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Serially Dependent Extreme Events in Agricultural Commodity                    

Futures Markets  

 

Abstract 

 

Extreme price changes have become increasingly common in agricultural commodity futures 

markets. Many empirical studies have shown that agricultural commodity futures returns are not 

normally distributed and are heavy-tailed.  However, most of the studies do not allow for 

stochastic dependence of extreme events over time. Statistical tools based on Extreme Value 

Theory can be utilized to model tail risk in agricultural markets. In this paper, we employ a 

Bayesian hierarchical model for serially-dependent extreme commodity futures price changes. 

The model assumes that the distribution of marginal price returns follows the generalized Pareto 

distribution (GPD), and reflects a serial dependence structure in tail distribution. The model 

proposed here allows both the parameters in the serial dependence function and the marginal 

GPD to vary over time. Thus, the model provides important information on changes in the shape 

of the heavy-tailed distribution. For empirical analysis, we use daily futures prices for corn. 

Based on our preliminary results, recent years have seen considerable increases in the probability 

of an extreme price decline in several commodity markets. These results have implications for 

risk management strategies as well as the design and effectiveness of federal insurance programs. 

 

Key words: Commodity Futures, Extreme Value Theory, Serial Dependence  
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Introduction 

Extreme price changes have become more frequent in financial markets for many agricultural 

commodities. Commodity markets are widely used for risk management by producers and also 

by the Federal Crop Insurance program for crops with revenue protection and, thus, extreme 

price events can have major implications on producer profitability. There is not only a need to 

develop risk quantifying techniques for risky events in normal market conditions but also a 

requirement to design methods which can predict the probabilities of the extreme financial 

events. The channels that induce volatility in agricultural markets are complex and related to 

various risk factors in the economy. For instance, price volatility can arise from external factors, 

such as extreme weather events and exchange rate movements, as well as internal factors, such 

as harvest cycle and production decisions. The effects of agricultural commodity price volatility 

can have severe ramifications for agricultural producers as extreme volatility results in higher 

risk managing costs through increased crop insurance premiums, option premiums, and overall 

hedging costs for producers.  

Extreme value theory (EVT) is well-suited to model the extreme market risk inherent to 

agricultural commodity markets. EVT provides a theoretical background on which to build 

statistical models for extreme risk measures such as expected prices shortfall and value at risk 

(VaR). EVT has two primary streams: the block maxima model based on generalized extreme 

value distribution (GEV), and the threshold model based on generalized Pareto distribution 

(GPD). The block maxima method models the series of maxima (minima) for some period and 

the series asymptotically approaches to the GEV. To analyze extreme market events, however, 

we are not only interested in maxima or minima, but also in the behavior of a large movements 
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over or under some threshold.  A drawback of the block maxima (minima) method, using 

minimum log return within some period for instance, is that it cannot accommodate the concept 

of duration. In this case, the threshold based method can be employed. The GPD models a 

distribution of excess over (under) the threshold by considering the use of all maximum 

(minimum) log return values higher (lower) than the threshold rather than the collection of block 

maxima (minima) values within some periods. However, the most basic form of using the GPD 

is suitable for independent data rather than serially correlated sequences like we observe in the 

financial data. Thus, we adapt the model to allow for the use of serially correlated observations. 

In an application for the threshold method, there are two general ways to adapt the GPD. 

The most common way is the peaks over threshold (POT) method, which was introduced by 

Smith (1989) and Davison and Smith (1990). The POT method attempts to illustrate the 

magnitude of threshold exceedances. However, the method cannot accommodate the serial 

correlation of the extreme events. Instead, it exogenously identifies clusters (serial clusters) of 

the extremes from the given threshold and analyzes each cluster’s quantiles using the GPD under 

the notion that the cluster extremes are approximately distinguished and independent. The 

second approach models the serial dependence of data above (below) the threshold. The method 

is technically intensive as it requires the identification of the structure for the serial dependence 

of extreme events by defining joint tail distribution. Though more complicated, the method has a 

noticeable advantage over POT method in that it allows us to highlight parameters that determine 

the magnitude and length of the serial dependence of extreme events as well as dynamics of 

those parameters over time.   
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Many methods have been suggested for modeling POT in time-series data extremes. Tsay 

(1999) employed a two-dimensional Poisson process model proposed by Smith (1989) to 

calculate VaR in risk management. Krehbiel and Adkins (2005) estimated VaR for the NYMEX 

Energy complex by using the conditional tail distribution of AR-GARCH-GPD model suggested 

by McNeil and Frey (1999). Xiao and Koenker (2009) proposed a model that measures the 

maximum monetary loss based on a quantile semiparametric GARCH-GPD model. More 

recently, Bortot and Gaetan (2013) suggested a hierarchical method using gamma auxiliary 

variables to model flexible serial dependence process with GPD margins. Reich, Shaby, and 

Cooley (2014) designed serial dependence of extremes using a max-stable process with stable 

auxiliary variables.      

The accuracy of a risk quantifying methodology is crucial to financial institutions and 

producers concerned with designing the probability and magnitude of price extremes. The 

accuracy of the methods, specifically for parametric based models, is closely linked to a choice 

of the predictive distribution for the price changes. In this regard, methods deriving from EVT 

provide potential advantages since, regardless of which type of distribution is assumed for 

modeling entire price changes, the asymptotic distribution of extreme price changes will 

converge to the EVT distributions such as GEV and GPD. 

Our proposed method models serially dependent extremes using a Markov weighting 

function (Reich, Shaby, and Cooley 2014) and the extremal coefficient (Schlather and Tawn 

2003) under the max-stable process. Unlike most of the GPD based models with a serial 

independence of GPD parameters, our model allows the processes of the two GPD parameters 

(scale and shape) and the serial dependence function to change over time. Most importantly, the 



 

 

5 

 

model provides a form of calculating the probability of the log-return below certain return level 

(θ) for some consecutive days (h) – an improvement over the previous methods that assume no 

serial dependence of GPD parameters.  

The objective of the study is to answer two important questions. Can the EVT method be 

used to quantify price risk for financial assets be successfully adapted to measure price risks in 

agricultural commodity markets? Second, for evaluating prediction accuracy of the model, what 

are the expected probability and magnitudes of extreme events for agricultural commodity 

futures? For an empirical application, we use daily futures prices for corn. To evaluate the 

performance of the new method, we use the backtesting methods suggested by Jorion (2001). 

The prediction accuracy of our method and other candidates applied to our dataset is used to 

identify which candidate is superior in measuring the risk of extreme events in agricultural 

commodity markets. The following section describes the fundamentals of EVT and details of 

modeling serial dependence of the extremes. 

 

Generalized Pareto distribution (GPD) 

Consider a sequence 𝑥1, 𝑥2, … , 𝑥𝑇 of the observed daily commodity futures log-return. For 

notational brevity, we define the model for single year here, and will generalize the model in the 

later section. Since the model uses the POT method with GPD, we define the data 𝑦𝑡 =

max[𝜃, −𝑥𝑡] where are censored at the threshold 𝜃 to fit the GPD parameters1. We select the 

threshold 𝜃 from the standard exploratory tools such as a mean excess plot method. Therefore, 

each futures log-return has the different value of 𝜃. Based on the theory of the POT, we assume 

that the density of the 𝑦𝑡 is well approximated by the GPD.  
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  The GPD has two parameters of scale (σ) and shape (ξ) and the threshold θ. A positive 

shape parameter ( ξ>0, Frechet type) corresponds to a heavy tail distribution, a negative shape 

parameter (ξ<0, Weibull type) corresponds to a bounded tail, and a zero-value shape parameter 

(ξ=0, Gumbel type) corresponds to a light tail distribution. Consider the conditional distribution 

of 𝑦𝑡 given that it exceeds 𝜃. If 𝐹 is a cumulative density function (CDF) for 𝑦𝑡, the probability 

of 𝑦𝑡 exceeding 𝑦∗, given 𝑦𝑡 is greater than the threshold 𝜃, can be approximated by the GPD  

(1) P(𝑦𝑡 > 𝑦∗|𝑦𝑡 > 𝜃) = 
1 − 𝐹(𝑦∗)

1 − 𝐹(𝜃)
= {

1 − (1 +
𝜉(𝑦∗ − 𝜃)

𝜎
)−1/𝜉𝜉 ≠ 0

1 − exp−(𝑦
∗−𝜃)/𝜎𝜉 = 0

 

where scale parameter 𝜎 > 0, and shape parameter −∞ < 𝜉 < ∞. 

 We account for the serial dependence of the GPD parameters via a max-stable process 

transformation. Max-stable process2 generally has been used to model the block maxima dataset 

(GEV). According to previous statistical studies (de Hann and Ferreira 2006; Reich, Shaby, and 

Cooley 2013), the max-stable process can be used for modeling tail dependence by defining a 

point-wise maximum process of linearly-renormalized independent stochastic processes. 

Therefore, the max-stable process allows for asymptotic dependence. We use the process to 

model daily log-return of commodity futures prices that exceed a threshold.  

 

Serial dependence modeling for extremes 

Consider a transformed max-stable temporal process 𝑌𝑡. Since 𝑌𝑡 is a max-stable process, we can 

assume that the process has a Frechet marginal distribution, where P(𝑌𝑡 < 𝑌∗) = exp(−1/𝑌∗) 

(Resnick 1987). Define the quantile (inverse CDF) function Φ−1 for the data 𝑦𝑡 = Φ−1(𝑈𝑡), 



 

 

7 

 

where 𝑈𝑡 = exp(−1/𝑌𝑡)~Uniform(0,1) and thus the 𝑦𝑡 has the desired marginal distribution as 

equation (1) by the probability inverse transform.  

 We consider the temporal dependence of 𝑌𝑡 by using a random effect 𝑅𝑡 > 0. We model 

the random effect 𝑅𝑡 as a linear combination of independent effects 𝐿1, … , 𝐿𝑀 like Reich, Shaby, 

and Cooley (2013). In the setting, the max-stable process 𝑌𝑡 has the Frechet marginal distribution 

and is stationary and asymptotically dependent for all 𝑡 = 1,… , 𝑇, such that  

(2) 

𝑌𝑡~GEV(𝑅𝑡
𝛼, 𝛼𝑅𝑡

𝛼, 𝛼) 

𝑅𝑡 =∑𝐾𝑗(𝑡|𝛾)
1
𝛼𝐿𝑗

𝐽

𝑗=1

 

𝐿𝑗 ~PS(𝛼) 

where the max-stable process 𝑌𝑡follows the GEV distribution with location 𝑅𝑡
𝛼, scale 𝛼𝑅𝑡

𝛼, and 

shape parameter 𝛼, the independent effects 𝐿𝑗 follow the positive stable (PS) distribution with 

Laplace transform E[exp(−𝐿𝑡)] = exp(−𝑡𝛼) and shape parameter 𝛼, and 𝐾𝑗(𝑡|𝛾)
1

𝛼 is a weight 

function3 that addresses the magnitude of temporal dependence.  

 Under the model setting in equation (2), the joint distribution of the process at times 𝑡 =

1, … , 𝑇 that below a threshold 𝑌∗ is 

(3) P(𝑌1 < 𝑌∗, … , 𝑌𝑇 < 𝑌∗) = exp[−𝑈(𝑡, 𝑌)] 

where 𝑈(𝑡, 𝑌) = ∑ [∑ 𝑌∗−
1

𝛼𝐾𝑗(𝑡|𝛾)
1

𝛼𝑇
𝑡=1 ]

𝛼
𝐽
𝑗=1 is the 𝑇 dimensional exponent measure function 

introduced by Beirlant et al.(2004). Reich, Shaby, and Cooley (2013) prove that 𝑌𝑡 is max-stable 

and stationary, and has Frechet marginal distribution for all 𝑡 under the following conditions  
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(4) 

𝐾𝑗(𝑡|𝛾) ≥ 0, 

∑𝐾𝑗(𝑡|𝛾)

𝐽

𝑗=1

= 1forall𝑡, 

𝑈(𝑡, 𝑌) = 𝑈(𝑡 + ℎ, 𝑌)forall𝑡and𝑌,whenℎ > 0. 

 The next step is to define temporal weights 𝐾𝑗(𝑡|𝛾) for the model that satisfies the 

condition in equation (4). Therefore, we employ a first-order Markov model for the random 

effect 𝑅𝑡. Since the Markov model assumes that 𝑅1 = 𝐿1,  

(5) 𝑅𝑡|𝑅𝑡−1, … , 𝑅1 = 𝛾
1
𝛼𝑅𝑡−1 + (1 − 𝛾)

1
𝛼𝐿𝑡 

For all 𝑡 > 1. The parameter 𝛾 ∈ (0, 1) captures the strength of temporal dependence. The value 

of 𝛾 = 0 represents no temporal dependence and 𝛾 = 1 represents significant temporal 

dependence. From the Markov model setting, we can write the 𝐾𝑗(𝑡|𝛾) in equation (2) as 

(6) 𝐾𝑗(𝑡|𝛾) = {
𝛾𝑡−1𝑗 = 1

𝐼(𝑡 ≥ 𝑗)(1 − 𝛾)𝛾𝑡−1𝑗 > 1
 

where 𝐼(𝑡 ≥ 𝑗) is an indicator function that one if 𝑡 ≥ 𝑗, and zero otherwise. 

 General types of dependence measuring tools such as correlation estimate the dependence 

well in the middle of the distributions, but poorly estimate the dependence in the tail of the 

distributions. Joint tail dependence for the max-stable process can generally be reflected by the 

exponent measure function in equation (3), but the interpretation of the function is not 

straightforward. In the regard, we use the extremal coefficient 𝜂(ℎ) suggested by Schlather and 
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Tawn (2003) to describe the tail dependence. Given the max-stable process 𝑌𝑡, the extremal 

coefficient 𝜂(ℎ) ∈ [1, 2] can describe the tail dependence as 

(7) P(𝑌𝑡 < 𝑌∗, 𝑌𝑡+ℎ < 𝑌∗) = P(𝑌𝑡 < 𝑌∗)𝜂(ℎ). 

Since 𝑌𝑡 is stationary and has Frechet margin defined in equation (3), 𝜂(ℎ) = 𝑈(𝜏, 𝑌) where 𝜏 =

(𝑡, 𝑡 + ℎ). Therefore, if 𝑌𝑡 and 𝑌𝑡+ℎ are independent, then the 𝜂(ℎ) = 2, and if they are perfectly 

dependent, then 𝜂(ℎ) = 1. Note again that the general Gaussian-based models cannot reflect the 

dependence structure among extremes, while the transformed max-stable process 𝑌𝑡 with the 

Frechet margin enable to capture the asymptotic dependence among extremes.  

 From equation (3), we have the following equation 

(8) 𝜂(ℎ) =∑[𝐾𝑗(0|𝛾)
1/𝛼 + 𝐾𝑗(ℎ|𝛾)

1/𝛼]
𝛼

𝐽

𝑗=1

. 

As ℎ approaches to zero, the extremal coefficient 𝜂(ℎ) approaches to 2𝛼, lim
𝑛→0+

𝜂(ℎ) = 2𝛼. 

Therefore, the 𝛼 determines a level of the temporal dependence, with near zero 𝛼 corresponding 

to strong dependence. Reich, Shaby, and Cooley (2013) shows that the extremal coefficient 𝜂(ℎ) 

in equation (8) for the Markov model has the simple and nice form that, 

(9) 𝜂(ℎ) = (𝛾ℎ/𝛼 + 1)
𝛼
+ 1 − 𝛾ℎ. 

In this setting, the range of temporal dependence is controlled by 𝛾 with sufficiently small 𝛼, 

𝜂(ℎ) ≈ 2 − 𝛾ℎ. 
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 To calculate higher order temporal dependence, we define the probability function Λ of a 

negative log-return below threshold 𝑌∗, 

(10) Λ(𝑌∗, ℎ) = P(𝑌𝑡 < 𝑌∗, … , 𝑌𝑡+ℎ < 𝑌∗), 

interpreted as the probability that the log-return value of the underlying asset below the threshold 

𝑌∗ in ℎ consecutive days. In the supplementary material shows that the Λ(𝑌∗, ℎ) is expressed as 

(11) Λ(𝑌∗, ℎ) = Λ(𝑌∗, ℎ − 1) − 𝜆 +∑𝜆𝐺(𝑗,ℎ)
ℎ−1

𝑗=1

−∑ 𝜆𝐺(𝑗,𝑘,ℎ)
1≤𝑗≤𝑘≤ℎ

+⋯+ (−1)ℎ𝜆𝐺(1,..,ℎ) 

where 𝜆 is a common marginal probability, 𝜆 = P(𝑌𝑡 < 𝑌∗), 𝐺(ℎ1, … , ℎ𝑗)is defined as, 

𝐺(ℎ1, … , ℎ𝑗) = ∑ [∑ 𝐾𝑘(ℎ𝑘|𝛾)
1

𝛼𝐾
𝑘=1 ]

𝛼
𝐽
𝑗=1 . Then the Λ(𝑌∗, ℎ) can be interpreted as the probability 

of the log-return below certain return level (𝑌∗) for ℎ consecutive days. The closed form solution 

of Λ(𝑌∗, ℎ) provides the temporal dependence structure of the extreme event in corn futures price 

dynamics and substantially reduces computational intensity. 

 

Evaluation of the new method 

We use daily corn futures price from 01/02/1980 to 09/15/2017 to fit the model. The futures data 

are collected from the CME group. We then take logarithm for the futures prices and obtain the 

sequence of log-return corn futures 𝑥1, 𝑥2, … , 𝑥𝑇. Figure 1 shows the raw data plots for the corn 

futures log-return values. For the proposed method here, we transform the log-return values 𝑥𝑡 

using the following function, 𝑦𝑡 = max[𝜃, −𝑥𝑡] where are censored at the threshold 𝜃 to fit the 
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GPD parameters. We use the Empirical Mean Excess Function (EMEF) to select the proper 

threshold 𝜃. Figure 2 presents EMEF plots for the corn futures return. It shows that a threshold 

of about 5% is appropriate for fitting the left tail of return series. We use R-package evir to 

plot the EMEF. 

We assume that the distribution of 𝑦𝑡 that above 𝜃 follows GPD. We then define 

marginal density 𝑓(𝑥𝑡) such that  

(12) 𝑓(𝑦𝑡) =  {
Ψ𝑡 𝑦𝑡 = 𝜃

(1 − Ψ𝑡)Γ𝑦𝑡 > 𝜃
 

where Ψ𝑡 > 0 is the probability below (above) the threshold 𝜃 and Γ is the probability density 

function of the GPD. Next, we transform the 𝑦𝑡 to the max-stable process 𝑌𝑡 by the probability 

inverse transformation with the quantile (inverse CDF) function Φ−1 for the data 𝑦𝑡 = Φ−1(𝑈𝑡), 

where 𝑈𝑡 = exp(−1/𝑌𝑡)~Uniform(0,1). We finally fit the model 

(13) 

logit(Ψ𝑡) = 𝛽0
Ψ + 𝛽1

Ψ𝑡 + 𝛽2
Ψ𝑧(𝑡) 

log(σ𝑡) = 𝛽0
σ + 𝛽1

σ𝑡 + 𝛽2
σ𝑧(𝑡) 

𝜉𝑡 =𝛽0
𝜉
 

logit(𝛼𝑡) = 𝛽0
𝛼 + 𝛽1

𝛼𝑡 + 𝛽2
𝛼𝑧(𝑡) 

logit(𝛾𝑡) = 𝛽0
𝛾
+ 𝛽1

𝛾
𝑡 + 𝛽2

𝛾
𝑧(𝑡) 

where 𝑡 is trend variable, 𝑧(𝑡) is standardized trend variable for 275 business days for controlling 

trend cycle within years, 𝑧(𝑡) = (𝑡 − 137.5)/79.53. We impose independent normal priors for 

all regression coefficients𝛽, 𝛽~𝑁(0, 102). Figure 3 presents obtained coefficient posteriors. 
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To evaluate the performance of the new model, two other candidate methods to measure 

conditional VaR is estimated, which are AR(1) GARCH(1,1) with normality, and AR(1) 

GARCH(1) with GPD. We compare the performance of the new model with these two 

candidates by using backtesting method (Krehbiel and Adkins, 2005). Backtesting is conducted 

using 100 observations through date 𝑡 to estimate VaR for date 𝑡 + ℎ. The actual log-return at 

𝑡 + ℎ is compared to the predictive distribution and quantile estimated from the information at 𝑡 

to determine the exception frequency, where ℎ = 1, …5. We repeat the process for 100 business 

dates and thus produce 500 backtest samples for each model.  

(14) 

exception𝑡 = 1,if𝑦𝑡 < 𝑉𝑎�̂�𝑡,𝑡+ℎ 

exception𝑡 = 0,otherwise 

where ℎ = 1,… ,5, and 𝑡 = 1,… ,100. We use most recent 100 data to create the backtest 

samples. The number of exceptions in the backtest samples follows a binomial distribution, 

(15) 𝑔ℎ(𝑎ℎ) = (
100

𝑎ℎ
) 𝑝ℎ

𝑎ℎ(1 − 𝑝ℎ)
100−𝑎ℎ forℎ = 1,… ,5. 

 

By approximating the binomial to the standard normal distribution, the test statistic 𝑍ℎ 

(16) 𝑍ℎ =
𝑎ℎ − 100𝑝ℎ

√100𝑝ℎ(1 − 𝑝ℎ)
 

is approximated into standard normal. 

 

Expected Discussion and Practical Implications 
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This paper and presentation is expected to lead to discussion about how to best estimate extreme 

price events in agricultural commodities. Further, we expect there will be significant interest in 

the implications of extreme event estimation on the current and future structure of the Federal 

Crop Insurance Program and its use of commodity markets in the design of revenue protection 

programs. Based on our preliminary results, recent years have seen considerable increases in the 

probability of an extreme price decline in several commodity markets. These results have 

implications for producers’ risk management strategies as well as the design and effectiveness of 

federal insurance programs. 
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Figure 1 : Raw data of the negative transformed corn futures returns from 1980 to 2017.  

 

 

Figure 1 : Empirical Mean Excess Function (EMEF) plots for the negative transformed corn futures returns.  
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           Figure 3 : Trace plots for the regression coefficient posteriors.  
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1 GPD is generally used to model the tails of another distribution. Since we are interested in minimum rather than 

maximum, we take a negative transformation of the daily log-return values. 

2 Max stable process is the infinite dimensional extension of the multivariate GEV. Suppose 𝑦𝑡  is a stochastic 

process with continuous sample path. According to de Hann (1984), a stochastic process 𝑌𝑡(𝑦𝑡) is max-stable when 

there exist continuous normalizing functions of 𝑎𝑡(𝑦𝑡) > 0 and 𝑏𝑡(𝑦𝑡) ∈ ℝ that satisfy the following limiting 

process, 

[ max
𝑡=1,…,𝑇

𝑦𝑡 − 𝑏𝑡(𝑦𝑡)

𝑎𝑡(𝑦𝑡)
]
𝑦𝑡∈ℝ

𝑑
→ [𝑌𝑡(𝑦𝑡)]𝑦𝑡∈ℝ. 

More recently, de Hann and Fereira (2006) show that the point-wise distribution of the max-stable process 𝑌𝑡(𝑦𝑡) 

forms GEV distribution and has Frechet marginal distributionP(𝑌𝑡 < 𝑌∗) = exp(−1/𝑌∗) suggested by Resnick  

(1987). 

3 The temporal random effects formulation (weight function) is known to lead to a marginal asymmetric logistic 

joint distribution (Stephenson 2009), which is a common multivariate extreme value distribution. 

                                                           


