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Abstract 

Wheat streak mosaic virus is among the most economically important viruses affecting winter 

wheat in the Great Plains region. Depending on infection severity, the virus can lead to significant 

yield loss, rendering continuation of mid-season input application uneconomical. Determining an 

economic threshold infection severity soon enough in the season so that farmers could discontinue 

input application, could increase farmer net returns and save resources. Using data from a field 

experiment involving 114 sample plots, which were sensed for the presence of the virus using 

reflectance readings, we conducted econometric and partial budget analysis to estimate the effect 

of the virus on yields, and determine the economic threshold level of infection. Results indicate 

varying threshold infection severity depending on the date of sensing, with earlier sensing having 

a higher threshold than sensing at a later date. Further, estimates show that the virus can reduce 

yields by as much as 35 percent for every unit increase in reflectance readings, between growth 

stages Feekes 5 and 6. Without a better predictor of yield losses, however, it is rarely going to be 

the case that it would pay to discontinue input application. 
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Introduction 

Wheat streak mosaic is a wheat viral disease caused by the wheat streak mosaic virus (WSMV), 

which is transmitted by the wheat curl mite. WSMV is becoming the most prevalent and 

economically important virus infecting winter wheat in the Great Plains region of the United States 

(Workneh et al. 2017; Velandia et al. 2010; Burrows et al. 2009). The disease infection may be 

confined to a specific part of the field, or can spread to the entire field, even across fields. Infection 

generally occurs in the fall if green vegetative plants such as volunteer wheat, pasture wheat 

grasses, and even corn, infested with the virus-carrying wheat curl mites are present when wheat 

seedlings emerge. However, studies (e.g., Price 2015; McMullen and Waldstein 2010; Christian 

and Wallis 1993) show that volunteer wheat is the major contributor to WSMV disease outbreaks.  

When volunteer wheat is left growing late in the summer, after harvest, wheat curl mites move 

from volunteer wheat to newly planted emerged winter wheat, completing what is dubbed the 

“green bridge”, with newly emerged wheat plants now hosting the virus-carrying wheat curl mites.  

When conditions for disease development are conducive, usually warm temperature coupled with 

wind, during the fall, wheat curl mites, act as vectors blown by wind, carrying the virus from 

infected volunteer wheat (Price 2015; Christian and Wallis 1993) to other parts of the field as well 

as across fields, particularly where there is no fence to separate the fields. Although much of the 

infection occurs in the fall, the disease may not be noticed until spring. Common symptoms of the 

disease include yellowing of leaves, which later turn brown as the disease progresses, and 

eventually the leaves die (McMullen and Waldstein 2010). Infection may occur at any stage of 

development. However, if infection occurs during the early stages of the crop’s development, the 

effects on crop growth and yield may be more severe (Hunger et al. 2004).  
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The disease affects both spring and winter wheat, with effects ranging from minimal to 

complete crop loss. Once the crop is infected, there is little a farmer can do to address the problem, 

making prevention the best management. Byamukama et al. (2014) suggest controlling volunteer 

wheat and using the few available disease resistant cultivars, as some of the management practices 

to help in controlling the disease. However, since the disease can spread from an infested field to 

a healthy field, with relative ease, within a distance of 1.4 miles (McMullen and Waldstein 2010), 

prevention is not a guarantee that a field will not be infected.  

Although the disease is of economic significance to wheat production and profitability, few 

studies have attempted to model and quantify wheat yield response to varying levels of WSMV 

infection. In addition to measuring the yield response to disease severity, it is also important to 

estimate a level of WSMV infection which would substantially reduce yield such that 

discontinuing application of inputs to the crop would result in a smaller loss than continuing with 

application. Determining this level of infection is important as it would equip farmers with 

information to make informed decisions soon enough in the season and save resources.  

The copious literature on the relationship between WSMV and yield is mainly based on 

descriptive analysis. A few exceptions here are Workneh et al. (2017), Almas et al. (2016), and 

Byamukama et al. (2014) who use regression analysis to model this relationship. Byamukama et 

al. (2014) focus on the disease’s effect on yield determinants such as tillering, shoot weight, and 

plant height, which they find to be significantly reduced by WSMV infection. Workneh et al. 

(2017) and Almas et al. (2016) apply regression analysis to estimate wheat yield response to 

WSMV, and find an exponential relationship between WSMV and yield. Almas et al. (2016) treat 

WSMV reflectance readings (sensing variable) as a categorical variable, rather than continuous, 

hence most likely losing variability between categories. These studies provide important insights, 
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both economic and agronomic, into the potential effect of WSMV on yield. The current study 

builds on these analyses and provide a more nuanced yield response estimate, which is used to 

estimate an economic infection threshold. Most existing literature on disease threshold focus on 

optimal timing of treatment for crop disease control (e.g., Mbah et al. 2010; Kuosmanen 2006). 

However, with WSMV, once a field is infected there is little a decision maker can do to control it. 

Thus, determining an economic threshold infection severity soon enough in the season so that 

farmers could discontinue input application, could aid increase farmer net returns and save 

resources.  

Against this backdrop, the objectives of the current study are twofold; 1) to determine wheat 

grain yield response to WSMV severity; and 2) to determine the disease severity threshold, beyond 

which it is uneconomical for a farmer to continue with input application. 

Theory 

Farmers are faced with management decision questions of whether it will be profitable to continue 

applying midseason management inputs, such as fertilizer, insect control and irrigation, to wheat 

fields infected with WSMV. This question is unanswered, largely, due to lack of information on 

profitability thresholds for varying levels of disease incidence and severity (Almas et al. 2016). 

The farmer’s profit maximization problem, taking into account the level of WSM infection, can 

be represented by the equation 

 

max
𝜃∈ℝ+

𝐸𝜋 = [𝑃𝐸[𝑦(𝐷)] − 𝑇𝑉𝐶(𝐷)] 

s.t. 

E(𝑦) = {
0,                 if 𝐷 = 1

𝛽0 + 𝛽1𝑆𝑖𝑡, if 𝐷 = 0
 

 

𝐷 = 𝐼(𝑆 ≥ 𝜃) 

(1) 
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𝑇𝑉𝐶 = 𝑓(𝐷) 

 

where 𝐸𝜋 is expected profit, P is the average seasonal wheat price (assumed constant), 𝜃 is the 

WSMV infection threshold, E(y) is expected wheat yield, which is dependent on WSMV infection 

severity of the ith plot at a particular sensing time t, represented by Sit and the decision whether to 

abandon an infected section (D) which takes a value of 1 if a farmer abandons and 0 otherwise,  

TVC denotes total variable input costs such as fertilizer, insect control, irrigation, and labor for 

producing wheat ($/acre), which varies depending on D, while 𝛽0 and 𝛽1are parameters to be 

estimated. One important assumption regarding the decision to abandon is that a farmer would 

only abandon a section if expected yield from the section is zero. Thus in the above formulation, 

we assume zero yield if a section is abandoned, and hence a farmer would suffer a loss equivalent 

to the value of inputs they would have applied before abandoning, which is based on the budget. 

Based on estimated timing of input application, a farmer can save costs on fungicide, some level 

of irrigation, and harvest, since these activities would not be necessary if the farmer decides to 

discontinue input application after sensing.   

In order to link disease severity and wheat profitability, we need to determine the effect of 

varying levels of disease severity on yield, and use these estimates to calculate profits, using 

equation (1) at different WSMV severity. We can then estimate a disease severity threshold that 

would render continuation of input application unprofitable (i.e., a farmer would incur more losses 

by continuing with input application than discontinuing). Making this decision requires the farmer 

to know, a priori, what level of infection is severe enough to cause higher revenue loss compared 

to abandoning a section. Provided with this information, it is expected that a farmer would decide 

to abandon a section of the field with WSMV severity level equal to or greater than the threshold, 

in order to minimize total variable costs. However, abandoning a section will result in zero yield. 
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Thus, the decision to abandon the field saves a farmer resources but since expected yield is zero, 

the farmer still incurs a loss. 

To estimate the threshold infection level, we need to calculate the expected level of infection 

at which the difference in expected profits between the abandoned and non-abandoned fields is 

zero. This can be calculated from the following indirect profit functions;  

(2)    E(𝜋1) = 𝑃 ∗ E(𝑦1) − 𝑇𝑉𝐶1  

(3)    E(𝜋2) = 𝑃 ∗ E(𝑦2) − 𝑇𝑉𝐶2.  

where E(𝜋)is expected profit, P is wheat price, TVC is total variable costs, y is yield, the subscripts 

1 and 2 represent non-abandoned and abandoned field, respectively.  Equating (2) and (3) and 

replacing E(y1) with (𝛽0𝑡 + 𝛽𝑡1𝑆𝑖𝑡), and assuming E(y2) = 0 (since expected yield from an 

abandoned field is zero), we obtain 

P*(𝛽0𝑡 + 𝛽1𝑡𝑆𝑖𝑡) – 𝑇𝑉𝐶1 = –𝑇𝑉𝐶2. Rearranging and solving for Sit (threshold reflectance reading) 

yields  

(4)    𝑆𝑖𝑡 =
𝑇𝑉𝐶1−𝑇𝑉𝐶2

𝑃
−𝛽0𝑡

𝛽1𝑡
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Data 

Data for this study was mainly drawn from field experiments conducted in the 2015-2016 wheat 

season in Dalhart, Dallam County, Texas1. The experiment was conducted on a farmer field 

measuring 121 acres. The field was planted to the cultivar TAM 304 on November 6th, 2015, and 

was under center-pivot irrigation. The following inputs were applied, fertilizer (urea) 150lb N8 -

13 -12, 30.16 inches of irrigation, herbicide 2-4 D at a rate of 1 pint per acre, pesticide (Loresban) 

also at 1 pint per acre, and fungicide (Prosaro). WSMV severity assessment was conducted in this 

field by first establishing two transects, running from the outside edge to the center of the field. 

The field contained a total of 114 sampling plots (measuring 1m2), established across the two 

transects, with sampling intervals ranging from 2 – 4 m. The length of the transect and sampling 

intervals were determined based on disease severity gradient from the edges of the field.  

When wheat reached growth stage measuring between 5 – 6 on the Feekes scale, 

presence and severity of WSMV infection in a 1m2 area (5 rows) was measured by taking 

reflectance readings (sensing) at 555nm, using a hand-held hyper-spectral radiometer. Sensing of 

WSMV was done at 3 different times, that is, April 27th, May 4th, and May 10th. Symptomatic 

leaves from 62 randomly selected plots were collected and tested for WSMV, TriMV, 

HPWMoV, and Barley yellow dwarf virus (BYDV) using ELISA. This was done to ensure that 

the observed symptoms were due to WSMV.  All the 62 symptomatic samples tested positive for 

WSMV, with only 6.5% of the samples testing positive for TriMV (in association with WSMV), 

                                                           
1 Originally, two experiments were set up in Dalhart 2015-16 season and Bushland 2013-14 season. However, the 
field in Bushland experienced a severe hailstorm, which significantly affected crop growth and yield. Thus we were 
unable to use the Bushland data.  
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while none were positive for HPWMoV or BYDV, indicating that WSMV was by far the main 

cause of observed symptoms.  

At the time of sensing, all inputs except fungicide and irrigation were fully applied. 

Fungicide was applied in mid-May, and irrigation continued until early June. Each sampling plot 

had 5 rows and only 3 center rows (0.6m2) were harvested per plot. Grain from each plot was 

hand-harvested on June 29, 2016, threshed and weighed to determine yield per plot. Table 1 

presents a summary of descriptive statistics of the reflectance values at different sensing dates 

and final yield. 

[Table 1 about here] 

 

In addition to experimental data, the study also utilized wheat enterprise budgets prepared 

by Oklahoma State University, Department of Agricultural Economics Extension, for 

information on variable costs. These budgets are available at 

http://agecon.okstate.edu/budgets/sample_pdf_files.asp. Wheat price data (average for the year 

2016) was obtained from USDA - National Agricultural Statistics Services available at 

https://www.nass.usda.gov/Publications/.   

Procedure 

Estimating a model that accurately predicts final yield based off of WSMV severity early in the 

season is crucial for estimating the economic threshold of WSMV. This entails estimating wheat 

yield response to WSMV, whose effect may vary from minimal to complete yield loss, depending 

on infection severity. The availability of disease severity levels (reflectance values) and yield data 

http://agecon.okstate.edu/budgets/sample_pdf_files.asp
https://www.nass.usda.gov/Publications/
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obtained from the experiment makes it possible to analyze wheat yield response to different levels 

of WSMV severity.  

To estimate the yield effect of WSMV we use ordinary least squares (OLS). The model is 

specified by the equation 

 

(5)    𝑦𝑖 = 𝛽0𝑡 + 𝛽1𝑡𝑆𝑖𝑡 + 𝜀𝑖 

 

where yi is the wheat yield (bu/acre) in the ith plot, 𝑆𝑖𝑡  is reflectance values measured from each 

plot at time t (t= 1 for April 27th , t=2 for May 4th, and t=3 for May 10th), 𝛽0 and 𝛽1 are coefficients, 

and 𝜀𝑖~𝑁(0, 𝜎2) is the stochastic error term.  

Considering the cost of sensing, it is more economical to sense only once. Hence, there is a 

need to assess which of the three sensing times (April 27th, May 4th, or May 10th) predicts final 

yield best. Model selection and misspecification tests were conducted to help select a good fitting 

model, one that predicts final yield more accurately. Our estimation, though based on a single year 

and location, and thus unable to control for year and location effects, has potential to provide 

information on the varying effects of WSMV on yield, and provide a cue regarding the timing of 

sensing. To evaluate the correlation between yield and reflectance values, yield was graphed 

against each of the reflectance values, on a scatter plot (Figure 1). The fitted line equations and 

respective goodness of fit statistic (R-squared) suggest a log-linear relationship, implying an 

exponential decline in yield as WSMV severity increased. Of the three reflectance values, the third 

reading (May 10th reading) seem to explain much of the variation in the final yield, with coefficient 
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of determination of 0.81, followed by the first reflectance reading at 0.76 and lastly the second at  

0.69.  

 

[Figure 1 about here] 

 

 

 

Empirical Model and Estimation 

Based on the graphed correlations between yield and WSMV, we estimated a simple log-linear 

regression model for the first and third reflectance readings (since these explain more of the 

variation in final yield than the second) as shown below; 

 (6)        ln𝑦𝑖 = 𝛽0 + 𝛽1𝑆𝑖𝑡 + 𝜈𝑖 

where all variables and parameters are as defined before, and vi is the random error term.  

We then obtain expected yield as E(y) = 𝑒(𝛽0𝑡+𝛽1𝑡𝑆𝑖𝑡) and replace it in equation (4) to obtain the 

threshold S as  

(7)   𝑆𝑖𝑡 =
ln[

𝑇𝑉𝐶1−𝑇𝑉𝐶2
𝑃

]−𝛽0𝑡

𝛽1𝑡
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Data were analyzed using SAS software (version 9.2) PROC MIXED, and PROC NLMIXED 

to obtain regression estimates and numerical solution for the threshold, respectively. To address 

the second objective, of estimating a WSMV infection threshold, we used partial budget estimates 

of differences between TVC of the abandoned and non-abandoned fields (reduced costs due to 

abandonment [Table 4]), and regression coefficient estimates, in equation (7) to obtain a numerical 

solution.  

Misspecification Tests 

Model misspecification can potentially lead to biased and inconsistent estimators, resulting in 

inappropriate inferences and policy recommendations (McGuirk et al. 1993). Before estimating 

our final model, misspecification tests were conducted. A scatter of reflectance readings against 

wheat yield seems to suggest an exponential yield-WSMV relationship (Figure 1), thus a log-linear 

model was fitted. Following D’Agostino (1990), the K2 omnibus test of normality was conducted, 

and the test did not detect deviations from normality due to either skewness or kurtosis. Other tests 

conducted are Lagrange multiplier test for heteroskedasticity (Breusch and Pegan 1980); and a 

joint conditional mean and conditional variance tests, using the comprehensive specification tests 

as suggested by McGuirk et al. (1993). None of the tests detected significant misspecification.  

Results and Discussion 

Tables 2 and 3 present OLS estimates of effect of WSMV infection severity on wheat yield, for 

the first and third reflectance readings, (measured on April 27th, and May 10th), respectively. The 

reflectance readings are negative and significant in both regression models, as expected. The effect 

of WSMV varies depending on time of sensing, with earlier sensing showing relatively smaller 

effect compared with the third. In terms of magnitude, holding all else equal, an increase in the 
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first reflectance value by one reduces yield by 22 percent, while a similar increase in the third 

reflectance value reduces yield by almost 35 percent. The difference in magnitude of the two 

reflectance values can be attributed to increased infection severity overtimes. Thus, as infection 

levels progressed, the effect on yield also increased, exponentially. This finding is consistent with 

others, notably Workneh et al. (2017), Almas et al. (2016), and Byamukama et al. (2012). The use 

of multiple reflectance values, collected under farmer field conditions, in the current study 

provides an indication of the rate of disease progression and how this affects yield under the 

conditions in a farmer managed field.  

 

[Table 2 about here] 

[Table 3 about here] 

Further analysis was conducted to determine the threshold reflectance value (WSMV 

severity) beyond which it is uneconomical for a farmer to continue with input application. 

Predicted yield used for threshold analysis are based on estimates obtained by running a regression 

with only one sensing measure each for the first and third sensing. Information on input costs and 

timing of application were obtained from the farmer where the experiment was conducted, and 

supplemented with Oklahoma State University Department of Agricultural Economics Extension 

wheat budgets data, available at http://agecon.okstate.edu/budgets/sample_pdf_files.asp, were 

used to construct a partial budget (Table 4).  

[Table 4 about here] 

 

http://agecon.okstate.edu/budgets/sample_pdf_files.asp
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Using cost estimates from partial budget, and predicted yield from regression estimates, we apply 

equation (7) to estimate the threshold for the two reflectance readings. This yielded different results 

depending on the reflectance values used with the April 27th reading giving  a higher threshold at 

12.9 than the May 10th reading at 10.4 (Table 5), with expected yields of 13.2 bu/acre and 13.9 

bu/acre, respectively. This difference in threshold estimates is expected since higher infection 

severity at an earlier date would most likely lead to higher yield loss by the end of the season, 

compared to a similar severity later in the season, a finding consistent with most studies on crop 

disease infection (e.g., Hunger et al. 1992; Price 2015). However, it is important to point out that 

only a few observations (3% each from the first and third readings) in our data had reflectance 

readings equal to or greater than the estimated threshold, perhaps an indication that it is rarely 

going to be the case that abandoning a field or section would pay off. Given this possibility, it 

would be more helpful for farmers to prioritize good management practices to prevent and/or 

reduce chance of infection.   

 

[Table 5 about here].  
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Conclusion 

This study used field experiment data under farmer managed field, mainly, to estimate WSMV 

infection threshold beyond which continued application of inputs is uneconomical. Results of the 

analysis indicate exponential yield decline with increasing severity. For example, our estimates 

show that by April 27th, an increase in reflectance readings by one would reduce yield by 22 

percent, while a similar increase by May 10th may reduce yield by as much as 35percent. This 

result indicates how quickly WSMV severity progresses, and how much yield can potentially be 

lost for a given level of infection during the season. Since the third reading predicted final yield 

more accurately than the first, it would be more economical for a farmer to sense around May 

10th for a crop seeded around November 6th. 

Our results are consistent with those of others who have attempted to estimate this effect. 

In regards to threshold analysis, our estimated values differ depending on time of sensing. Our 

estimates indicate the threshold reflectance to range from about 10.4 to 12.9, for readings taken 

around May 10th and April 27th, respectively. These results somewhat suggest farmers may 

potentially save resources by abandoning infected fields or sections with reflectance readings 

exceeding the threshold. However, only 3% from each set of sensing values in our data had 

infection levels equal to or greater than the threshold estimates. It would therefore be more 

helpful for farmers to prioritize good management practices such as clearing the field of 

volunteer wheat and weeds early enough before planting, to destroy the “green-bridge”, and 

reduce chances of infection. Farmer may also consider other alternatives such as bringing in 

cattle to graze out the infected crop, or harvest the crop for hay.  

The results presented in this study are an initial stage towards determining economic 

WSMV infection threshold, under farmer managed fields. In this study, we have attempted to 
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quantify WSMV effects on yield, and infection threshold using data from one field experiment 

for a single year, thus unable to control for year and location effects. To the extent possible, 

future studies should incorporate more realism in the analysis by using multiple year data from 

different locations, and collect actual yield and input costs data from abandoned fields as a 

counterfactual to non-abandoned fields.  
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Table 1. Descriptive Statistics for Three Assessment Dates and Yield 

Variable Mean Std. Dev. Minimum Maximum 

First reflectance (April 27th) 6.920 2.679 3.825 15.469 

Second reflectance (May 4th)  7.510 1.777 4.776 11.956 

Third reflectance (May 10th) 6.741 1.747 4.125 11.450 

Yield (bu/acre) 59.019 29.819 6.786 109.271 
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Table 2. Ordinary Least Squares Estimates of the Effect of WSMV on Wheat Yield (log Bu/acre) at 

the First Sensing  

Variable Estimate 

Intercept 5.446** 

                           (0.088) 

First reflectance reading -0.222** 

                            (0.014) 

Note: Standard errors in parenthesis; *p < 0.05, and **p < 0.01. Number of observations =113 
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Table 3. Ordinary Least Squares Estimates of the Effect of WSMV on Wheat Yield (log Bu/acre) at 

the Third Sensing  

Variable Estimate 

Intercept 6.15** 

                        (0.111) 

Third reflectance reading    -0.336** 

                          (0.018) 

Note: Standard errors in parenthesis; *p < 0.05, and **p < 0.01. Number of observations =113 
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Table 4. Partial Budget - Decision to Abandon a WSMV Infected Field 

Item $/Acre Item $/Acre 

Added income due to 

abandonment:   Added costs due to abandonment:  

None 0 None 0 

     
Reduced costs due to 

abandonment:   
Reduced income due to 

abandonment:  

Fungicide 19 Revenue loss: 62 bushels at $3.45/bu 219.903 

Irrigation (20% of total irrigation 

cost)    4.936   
Harvest (Machine + Labor)      20.54   
Subtotal 44.476 Subtotal 219.903 

Net change:     44.476 -219.903    = -175.427     
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Table 5. WSMV Infection Threshold and Yield Estimates 

Variable 
Threshold 

Estimate 

Lower 

Bound 

Upper 

Bound 

Expected 

Yield at 

Threshold 

(Bu/acre) 

April 27th Reflectance Threshold 12.914** 12.155 13.672 13.185 

     (0.383)   
 

May 10th Reflectance Threshold       10.472** 10.113 10.831 13.893 

     (0.181)   
 

Note: Standard errors in parenthesis; *p < 0.05, and **p < 0.01. Number of observations =113 
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Figure 1. Relationship between Third Reflectance Reading and Wheat Grain Yield (Kg/hectare) for 

Dalhart2  

 

 

  

 

 

 

 

 

 

 

 

                                                           
2 Similar graphs for the first and second reflectance reading were generated, although not presented here. 
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