε = κp equation of state
(EoS), where κ ≡ κ(T ) is a temperature dependent function, that is directly
taken from lattice QCD calculations of ref. [14]. We note that in Table 1 the
energy equations are rewritten for the temperature �eld. We also note that due
to the additional local conservation laws in the HM phase the coe�cient of the
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co-moving time derivative of the temperature �eld changes in the temperature
equation in Table 1. It turnes out that this leads to a dynamical e�ect, a modi�-
cation for the time evolution of the temperature. This modi�cation corresponds
to a secondary explosion that starts at the chemical freeze-out temperature
Tchem.

QM (Ti ≥ T ≥ Tchem) HM (Tchem > T ≥ Tf )

∂tσ +∇ (σv) = 0 ∂tni +∇ (niv) = 0, ∀i

Tσ (∂t + v∇)v = −∇p
∑
i

mini (∂t + v∇)v = −∇p

1+κ
T

[
d
dT

κT
1+κ

]
(∂t + v∇)T +∇v = 0 1

T

[
d(κT )
dT

]
(∂t + v∇)T +∇v = 0

p = σT/(1 + κ) p =
∑
i

pi = T
∑
i

ni

Table 1: Hydrodynamical equations for strongly interacting Quark Gluon
Plasma or Quark Matter (QM) and chemically frozen, multi-component
Hadronic Matter (HM) that drive the �reball expansion from the initial tem-
perature Ti to the chemical freeze-out temperature (Ti ≥ T ≥ Tchem). This
chemical freeze-out temperature Tchem characterizes both hadronization and
simultaneous hadrochemical freeze-out in the present manuscript. Below this
chemical freeze-out temperature but above the kinetic freeze-out temperature
(Tchem > T ≥ Tf ), a multi-component hadronic matter is characterized by local
conservation laws for each hadronic species.

In Table 1, σ ≡ σ(r, t) stands for the entropy density, ni ≡ ni(r, t) is the
density of hadron type i that is locally conserved in the HM phase, the velocity
�eld is denoted by v ≡ v(r, t), while p ≡ p(r, t) stands for the pressure, and
T ≡ T (r, t) for the temperature �eld, and the mass of hadron type i is denoted
as mi.

As discussed in ref. [8], these equations were derived in the non-relativistic
limit of the equations of relativistic hydrodynamics, assuming that the entalphy
density (that characterizes the inertia of the motion for pressure gradients) is
dominated by the entropy density above the chemical freeze-out temperature,
while it is dominated by the mass terms of the hadrons at lower temperatures:

ε+ p =
∑
i

µini + Tσ, (3)

ε+ p ≈ Tσ, (Ti ≥ T ≥ Tchem), (4)

ε+ p ≈
∑
i

mini (Tchem > T ≥ Tf ). (5)

The dynamical equations, summarized in Table 1, can be solved if the usual
initial and freeze-out conditions as well as the chemical freeze-out conditions
are given. In the present work, we characterize these conditions by the initial
temperature Ti, the chemical freeze-out temperature Tchem and by the kinetic
freeze-out temperature Tf .

In this manuscript, we also assume that the initial temperature distribu-
tion is locally homogeneous, and its value is given by a coordinate independent
Ti value at the initial time ti = 0, and we also assume that the HM freezes
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out at a locally homogeneous freeze-out temperature Tf . In addition to these
usual initial and �nal boundary conditions, in these solutions we also have to
specify a matching boundary conditions that speci�es the transition from QM
to HM, which we characterize by the locally homogeneous chemical freeze-out
temperature Tchem.

We suppose that rehadronization happens almost simultaneously with the
hadrochemical freeze-out at the time t = tc, and at this temperature the local
velocity �elds transfer smoothly:

TB(tc) = TA(tc) = Tchem, (6)

vB(tc, r) = vA(tc, r). (7)

The medium before the rehadronization is in the QM phase, its parameters
are indicated by B that stands for Before. After the rehadronization, we use the
A index, it indexes the medium that is converted to the HM phase. We follow
Landau's proposal, who suggested that at the time of rehadronization a conver-
sion takes place between entropy density and particle density [15]. Therefore
we assume that

σ(r, tc)

σ(r = 0, tc)
=

ni(r, t)

ni(r = 0, tc)
. (8)

We look for parametric solutions of the hydrodynamical equations, summa-
rized in Table 1, and we assume that the principal axes of a triaxially expanding,
ellipsoidal �reball are be given by X ≡ X(t), Y ≡ Y (t) and Z ≡ Z(t) that func-
tions depend only on the time t.

In this manuscript, we discuss two classes of parametric, exact solutions of
�reball hydrodynamics. The �rst class is a triaxial, non-rotating class of solu-
tions, while the second class corresponds to a spheroidally symmetric, rotating
class of exact solutions of �reball hydrodynamics. In the triaxial case, all the
principal axis (X,Y, Z) can be di�erent, but the initial angular velocity ω0 has to
vanish. For the rotating solutions of �reball hydrodynamics with non-vanishing
initial angular velocity, we assume spheroidal symmmetry and introduce the
notation X(t) = Y (t) = R(t).

All of the scale functions (X,Y, Z) as well as R are continuous at tc, and it
turns out that we can follow the lines of derivations described in refs. [5, 8, 9]
even for an QM that rehadronizes to a HM, without introducing a particle
species dependence of the scale parameters (X,Y, Z) after the rehadronization.
The details of these calculations are not given here, but the main results are
summarized in Table 2 for a tri-axially expanding, non-rotating ellipsoidal
�reball, and Table 3 for a spheroidal, rotating and expanding �reball. These
results indicate that the rather complicated partial di�erential equations that
govern the dynamics of the �reball expansion can be solved exactly, when the
hydrodynamical �elds are given in terms of the scale parameters of the solutions.
Thus these solutions are parametric solutions, the scale parameters (X,Y, Z)
satisfy a system of coupled and non-linear but ordinary di�erential equations,
listed also in Tables 2 and 3. These di�erential equations can be readily solved
with currently available numerical packages like Mathematica or Matlab .

For a triaxially expanding ellipsoid, the volume of the �reball is given by
that of a 3d Gaussian with widths X, Y and Z:

V (t) = (2π)3/2XY Z, (9)
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QM (Ti ≥ T ≥ Tchem) HM (Tchem > T ≥ Tf )

v = ( ẊX rx,
Ẏ
Y ry,

Ż
Z rz) v = ( ẊX rx,

Ẏ
Y ry,

Ż
Z rz)

σ = σ0
V0

V exp
(
− r2x

2X2 −
r2y
2Y 2 − r2z

2Z2

)
ni = ni,c

Vc

V exp
(
− r2x

2X2 −
r2y
2Y 2 − r2z

2Z2

)
(1 + κ)

[
d
dT

κT
1+κ

]
Ṫ
T + V̇

V = 0 d(κT )
dT

Ṫ
T + V̇

V = 0

XẌ = Y Ÿ = ZZ̈ = 1
1+κ(T ) XẌ = Y Ÿ = ZZ̈ = T

〈m〉

Table 2: Parametric solution of �reball hydrodynamics for a tri-axially expand-
ing, non-rotating ellipsoidal �reball, where the volume V and the average mass
〈m〉 are de�ned by eqs. (9) and (12). The �rst two rows give the paramet-
ric form of the density and the velocity �elds. Note that in these solutions,
the corresponding temperature �eld is homogeneous, T (t, r) ≡ T (t). The time
evolution of the temperature is determined by an ordinary di�erential equa-
tion, that depends on the Equation of State through the function κ ≡ κ(T )
which for a spatially homogeneous temperature �eld is a function of time only,
κ ≡ κ(T (t)). The acceleration of the scales X,Y, Z is driven also by the equa-
tion of state, but on the QM side the value of the constant of proportionality,

1
1+κ(T ) is in general di�erent from the value of constant of proportionality in

the HM phase, T
〈m〉 .

QM (Ti ≥ T ≥ Tchem) HM (Tchem > T ≥ Tf )

v = ( ṘRrx − ωry,
Ṙ
Rry + ωrx,

Ż
Z rz) v = ( ṘRrx − ωry,

Ṙ
Rry + ωrx,

Ż
Z rz)

σ = σ0
V0

V exp
(
− r2x

2R2 −
r2y
2R2 − r2z

2Z2

)
ni = ni,c

Vc

V exp
(
− r2x

2R2 −
r2y
2R2 − r2z

2Z2

)
(1 + κ)

[
d
dT

κT
1+κ

]
Ṫ
T + V̇

V = 0 d(κT )
dT

Ṫ
T + V̇

V = 0

RR̈−R2ω2 = ZZ̈ = 1
1+κ(T ) RR̈−R2ω2 = ZZ̈ = T

〈m〉

Table 3: Parametric solution of �reball hydrodynamics for a spheroidally ex-
panding, and rotating �reball. Notation is the similar to that of Table 2, but
the volume V is de�ned by eq. (10) and the time evolution of the angular
velocity ω is given by eq. (11).
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while for a spheroidally expanding ellipsoid, X = Y = R and the volume is
given by

V (t) = (2π)3/2R2Z. (10)

In the considered class of exact, rotating spheroidal solution the angular velocity
is driven by the radial expansion as follows:

ω(t) = ω0
R2

0

R(t)2
. (11)

In this expression ω0 and R0 are the initial values of the corresponding
functions at the initial time t0. As the equations of motion for the scales are
indepenent from the type of particle i in the HM phase, it is easy to see that
the �reball expands collectively to the vacuum, for all particle types i.

Instead of the mass m of a single type of particle in the dynamical equa-
tions of a single component, chemically frozen HM phase, the average mass 〈m〉
appears in the dynamics of a multi-component, chemically frozen HM phase.
The typical value for 〈m〉 200 GeV Au+Au collisions at RHIC is given approx-
imately [16] as

〈m〉 =

∑
i

mini,c∑
i

ni,c
≈ 280MeV. (12)

The same analysis [16] indicated chemical freeze-out temperatures in the range
of Tchem 150−170MeV. At the chemical freeze-out (T ≈ Tchem), the acceleration
changes due to the change of the coe�cients that determine ẌX and similar
quantities. To quantify this, we evaluate the right hand side of the acceleration
equations at Tchem, both in the QM and in the HM phases, using the lattice
QCD equation of state, and we �nd the following relation:

1

1 + κ(Tchem)
' 0.11− 0.15 <

Tchem
〈m〉

' 0.55− 0.63. (13)

This inequality is thus valid in a broad range of Tchem, independently from
the actual value of the chemical freeze-out temperature, if this is varied in the
reasonable range of 150 < Tchem < 175 MeV [16].

As a consequence, the acceleration of the scales (X,Y, Z) starts to increase

as the temperature cools just below Tchem, for any reasonable value of Tchem,
not due to the change of the pressure but due to the change of the dynamical
equations, that include new conservation laws. This increased acceleration leads
to a secondary explosion of the medium, which starts just after the conversion
from quark matter to the chemically frozen hadronic matter.

A novel feature of the secondary explosion is that actually this happens at
temperatures where the κ = ε/p ratio is close to its maximum in lattice QCD
calculations, hence the corresponding speed of sound is nearly minimal. This
temperature is usually called the �softest point" of the equation of state, and
it is usually associated with a slowing down of the transverse �ows, see for
example the exact solutions of T. S. Biró for a �rst order phase transition of a
massless gas of quarks and gluons to a massless pion gas [17, 18]. In particular
if the pressure could become a constant during a �rst order phase transition,
its gradiends would approach vanishing values, hence the acceleration terms
would vanish. However, when we take into account a lattice QCD equation of
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state, that lacks a �rst order phase transition at small baryochemical potentials,
the pressure gradients do not vanish. Furthermore, at Tchem, additional local
hadronic conservation laws start to play a role and modify the dynamics. As a
consequence of inequality in eq. (13), instead of slowing down, the expansion
starts actually to accelerate faster at Tchem, as compared to the case when
hadronization and hadrochemical freeze-out does not happen!

Another novel and rather surprising feature of this secondary explosion is
related to the relative position of the chemical freeze-out to the softest point
of the lQCD Equation of State. If the chemical freeze-out temperature Tchem
is less than Tmax ≈ 151 MeV, the temperature where dκ/dT (T = Tmax) =
0, this second explosion generated by the hadrochemical freeze-out leads to
faster expansion as well as slower cooling, as compared to an expansion where
hadrochemical freeze-out does not happen. This is a rather unusual scenario, as
normally faster expansion leads to faster cooling. Such a more usual behaviour
is described by the same equations if Tchem > Tmax = 151 MeV. As this is the
expected range for the chemical freeze-out temperatures [16], we expect that
when the secondary, hadrochemical explosion happens, and the �reball starts
to expand faster, the cooling of the temperature as a function of time actually
becomes also faster.

3 Observables

The observables for a single-component hadronic matter (HM) were already
evaluated in refs. [4] and [9]. In this manuscript we present the generalization
of these earlier results for the multi-component hadronic matter scenario. The
results are summmarized in Tables 4 and 5, corresponding to the solutions
in Table 2 and 3, respectively. These results summarize only some of the key,
the selected hadronic observables, such as the inverse slope parameters and the
HBT-radii. The relation of these key observables to the single particle spectra,
elliptic or higher order �ows or to the Bose-Einstein correlation functions is
the same, as in refs. [6, 9], respectively. In these calculations, the freeze-out
temperature is denoted by Tf and subscript f indicates quantities that are
evaluated at the time of the kinetic feeze-out.

The inverse slopes and the squared inverse HBT-radii are linear functions
of mi. Recent experimental results of for example the PHENIX collaboration
correspond well to these linear relations [19]. As these data were taken in high
energy heavy ion collisions, where the hadronic �nal state contains a mixture of
various hadrons (referred to as the multi-component Hadronic Matter scenario),
it is a non-trivial result that such simple replacement rules: m → 〈m〉 in the
dynamical equations and m → mi in the observables can be utilized to obtain
the new exact solutions of the hydrodynamical equations and the evaluation of
the obsverables.

4 A new parametrization for lattice QCD EoS

In the earlier sections of this manuscript we presented the transition of a
Quark Matter to Hadronic Matter that contained a mixture of various hadrons.
These solutions, however, were limited by the assumption of a homogeneous ini-
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HM (one kind of hadron only, with
mass m)

HM (mixture of various hadrons,
with masses mi)

Tx = Tf +mẊf
2

Tx,i = Tf +miẊf
2

Ty = Tf +mẎf
2

Ty,i = Tf +miẎf
2

Tz = Tf +mŻf
2

Tz,i = Tf +miŻf
2

R−2x = X−2f

[
1 + m

Tf
Ẋ2
f

]
R−2x,i = X−2f

[
1 + mi

Tf
Ẋ2
f

]
R−2y = Y −2f

[
1 + m

Tf
Ẏ 2
f

]
R−2y,i = Y −2f

[
1 + mi

Tf
Ẏ 2
f

]
R−2z = Z−2f

[
1 + m

Tf
Ż2
f

]
R−2z,i = Z−2f

[
1 + mi

Tf
Ż2
f

]
Table 4: Inverse slope parameters for a single component and a multi-component
hadronic matter as well as HBT-radii for a triaxially expanding, non-rotating,
ellipsoidal �reball, corresponding to the hydrodynamical solution in Table 2.
The relation to the single particle spectra and Bose-Einstein correlation func-
tions is the same, as in ref. [6], but instead of the mass m of a single kind of
hadron for each hadronic species i their mass mi appears in the observables.

tial temperature pro�le. In this section we prepare the ground for new solutions
where the initial temperature and density pro�le may be inhomogeneous.

Recently, ref. [8] explored new, exact, parametric solutions of non-relativistic,
rotating �reballs, using a lattice QCD equation of state, similarly to our pre-
vious studies, but using a single mass m in the hadron gas phase. That work
explored two kinds of exact solutions: the �rst class of solutions had homoge-
neous temperature pro�les, where the local temperature was a function of time
only, T ≡ T (t) . That class of solutions were generalized to the multi-component
hadronic matter in the previous sections of this manuscript. The second class
of solutions in ref. [8] allowed for inhomogeneous temperature pro�les if the
density pro�les had a corresponding, matching shape. This second class of solu-
tions was obtained for a special equation of state, where the κ(T ) ≡ κc function
was a temperature independent constant. We are not interested here in this
scenario, as the lattice QCD Equation of State indicates that κ = ε/p is not a
temperature independent constant. However, in a footnote of ref. [8], a third
class of solutions was also mentioned, noting that solutions exist also for the
case of inhomogeneous temperature pro�les also in the case of a temperature
dependent κ(T ) functions, if a special di�erential equation is statis�ed by κ(T )
functions, however, this class was not investigated in detail.

Here we follow up that line of research by demonstrating that the lattice
QCD equation of state can be parameterized by κ(T ) functions that allow for
exact solutions of �reball hydrodynamics with inhomogeneous temperature pro-
�les. The criteria to �nd such hydrodynamical solutions is that the coe�cient
of the logarithmic comoving derivative of the temperature �elds be a constant
both in the QM and in the HM phase, as detailed below.

From the temperature equation for high temperatures (Ti ≥ T ≥ Tchem),
corresponding to the dynamical equations that describe the evolution of QM in
Table 1, this criteria leads to the following constraint on the possible shape of
the κ(T ) function:
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HM (single component, with mass m)
HM (multi-component, with masses

mi)

Tx = Tf +m
(
Ṙf

2
+ ω2

fR
2
f

)
Tx,i = Tf +mi

(
Ṙf

2
+ ω2

fR
2
f

)
Ty = Tf +m

(
Ṙf

2
+ ω2

fR
2
f

)
Ty,i = Tf +mi

(
Ṙf

2
+ ω2

fR
2
f

)
Tz = Tf +mŻf

2
Tz,i = Tf +miŻf

2

R−2x = R−2f

[
1 + m

Tf

(
Ṙ2
f +R2

fω
2
f

)]
R−2x,i = R−2f

[
1 + mi

Tf

(
Ṙ2
f +R2

fω
2
f

)]
R−2y = R−2f

[
1 + m

Tf

(
Ṙ2
f +R2

fω
2
f

)]
R−2y,i = R−2f

[
1 + mi

Tf

(
Ṙ2
f +R2

fω
2
f

)]
R−2z = Z−2f

[
1 + m

Tf
Ż2
f

]
R−2z,i = Z−2f

[
1 + mi

Tf
Ż2
f

]
Table 5: Inverse slope parameters for a single component and a multi-component
hadronic matter as well as HBT-radii for a rotating and expanding spheroidal
�reball, corresponding to the hydrodynamical solution in Table 3. The rela-
tion to the single particle spectra and Bose-Einstein correlation functions is the
same, as in ref. [9], but the results for the single component hadron mass are
generalized for the multi-component scenario. The new results can be obtained
simply, with the help of an m→ mi replacement .

d

dT

[
Tκ(T )

1 + κ(T )

]
=

κQ
1 + κ(T )

, (T ≥ Tchem), (14)

where κQ = limT→∞ κ(T ) stands for the high temperature limit of the κ(T )
function.

As the coe�cient of the temperature equation in Table 1 is modi�ed at lower
temperatures (Tchem > T > Tf ), corresponding to a multi-component, chemi-
cally frozen Hadronic Matter, in this temperature range a modi�ed constraint
is obtained for the κ(T ) function:

d

dT
[Tκ(T )] =

κcTc − κfTf
Tc − Tf

. (Tchem > T ≥ Tf ), (15)

where Tc = Tchem = 175MeV corresponds to the upper limit of the chemical
freeze-out temperatures obtained from experimental data on particle ratios in√
sNN = 200 GeV Au+Au collisions at RHIC [16]. In the above equations,

we have assumed that at the kinetic freeze-out the non-relativistic ideal gas
approximation can be used i.e. κf = κ(Tf ) = 3/2, however higher values of
κf can also be used if one intends to match lattice QCD calculations at lower
temperatures closely. In any case, after freeze-out we assume that hadrons
propagate to the detectors with free streaming and post kinetic freeze-out their
energy density to pressure ratio thus decreases or jumps to the value of 3/2.

For the QM phase the analytic solution of the constraint (14) is

κQM (T ) =
κQ

(
T
Tc

)1+κQ

+
κc−κQ

κc+1(
T
Tc

)1+κQ

− κc−κQ

κc+1

, (16)

and in this function κc stands for κ(Tc). For the HM phase, the solution to
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the constraint of eq. ( 15) yields the following form for κ(T ) :

κHM (T ) =
κcTc − κfTf
Tc − Tf

− κc − κf
Tc − Tf

TcTf
T

. (17)

These solutions are matched at the critical temperature Tc = 175 MeV and
we have assumed that the chemical freeze-out temperature is the same as the
critical temperature, Tchem = Tc. We made �ts to simulated data from lattice
QCD [14] using κQ as a �tting parameter, for Tc = 175 MeV �xed and using
various values of the kinetic freeze-out temperature Tf . The quality of these �ts
is summarized in Table 6 and on Figure 1.

In the QM phase, a satisfactory �t is found, as indicated by the red curve
and summarized also in Table 6. We could also obtain reasonably good �ts in
the HM range of temperatures, however, with some constaints on the possible
value of the kinetic freeze-out temperature Tf : A reasonable value of the freeze-
out temperature is the pion mass, Tf ≈ 140 MeV (continuous, blue line) but
in this case κ falls down too steeply with temperature due to our additional
requirement of κ(Tf ) = 3/2 and it is re�ected very well by the unsatisfactory
con�dence level of this �t. However, �ts with freeze-out temperature Tf ≤ 100
MeV and κ(Tf ) = 3/2 are statistically acceptable.

Curves χ2/NDF CL [%]

lQCD parametrization 0.12/5 > 99.9

κQ = 3.833 6.48/4 16.6

Tf = 140MeV 86.56/6 1.6·10−14

Tf = 100MeV 7.71/6 26.0

Table 6: Con�dence levels of parametrizations of the lattice QCD Equation of
State, for various values of the freeze-out temperature Tf . Note that in these
parameterizations, κ(Tf ) = 3/2, so at freeze-out a non-interacting, ideal gas
equation of state is reached.

This section prepares the ground for new exact analytic solutions of hy-
drodynamics where the initial temperature pro�le is spatially inhomogeneous.
Although such solutions can be obtained by straight-forward generalizations of
the exact solutions of ref. [8] with spatially inhomogeneous temperature pro�les
both in the high temperature QM and in the low temperature HM phases, even
for a multi-component hadronic matter scenario, their matching at the chemical
freeze-out temperature is an open research question hence these solutions are
not detailed here.

5 Conclusions

We described two new classes of exact solutions of �reball hydrodynamics,
for a rehadronizing and expanding �reball, using lattice QCD Equation of State.
In the �rst class of solutions, the expaning ellipsoid is triaxial, but the �reball
is not rotating, (X 6= Y 6= Z, ω = 0). In the second class of solutions, although
the expansion is spheroidal, the �reball is rotating, (X = Y = R 6= Z, ω 6= 0).
In both cases, we found that the �reball expands to the vacuum as a whole,
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Figure 1: Fits of the hydrodynamically motivated parameterizations above and
below Tchem to the lattice QCD data points on κ(T ) = ε/p. In these �ts, we
required that at freeze-out, a non-relativistic ideal gas limit is approached so
that κ(Tf ) = 3/2 and varied the freeze-out temperature from 20 to 140 MeV.

although the quark matter rehadronizes to a hadronic matter that includes
various hadronic components (for example pions, kaons, protons and all the
other measured hadronic species). In both classes of the presented new solutions,
the same length and temperature scales characterize the �reball dynamics for all
the hadronic types in the �nal state, (X 6= Xi, Y 6= Yi, Z 6= Zi), so the �reball
keeps on expanding as a whole, instead of developing non-equilibrium features
such as separate lenght-scales for each observable hadrons.

We have obtained a surprising analytic insight to the e�ects of hadrochem-
ical freeze-out on the expansion dynamics. If rehadronization is immediately
followed by a hadrochemical freeze-out, this leads to a modi�cation of the dy-
namical equations, which in turn leads to a second, violent, hadrochemical ex-
plosion. Instead of slowing down the radial �ows at the softest point where
p/ε is minimal, the expansion dynamics does not slow down, but it actually
accelerates. We have found that the expansion dynamics starts to accelerate
at the chemical freeze-out temperature due to the inequality (13) which is a
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consequences of the application of lattice QCD EoS when evaluating the ex-
pansion dynamics in Tables 2 and 3. In this hadrochemical explosion, all the
length-scales (X,Y, Z) and R start to accelerate faster, when the temperature
drops just below T = Tchem, as compared to a scenario without hadrochemical
freeze-out, so in this sense the dynamics becomes �hardest" at the �softest point"
of the lattice QCD Equation of State.

In the last section, we have also shown that the lattice QCD equation of state
κ(T ) can be parametrized in a new way, which is suitable for the development
of exact and analytic, parametric solutions of �reball hydrodynamics even for
an initially inhomogenous temperature pro�le. The details of this solution with
inhomogeneous temperature pro�le, as well as the extension of the presented
solutions to the relativistic kinematic region are important issues that go beyond
the scope of the limitations of this conference contribution.
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