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Predicting Soybean Yield with NDVI using a Flexible Fourier Transform Model
Abstract

We study how to incorporate the Normalized Difference Vegetation Index (NDVI) derived from
remote sensing satellites to improve soybean yield predictions in ten major producing states in
the United States. Unlike traditional methods which assume that a global OLS model applies to
all observations, we account for geographical heterogeneity by using the Flexible Fourier
Transform (FFT) model. Results show that there is considerable heterogeneity in how responsive
soybean yield is to NDVI over the growing season. Out-of-sample cross-validation indicates that
accounting for geographical heterogeneity improves the forecasts in terms of smaller prediction
error compared to models assuming away geographical heterogeneity.

JEL Codes: C14, C53,Q16
Keywords: Crop Yield, Flexible Fourier Transform Model, Forecasting, NDVI, Remote Sensing.



1. Introduction

Many agencies, both public and private, exert significant effort to make crop yield
forecasts (Irwin et al., 2014). Accurate and timely crop yield forecasts are valuable in many ways
for a number of market participants. At the aggregate level, crop yield forecasts help the price
discovery process and improve market efficiency and they aid decision-makers in making rapid
decisions to accommodate humanitarian actions and combat food insecurity. At the individual
level, crop yield forecasts are used to set insurance premiums for insurance companies and they
provide critical information for market participants, especially on the production side, to make

adjustments to improve profitability.

In recent years, there has been an increasing interest in using remote sensing data to help
improve crop yield forecasting. Remote sensing collects, archives, processes and distributes
satellite-derived data (Senay, 2016). For example, the Normalized Difference Vegetation Index
(NDVI) contains helpful information generated by remote sensing procedures that can be used to
predict crop yield. NDVI is a measure of biomass density on the surface of the earth, usually

produced by a space platform. NDVI is defined as:
NDVI= (NIR-RED)/ (NIR+RED)

where NIR stands for the reflectance of the near-infrared bands of the electromagnetic spectrum
and RED stands for reflectance of the visible bands of the electromagnetic spectrum. According
to electromagnetic theory, live vegetation absorbs the blue and red bands of sunlight and reflects
most of the green band of sunlight. Dying vegetation, to the contrary, absorbs mostly the green
band of sunlight and reflects mostly the blue and red bands of sunlight. Barren soil reflects

moderately both the visible and near-infrared bands of the electromagnetic spectrum. Generally,



the higher the NDVI, the more NIR light is reflected and the less RED/visible light is reflected,

and therefore the target area includes more vegetation.

Because remote sensing provides information at a homogeneous level of accuracy and
accessibility, regardless of the location and economic development of the country, using remote
sensing data to predict crop yield has the potential to be applied in less-developed countries in a
cost-effective manner. In comparison, traditional, survey-based forecasts are relatively expensive

and labor-intensive.

Previous NDVI-based forecasting studies (Lv, 2014) utilized Ordinary Least Square
(OLS) regression, which assumes that a global coefficient applies to each location invariantly.
However, a global coefficient may hide location variation. Due to the complexity of local
climate, soil conditions, and farm practices, the effect of NDVI on crop yield may be highly
localized. Using a global coefficient to forecast site-specific crop yield may be biased and thus

may cause less informed decisions by market participants.

We use Flexible Fourier transform (FFT) model to account for spatial heterogeneity in
crop yield forecasts. This is the first study to our knowledge to examine how the correlation
between NDVI and soybean yield varies by location and to use this spatial heterogeneity to
improve forecast performance for soybean yields. We then compare FFT with OLS in terms of
out-of-sample forecast performance. Two hypotheses are tested: 1) the coefficients of NDVI on
crop yield are heterogeneous across sites; and 2) models that account for spatial heterogeneity

outperform OLS in terms of ex-ante forecasting accuracy.

This paper is organized as follows: Section 2 presents some background information
about the current practices on crop yield forecasting and remote sensing for crop yield

forecasting; Section 3 introduces the data sources and the FFT method we use; Section 4 presents
4



descriptive analysis, regression results and forecasting results, making a comparison between the

FFT method used in this paper and traditional OLS method; and Section 5 concludes the paper.

2. Background and Related Literature

2.1 Overview of Current Crop Yield Forecast Methods

There are two types of crop forecasts: survey-based forecasts and regression-based
forecasts. Survey-based forecasts tend to be more accurate, especially when the harvest date is
approaching, usually available shortly before or around harvest time, but they are also more
expensive and labor-intensive; regression based forecasts are more cost-effective, and can be

available largely ahead of harvest, while their accuracy may be compromised.

Survey-based forecasts that are used by USDA-NASS are made by conducting annually
an Agricultural Yield Survey (AYS) and an Objective Yield Survey (OYS) to collect information
on crop growing conditions. In AY'S, farmers are asked to self-report the growing condition of
their crop. In OYS, NASS sends technical personnel to the field to take objective measurements
and counts of the plants. Both AYS and OYS are conducted at the beginning of each month from
June to September, and forecasts are generated and updated in September, October, and
November. The final forecast is released in January of each year. The typical cycle of soybean
production in the major producing states in the U.S. is as follows: planting is in May and June,
flowering is in July (this is its moisture/temperature sensitive stage), filling is in August,

maturation is in September, and harvesting is between October and November.

The second type of crop forecasts is regression-based forecasts. This type of forecasts is
used mostly by private agencies, and occasionally as supplementary forecasts by public agencies.
For example, the World Agricultural Outlook Board (WAOB) releases World Agricultural

Supply and Demand Estimation (WASDE) regression-based forecasts which use trend analysis
5



and crop weather regression models. Unlike the forecasts released by NASS, the WAOB releases
forecasts throughout the growing season, from May to August (Irwin et al., 2014). Unfortunately,
the detailed process and exact information used by WAOB to determine the crop yield is not
available to the public. Irwin et al. (2014) recommends that “this document be available on the
WAOB website.” The crop weather model (a.k.a. the modified model) utilizes the year trend
variable, monthly weather variables, and an indicator if the crop is planted late. The crop
condition model utilizes year trend variable, portion of crop planted after a certain date, e.g. May
30th for soybeans (Irwin, Good, and Tannura, 2009) and the portion of crop rated good or
excellent by the USDA (Crop Progress Report). The model we propose in this paper adds NDVI
variables to the crop weather model. According to the literature, the modified Thompson model
produces a good fit but performs poorly when events that cannot be captured by the weather
variable such as insects and diseases negatively impact crop yield. We hypothesize that using
NDVI can also monitor for insects and diseases because NDVI is a direct indicator of the
greenness/health of the vegetation, with the additional benefit that NDVI data are immediately

available at a low cost compared to the methods that rate crop conditions.

2.2 Crop yield forecasting by Remote Sensing

There have been numerous studies documenting the correlation between NDVI and crop
yield forecasts, at the national (Maselli & Rembold, 2002), regional, county level (Bolton &
Friedl, 2013) and field level (Ferencz et al., 2004). Tucker (1979) determined that the time-
integrated NDVI is largely correlated with crop yields when the vegetation is at the maximum
level of greenness. Some studies focus on intra-annual variability, that is, how the correlation
between the vegetation index and crop yields varies by the crop cycle/planting date (Basnyat et

al., 2004). They suggest choosing NDVI data over a specific period for each type of crop to



produce better forecasts. The weekly availability of NDVI data makes this crop-specific
specification achievable. Lv (2013) suggests using earlier May NDVI and the change of NDVI
over the crop’s planting and harvesting for the most accurate yield forecasting. D. M. Johnson
(2014) finds that crop yield is highly associated with NDVI and daytime Land Surface
Temperature. The author conducts a regression of crop yield on NDVI for every week of the
growing season, and finds that the week where the association is at its peak is at the beginning of

August.

In addition to NDVI derived from Earth Observing System-Moderate Resolution Imaging
Spectoradiometer, called eMODIS, other indexes and images have been used. For example,
Doraiswamy and Cook (1995) is one of the earliest studies that used Advanced Very High
Resolution Radiometer (AVHRR) imagery. AVHRR data are coarser, eMODIS data are finer;
AVHRR data are available for an extended period while eMODIS data are only available after
2000. Following works using AVHRR include Ferencz et al. (2004), in which they used a
vegetation index called General Yield Reference Index. Bolton and Friedl (2013) suggest
incorporating crop phenology and using a combination of EVI2 (Two-end Enhanced Vegetation
Index), NDVI, and Normalized Differenced Water Index (NDWI) for crop yield forecasting.
They distinguish between semi-arid and non-semi-arid areas. They find that vegetation indexes
are the best type of indexes for predicting in non-semi-arid areas, whereas the NDWTI is the best
index for prediction in semi-arid areas, because the water index is sensitive to irrigation in these

semi-arid areas.

Instead of using traditional statistical models, Bose et al. (2016) utilize spiking neural

networks (SNNs) from machine learning to analyze a remote sensing spatiotemporal



relationship. Their work focuses on finding the optimum number of variables (or “features” in
machine learning) to be included in regression analysis using machine learning techniques. They
find that this type of prediction can be made six weeks before harvest with an average accuracy
0f 95.64%. They find year 2002 had the largest forecast error due to the 2002 drought. Adrian
(2012) applies the Bayesian hierarchical model. This model is suitable for modeling data with
clusters. It produces unique estimates for each state while requiring the estimates from each state
to also follow a prior distribution. M. D. Johnson et al. (2016) focus on comparing forecast
performance using linear versus non-linear machine learning techniques and find that non-linear
models are not necessarily advantageous compared to linear models. (Li et al., 2007) find that
Neural Network techniques improve corn predictions compared to multivariate analysis. Kaul et
al. (2005) find that a non-linear model only outperforms the linear model for barley. Mkhabela et
al. (2011) categorize the Census Agricultural Regions (CARs) into three distinct agro-climatic
zones, however, even within CARs, there might be multiple soil types. Bolton and Friedl (2013)
emphasize the importance to delineate the boundary between farmland and non-farmland such as
grassland and forests, as non-farmland may contaminate the NDVI-crop yield relationship.
Delineation can be done by using a land cover map such as the Landsat Thematic Mapper data
(Bolton & Friedl, 2013). Another method of delineation is to identify single pixels as agricultural
or non-agricultural vegetation using statistical correction analysis (Maselli & Rembold, 2002).
Among those studies, there are soybean forecasts in the United States using remote sensing
(Lobell & Asner, 2003; Prasad et al., 2006). J. Chang et al. (2007) focus on using NDVI to map

corn and soybean farmland.

Fieuzal et al. (2017) make corn yield forecasts using both a real-time approach and a

diagnostic approach. The real-time approach updates the estimates dynamically after the newest
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image is acquired whereas the diagnostic approach utilizes all the image data throughout the
season. The authors find the two best estimates perform comparably. Burke and Lobell (2017)
regresses the agreement between satellite-based yields and field-reported yields as a function of
farm size and find the vegetation index can most accurately predict crop yield when the field size

is large.

The above-mentioned literature all employ a global model to produce the regression
result that fits all observations, with the major difference among the studies being the specific
model used. To our best knowledge, our paper is the first one to employ models that produce
site-specific regression results, allowing heterogeneous response of soybean yield across
counties. This is also the first paper to our knowledge that applies the Flexible Fourier Transform

Model to examine the Yield-NDVI relationship.

3. Data and Methods

3.1 Data

We use data from 797 counties from ten major soybean producing states in the U.S. from
2000 to 2016. According to NASS, the soybean production from these ten states accounted for
77-83% of total soybean production in the U.S. from 2000 to 2016 (see Table 1 for soybean

production and yield by state). Mkhabella et al. (2011) state that if a crop is not the dominant

crop in the region, NDVI usually gives a poor prediction of crop yield, because it cannot
distinguish between different crops. The soybean yield data are obtained from the USDA-NASS
QuickStats. This database provides official published aggregate statistics on U.S. soybean yields
and value of production of soybeans. Soybean yield is measured in bushels per acre. County-
level NDVI data are obtained from the United States Geological Survey (USGS) and Ag-
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Analytics. Ag-Analytics is an open-source, open-access database that provides data on
agricultural finance, environmental finance, insurance, and risks (Woodard, 2016). The USGS
uses eMODIS and the satellite platform Terra to obtain images at the resolution of 250 meters
from 2000 onwards. Ag-Analytics converts the 250m-resolution raw images to county-level
NDVI mean values every 7 days. We calculate county-level monthly NDVI values by taking an
average of the weekly NDVI values. Climatological data obtained from PRISM Climate Data
from Oregon State University and Ag-Analytics. We include two weather variables: maximum
temperature over a month and average monthly precipitation. County boundary shapefiles are
obtained from the United States Census Bureau. We obtain a sample of 12,027 county-year

observations for the FFT analysis.

[Place Table 1 approximately here]

3.2 Flexible Fourier Transform Model

When estimating crop yield response to input variables (for fertilizer input see Li et
al.,2016), traditional models use regional and temporal dummies to capture spatial and inter-
temporal heterogeneity. Adding dummy variables can only capture the difference in the value of
the dependent variable across locations and time; however, it does not take into account how the
relationship varies according to site-specific and time-specific characteristics. Another type of
model uses a quadratic functional form to estimate the relationship between crop yield and
weather variables, assuming that crop yield is non-linearly related to the weather variable.
However, these models may suffer from model misspecification, especially if there is a threshold

effect, driven by environmental risks such as drought and flooding (Cooper et al., 2017).
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Gallant (1984) first proposed flexible Fourier functional transform to generate unbiased
production function approximation and proved its mathematical validity. Cooper et al. (2017)
applied a flexible Fourier transform function to estimate the relationship between crop yield and
temperature. The flexible Fourier function we use can be presented as follows:

A
Y=ty +x'b+x'Dx+ 22 (Z (v 0S[jk,, "$(xppp )= W, sin[ jk, "sCee )Y + 6 (1)

In this model, yis the dependent variable soybean yield; uo is the constant term; x denote the

independent variables; s(x) is the scaled version of x , such that s(x) is in the range of [0,27];

and x,.; denote transformed variables, in our case, NDVI. The first two terms represent the

linear regression part. D is a parameter matrix to be estimated. The third term represents the
quadratic term. The last term models the functional flexibility using FFT. Similar to the Taylor
expansion which uses a series of polynomial terms to approximate the true function, the Fourier
function uses a series of trigonometric terms to approximate the true function. The Fourier
functional form is believed to be the only known functional form that satisfies the Sobolev
condition, meaning that the difference between the approximated function and the true function
approaches zero as the sample size becomes arbitrarily large. For a proof that the Fourier

function satisfies the Sobolev condition, refer to Gallant (1994). In the model, «, (a=1,2, ..., A)

is the elementary multi-index vector, whose dimension equals the dimension of X, whereas A
is the total number of elementary multi-indexes. The vector k¢, can be obtained in the following
way: first, exhaust the list of k_, such that ¢ has only integer elements and the sum of the
absolute value of each element in £ is no greater than K, where K is predetermined; second,

delete any k_ whose first non-zero element is negative; third, delete any «  whose elements have

11



a common integer divisor. Monahan (1981) introduced a Fortran code to produce the set of
elementary multi-index vectors. Also in the model, J is the order of the Fourier transformation

whereas v, and w,, are parameters to be estimated. We use the following parametrization:

K =2,J =2, which are chosen such that the rule of thumb — the number of variables after

transformation is roughly the square root of the number of observations (Fenton & Gallant,
1996) — is satisfied. Since there are 12,027 observations in the data we use, we include a total of

120 variables after the adding the transformed NDVI variables.

The regression equation we use in our study can be simply written as follows:

August
m=Apri

soybean yield = S, + X |(BimMaxTemp,, + B,mMaxTempSquare,,) +

anuzg:;:u(,83mPrecipitationm + BymPrecipitationSquare,,) + Zf:fg;rfger(BSmNDVlm) +

SoTimeTrend + Yo_; §;StateDummy, + 2Y4_, Zle(vjacos [jkl,s(NDVI)] —

WjeSin[jkys(NDVI)]) + error (2)

where MaxTempm, Precipitationm, NDVIx are the maximum temperature, the average
precipitation, the average NDVI in month m, respectively. PrecipitationSquaren and
MaxTempSquarem are the squared terms of MaxTempm and Precipitationm. TimeTrend equals the
year minus 1999. StateDummys is the state dummy variable. NDVI is a vector with each element
being NDVI». We include the weather variables from April to August, following the standard
specification in the literature (Cooper et al., 2017). We include NDVI variables through
September, following the remote sensing literature (Li et al., 2007). The advantage of the flexible
Fourier transform function is that not only does it allow for model flexibility, but also it
incorporates multivariate estimation which is difficult to achieve through other non-parametric

models such as kernel regression. The model degenerates to the traditional OLS model with
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quadratic terms when v,, =0 and w,, =0. In the following discussion, the OLS model is the
above model with v,, =0 and w,, =0 imposed. By testing the statistical significance of

variable v, and w,,, we can conclude whether the traditional quadratic model is rejected in

ja?

favor of the more flexible FFT model.

A review of the relevant literature reveals that the FFT model has been used/tested by
scholars in different studies, fields, and situations. Chang (2016) used the FFT to model the non-
linear effect of temperature on electricity demand. Becker et al. (2006) proposed a unit root test
with a Fourier functional transform. Enders and Li (2015) approximated structural breaks in US
GDP trends using Fourier forms. Jones and Enders (2014) provided a summary on using Fourier

forms to model structural breaks.

3.3 Prediction and Forecast

We compare the prediction performance of the FFT model versus the OLS model. We
conduct out-of-sample predictions and evaluate the prediction performance by comparing
prediction errors measured by the root mean square error (RMSE) and the mean absolute error
(MAE), between FFT and OLS, for four schemes: time-series prediction, cross-sectional

prediction, panel prediction, and dynamic prediction. RMSE and MAE are defined as follows:

RMSE = \/%Z(y,- -3 )

1 N
MAE =— —y| (4
N;Iy, 3 @
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Both RMSE and MAE are commonly used measures to evaluate prediction performance.
They measure the difference between true and fitted values. The unit for both RMSE and MAE is
bushels per acre. In a time-series prediction, we first select a year for prediction, then we use
observations from all other years to generate the model, then we predict the soybean yield for the
selected year using the fitted model, weather data, and NDVI data from the selected year. In
cross-sectional prediction, similarly, we select a state for prediction, then we use observations
from all other states to generate the model, then we predict the soybean yield for the selected
state using the fitted model, weather data, and NDVI data from the selected state; in panel
prediction, similarly, we make the prediction for a selected year-and-state. Though commonly
used, a shortcoming of using RMSE or MAE to measure prediction performance is that we do

not know whether the predicted yield overestimates or underestimates the final actual yield.

In dynamic prediction or forecast, which is more realistic, we make predictions in each
month throughout the growing season (May to September). For example, we produce the May
prediction using only the information that is available until May. In our case, we use the
precipitation, temperature and vegetation index from April and May. For each following month,
the prediction is updated in a dynamic fashion by adding the most up-to-date weather and NDVI

data into the model.

We make predictions and forecasts using the regression results from above-mentioned
models. In this paper, prediction refers to cases where we may use data afterwards to predict for
a specific time; forecast refers to case where we only use data up to a certain year to make

predictions for that year.
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4. Results

4.1 Descriptive analysis

The descriptive statistics for the main variables are reported in Table 2. The average
soybean yield across all states and years is 43.11 bushels per acre. From April to July, the
average maximum temperature and average NDVI increase steadily, and reach their peak levels
in August. The average precipitation is highest in the months of May and June. These variables
are included as suggested by the modified Thompson model (Thompson, 1963) to account for

weather effects.

[Place Table 2 approximately here]

4.2 Flexible Fourier Transform Regression Results

All FFT models are developed using Matlab R2017a (The MathWorks, Inc.), following
the methodology in Cooper et al. (2017). Figures showing FFT results are made using ArcMap
10.3 software. The estimation results from the model incorporating FFT terms are reported in
Table 3. Due to the substantial number of variables (including 84 transformed NDVI variables),
we only report the results for main variables including the untransformed weather variables and
NDVI variables. However, the rest of the transformed variables are also included in the model
fitting process. We calculate elasticities by applying the mean value theorem to get the numerical
approximation of the derivatives and fixing the values of independent variables at the median
level of each variable for each county. Thus, we obtain an elasticity estimate for each county. We
present the minimum, median and maximum of FFT elasticity estimates across counties in
column 2 through column 4 in Table 3. For comparison purposes, we also use the OLS
regression results to calculate elasticity estimate for each county and report elasticity summary
from OLS regression in column 5 through column 7 in Table 3. The OLS model refers to
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equation (1) with v,, =0 and w,, =0 imposed. For weather variables, except for the July

maximum temperature and the April average precipitation, the median of elasticity estimates
from OLS and the median of elasticity estimates from FFT have the same sign. On average,
higher temperatures from April to June and higher precipitation levels from June to August lead
to higher soybean yields. On the other hand, higher temperatures in August and higher

precipitation levels in May are associated with lower soybean yields.

While the median of elasticity estimates for weather variables across counties are very
similar between FFT results and OLS results, median elasticity estimates of NDVI variables
differ dramatically between OLS results and FFT results, in terms of both sign (September
NDVI) and magnitude (April-August NDVI). NDVI elasticities estimated by FFT have a wider
range than those generated by OLS, due to the inclusion of the transformed NDVI variables.
OLS results suggest that August NDVI has a greater impact on soybean yields than the July
NDVI, whereas FFT results suggest the opposite. According to Table 3, when July (August)
NDVI increases by 10 percent, the median soybean yield rises by 4.5% (3.4%) or by 1.94 (1.47)

bushels per acre.

By testing the significance of the coefficient estimates for the Fourier terms, we can test
whether the FFT specification is overfitting the data. In Table 3, we present an F test of the FFT
regression versus the OLS regression and we find that the coefficients on the transformed Fourier
terms are jointly significantly different from zero and thus the OLS is rejected in favor of the
FFT regression.

[Place Table 3 approximately here]
[Place Table 4 approximately here]
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The geographical distribution of coefficient estimates from FFT is presented in Figure 1.
In each subfigure, we present the geographical distribution of the median of the elasticity
estimates of NDVI for each month (April, May, June, July, August and September, respectively)
across different counties. For some counties in the north of North Dakota, central Minnesota,
central Indiana, west Arkansas, and southwest Missouri, soybean yields are highly responsive to
July NDVI, but less responsive to August NDVI. For most counties in Ohio and in east Arkansas,
in contrast, the soybean yield is responsive to August NDVI whereas it is less responsive to July
NDVI. For some counties in the west parts of North Dakota and South Dakota, soybean yields
are responsive to April NDVI whereas they are less responsive to August NDVI. These
geographical differences in soybean yield responsiveness to NDVI shows that there is

considerable spatial heterogeneity that needs to be considered when making yield predictions.
4.3 Prediction and Forecast Results

The results of time-series prediction and cross-sectional prediction performance for FFT
versus OLS are shown in Table 4. The bold numbers show cases where the FFT error is lower
than the OLS error. On average, FFT performs better than OLS in time series predictions since
both MAE and RMSE for FFT is lower than those for the OLS model. For cross-sectional

predictions, FFT has a higher RMSE on average, but a lower MAE than OLS does.

[Place Table 4 approximately here]

Our results show that time-series predictions on average are more accurate than cross-
sectional predictions in terms of smaller predicting error. RMSE and MAE from time-series

predictions are consistently lower than cross-sectional predictions.

We then conduct out-of-sample panel prediction. We randomly select 1,000 observations

from all years and states, and predict the soybean yields for these 1,000 observations by OLS and
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FFT, using all other observations excluding these 1,000 observations. We then compare the
predicted soybean yields with the actual yields and calculate the RMSE and MAE. We then
repeat this sampling process 200 times. The histogram shown in Figure 2 is of the distribution of
RMSE and MAE. Two findings are interesting. First, panel prediction has much lower prediction
error than both time-series and cross-sectional predictions in Table 4. This suggests that when
predicting soybean yield for a certain location, it is useful to include the already publicized yield
data from other locations into the training sample. Second, FFT has a consistently lower
prediction error than the OLS model. FFT can improve the prediction performance by a modest
0.3% according to MAE, or 0.4% according to RMSE. This percentage is obtained by dividing
the prediction error by the mean of crop yield (average MAE is 0.138, average RMSE is 0.1684

and mean soybean yield is 43.11).

[Place Figure 2 approximately here]

The predictions so far may have used data from future periods to predict current soybean
yields. For robustness, we also include forecasts where soybean yield predictions are only based
on data from previous periods (Table 5). For RMSE, there are 10 years out of 16 years where
FFT outperforms OLS. For MAE, there are 12 years out of 16 years in which FFT outperforms
OLS. In terms of average error, FFT has smaller RMSE and MAE than OLS does. While the
forecasts are more realistic in terms of being based only on data from previous periods, the
average prediction errors are unsurprisingly higher than those for the predictions using all data

including from future periods in Table 4.

5. Conclusions
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In this paper, we used FFT to account for spatial and temporal heterogeneity in the
relationship between NDVI throughout the growing season and soybean yield. We produced
county-specific coefficients and elasticities of NDVI on soybean yield. We found that the
response of soybean yield to NDVI is different across locations, showing spatial heterogeneity of
responses. For some counties located in the northern states, soybean yield is highly positively
related with the July NDVI, whereas for other counties located in the south, the August NDVI is
a better indicator of the soybean yield. Traditional OLS models seem to underestimate the effect

of July and August NDVI on soybean yields.

Furthermore, we conducted out-of-sample prediction/forecast and compared
performances for the OLS and FFT models. We found that models that account for the spatial

heterogeneity generally result in better out-of-sample predictions and forecasts.

A limitation of this work is that it does not distinguish pixels of soybean crop from those
of other crops or vegetation types, still incorporating NDVTI in the model results in significant
coefficients and improved fit. Future work can use filters to select pixels that are highly likely to
be soybean crop. However, the use of spatial heterogeneous models may capture the
heterogeneous soybean/total land ratios across counties, compared to OLS, thus alleviating the
contamination caused by other crops. Future work that applies land cover filters may improve the

results even further.

This study uses data from the ten major soybean producing states in the U.S. where data
are readily available. Our results show that using the FFT model helps improve the prediction
accuracy (lowers the prediction error) especially in panel predictions. The goal is to improve on
the forecast accuracy of soybean yield to allow market participants to make more informed

decisions with respect to anticipated crop yield and possible resulting prices. The FFT model
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also has potential to forecast crop yields in less developed countries where ground field work is
too expensive to conduct or where the meteorological network is sparse — making this an

alternative feasible solution in making crop yield predictions.
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Table 1. Soybean Production and Yield in 10 Major Producing States for 2014-2016

State Soybea}n Soybean Soybegn Soybean Soybee}n Soybean
Production  Yield Production Yield Production Yield
2014 2015 2016

Illinois 547,120 56 544,320 56 592,950 59
Iowa 498,270 51 553,700 56.5 571,725 60.5
Minnesota 301,705 41.5 377,500 50 393,750 52.5
Indiana 301,920 55.5 275,000 50 324,300 57.5

Nebraska 287,820 54 305,660 58 314,150 61

Missouri 259,935 46.5 181,035 40.5 271,460 49
Ohio 246,225 52.5 237,000 50 263,780 54.5
South Dakota 229,950 45 235,520 46 255,915 49.5
North Dakota 202,515 34.5 185,900 32.5 249,000 41.5

Arkansas 158,400 49.5 155,330 49 145,700 47

Ten states 3,033,860 48.6 3,050,965 49 3,382,730 53
U.S. Total 3,927,090 47.5 3,926,339 48 4,306,671 52.1

Note: Soybean production is measured in 1,000 bushels, Soybean yield is measured in bushels/acre.
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Table 2. Descriptive Statistics

Variable Number of Min. Median Max. Mean Stagdqrd
Obs. Deviation
Soybean Yield 12,027 2.9 44 73.1  43.11 10.05
Max Temp. April 12,027 0.37 1732 2734 17.06 3.44
Max Temp. May 12,027 13.65 2233 30.67 22.39 2.56
Max Temp. June 12,027 19.7 2737 36.06 27.37 2.28
Max Temp. July 12,027 22.82 2941 3891 29.58 24
Max Temp. August 12,027  20.13 28.76  39.47 28.92 2.35
Precipitation April 12,027 417 85.14 424.08 91.26 48.98
Precipitation May 12,027 527 108.28 355.26 113.08 52.23
Precipitation June 12,027 7.64 105.01 376.5 115.8 58.07
Precipitation July 12,027 0.89 87.5 35427 9443 49.66
Precipitation
August 12,027 0 82.04 438  90.01 51.54
NDVI April 12,027 -0.01 033 0.79 0.35 0.12
NDVI May 12,027 0.13 0.42 0.85 0.45 0.13
NDVI June 12,027 024  0.59 0.87 0.58 0.1
NDVI July 12,027 0.27 0.74 0.89 0.73 0.08
NDVI August 12,027 027  0.75 0.88 0.72 0.1
NDVI September 12,027 0.24 0.6 0.87 0.6 0.1

Note: Temperatures are measured in degrees Celsius, precipitation is measured in inches. Negative NDVI denotes
SNOW cover.
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Table 3. Elasticity Estimates from FFT and Quadratic OLS Models

FFT Quadratic OLS

Min. Median Max. Min. Median Max.
Max. Temp. April 0.02 0.08 0.29 0.04 0.07 0.21
Max. Temp. May -0.75 0.22%** 3.74 -0.82 0.27%*** 1.38
Max. Temp. June -0.11 0.42%** 5.99 -0.29 0.39%** 1.62
Max. Temp. July -0.94 -0.04%** 1.14 -1.1 0.04%** 0.86
Max. Temp. August -3.82 -0.48** -0.3 -1.46 -0.53 -0.37
Precipitation April -0.03 0.0013***  0.04 -0.04 -0.0047**  0.0048
Precipitation May -0.15 -0.01* 0.01 -0.18 -0.01* 0.004
Precipitation June -0.05 0.03 %% 0.3 -0.07 0.04%** 0.08
Precipitation July -0.29 0.04%** 0.35 -0.44 0.05%** 0.11
Precipitation August 0.01 0.09%** 0.53 0.03 0.09%** 0.16
NDVI April -3.27 -0.03***  2.08 -0.22 -0.07***  -0.04
NDVI May -1.04 -0.06* 1.09 -0.22 -0.09***  -0.04
NDVI June -8.62 -0.15%** 1.14 -0.01 -0.01 -0.0032
NDVI July -2.27 0.45%** 8.36 0.08 0.14%** 0.26
NDVI August -3.74 0.34 7.46 0.13 0.22%** 0.32
NDVI September -5.11 0.09 2.48 -0.11 -0.06***  -0.04
No. of Obs. 12,027 12,027
State Fixed Effects Yes Yes
Year Trend Effects Yes Yes
Adjusted R-sq 0.721 0.701
Rank test between
Fourier and OLS F (84,11906) =11.132

Notes: Due to the non-linearity of the FFT regression, we report the elasticity estimates rather than the
coefficient estimates of the main variables.

Significance here indicated by asterisks corresponds to the significance of untransformed variables.

In addition to these variables, additional 84 Fourier transformed variables of NDVI are included in the
analysis - their coefficient estimates are not reported here but they are included in the elasticity calculations.
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Table 4. Out-of-Sample Prediction Performance: Time-Series and Cross-Sectional Prediction

MAE RMSE MAE RMSE

Year OLS FFT OLS FFT State OLS FFT OLS FFT
2000  4.81137 4.98073 6.07073 6.21356 North Dakota 5.42118 4.92597 6.50988 6.00264
2001  3.87899 3.9363 4.92053 5.02227 South Dakota 5.35795 6.27265 6.88285 8.72918
2002  4.82763 4.80833 6.23882 6.1961 Iowa 4.80132 4.07755 5.85146 5.11804
2003  5.32093 5.02482 6.69649 6.38478 Ohio 431768 4.71736 5.3346 5.77125
2004  4.24005 4.35191 5.42675 6.02137 [linois 6.19968 5.57796 7.58194 6.94729
2005  4.26876 4.13705 5.42658 5.23434 Indiana 4.61708 4.46813 5.54583 5.45675
2006  4.37803 4.14817 5.55463 5.34228  Nebraska 10.0521 10.3535 12.769  13.22
2007  4.61954 4.74141 6.20303 6.33831  Minnesota  4.97922 4.98107 6.34346 6.53194
2008  4.07258 4.25072 5.22737 5.44965 Missouri 4.68498 4.72269 5.91926 5.92473
2009 43971 4.19245 5.75316 5.41486 Arkansas 7.61327 7.26225 9.56978 9.22424
2010  3.85706 3.75677 4.92539 4.8753 Average 5.80444 5.73592 7.23081 7.29261
2011 4.37394 4.53074 5.57265 5.67107
2012 5.92868 5.73895 7.46748 7.32792
2013 4.9454 4.89378 6.18927 6.1736
2014  4.25676 4.2375 5.40185 5.37212
2015 4.492 4.46359 5.8391 5.79755
2016  5.35846 5.33611 6.5839 6.60164

Average 4.58984 4.56055 5.85281 5.84922

Note: Bold numbers indicate that FFT has lower prediction errors and therefore outperforms OLS.
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Table 5. Out-of-Sample Forecast Performance

MAE RMSE

Year OLS FFT OLS FFT

2001 11.136 10.636 12.882 12.678
2002 6.303 6.502 7.956 8.235

2003 4.696 4.327 6.188 5.639
2004 5.956 5.395 7.117 7.394
2005 7.201 6.979 8.448 8.239
2006 4.758 4.546 6.319 6.051

2007 5.297 5.559 6.865 7.157
2008 4.242 4.758 5475 6.143

2009 4.240 4.074 5.495 5.203
2010 4.353 4.277 5.545 5.489
2011 5.132 4911 6.765 6.410
2012 6.239 6.124 7.835 7.730
2013 4.845 4.994 6.080 6.247
2014 4.240 4.218 5.388 5.335
2015 4.488 4.383 5.854 5.748
2016 5.358 5.336 6.584 6.602

Average 5.530 5.439 6.925 6.894

Note: Bold numbers indicate that FFT has lower forecast
errors and therefore outperforms OLS.
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Figure 1. Geographical Distribution by State of Elasticity Estimates from FFT, April-September
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Figure 2. Histogram of RMSE and MAE between OLS and FFT
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