

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

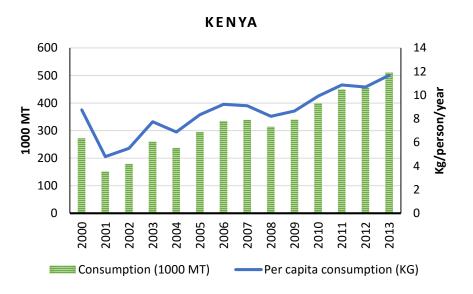
AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

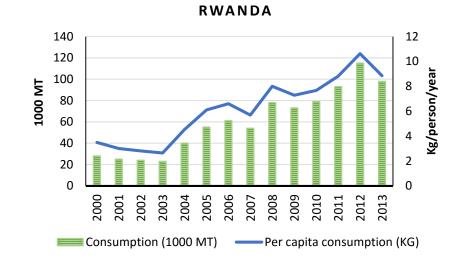
Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

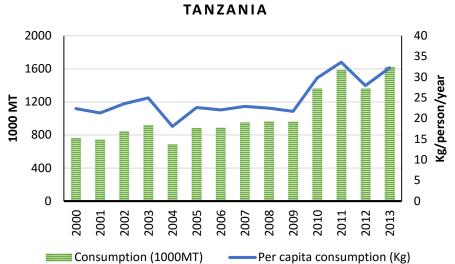
Feasibility and Impact of Rice Self-Sufficiency Strategies in East Africa

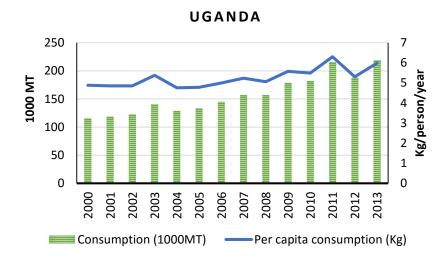
Presented at the SAEA Conference

Jacksonville, FEBRUARY 2018

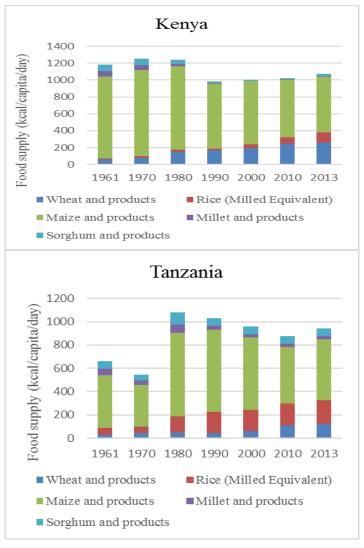

Outline

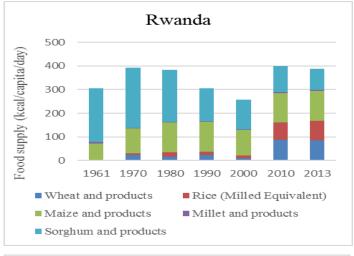

- Background => CARD Initiative; Rice Production and Consumption Balances in the four countries
- Study Objectives
- Methodology => AGRM and RiceFlow Models
- Findings => Econometric estimates (elasticities); NRDS vs AGRM; Area-Yield requirements for SSF; Subsidies; Implications of SSF
- Summary and Conclusions

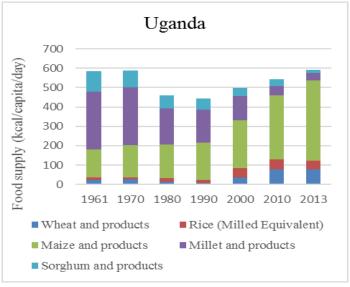

Background


- CARD Coalition for Africa Rice Development
 - Initiative of JICA, AGRA and NEPAD
 - Established in the 4th Tokyo International Conference for African Development in May 2008
 - Post 2008 crisis adaptation strategy
 - Aim: to **double rice production** in Africa between 2008 and 2018
 - 23 member countries
 - National Rice Development Strategies (NRDS) => rice value chain upgrade action plan
 - Focus of current study:- Four East African countries: Kenya, Rwanda, Tanzania and Uganda

Consumption

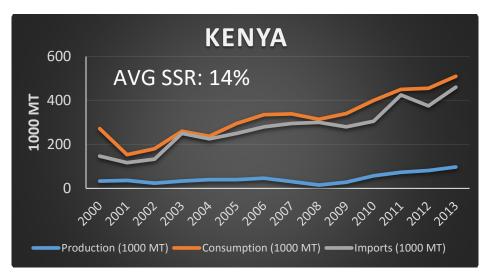


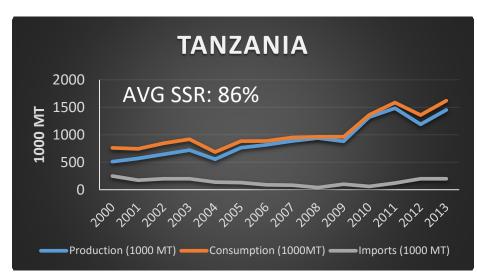


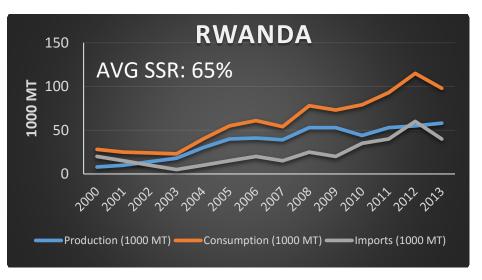


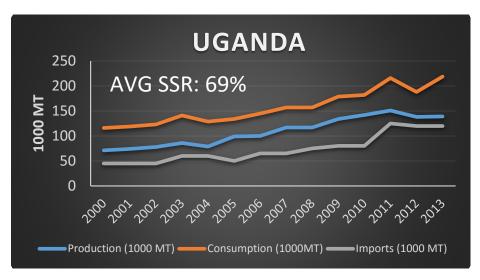
Source: P S & D Online

Evolution of Major Cereals' share in Diet








Source: FAO Food Balance Sheets

Production-Consumption Balances

Source: P S & D Online

Objectives of the Study

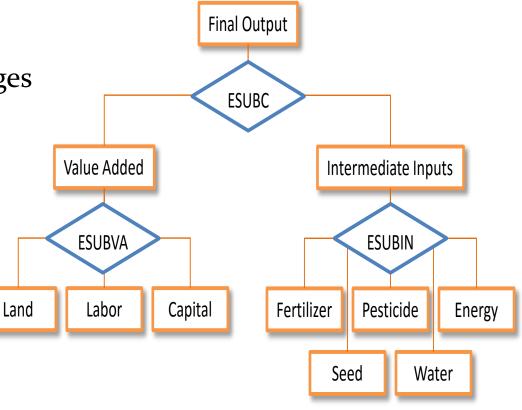
Overall Objective

• To evaluate the challenges in rice sector investments and development to achieve food security in the selected African countries: Kenya, Rwanda, Tanzania and Uganda.

Specific objectives

- Assess and characterize National Rice Development Strategies (NRDS) investment plans in Kenya, Rwanda, Tanzania and Uganda.
- Estimate a dynamic baseline for Kenya, Rwanda, Tanzania and Uganda national rice sectors within the global rice economy.
- Evaluate alternative rice self-sufficiency strategies in Kenya, Rwanda, Tanzania and Uganda with regard to feasibility and impact

Arkansas Global Rice Model (AGRM)

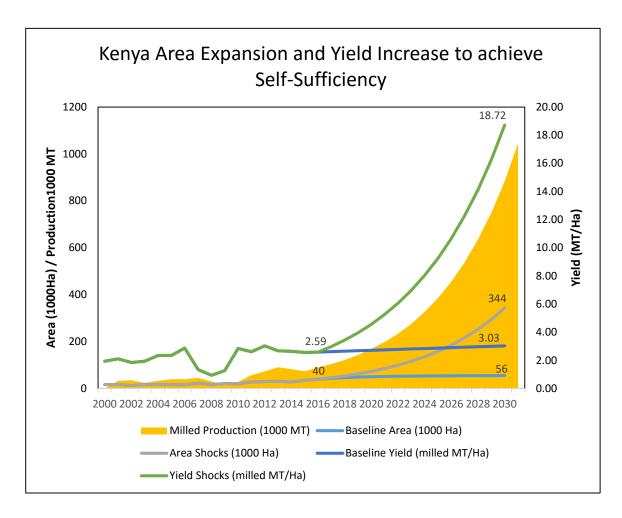

- Non-spatial partial equilibrium modelling framework
- Country models based on econometric estimations :
 - Supply
 - $AH_t = f_1(AH_{t-1}, P_t^e, W_t^e, e_{1t})$
 - AH_t is the area harvested in hectares, P_t^e is the expected price received by farmers, W_t^e is the expected input price
 - $Y_t = f_2(P_t^e, W_t^e, T_t, e_{2t})$
 - Y_t is the yield in tons per hectare and T_t represents technological change
 - Demand
 - $D_t = f_3(M_t, RP_t, WP_t, e_{3t})$,
 - D_t is the per capita rice demand, M_t , is the real per capita income, RP_t is the retail rice price and WP_t is the price of wheat or maize.
 - Total demand = Per capita demand * Population
 - Domestic prices linked to international rice reference price:
 - Thai FOB (5% brokens, Bangkok) for Long Grain and California (No.1 medium grain exmill) for medium/short grain => used to clear international rice markets

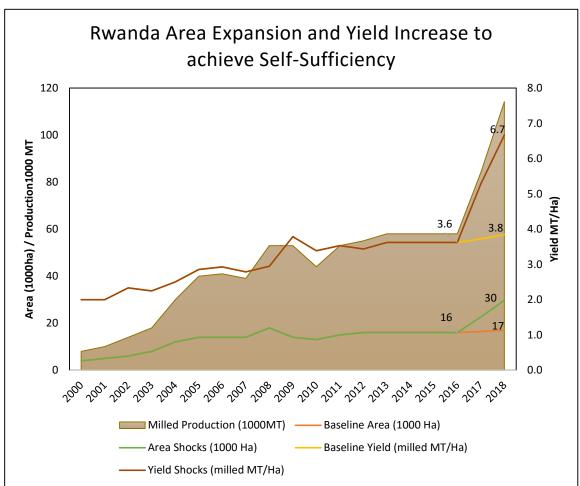
RiceFlow Model

• Spatial, partial equilibrium model of the world rice economy that simulates the behavior of the entire rice supply chain, from inputs markets to aggregate final demand

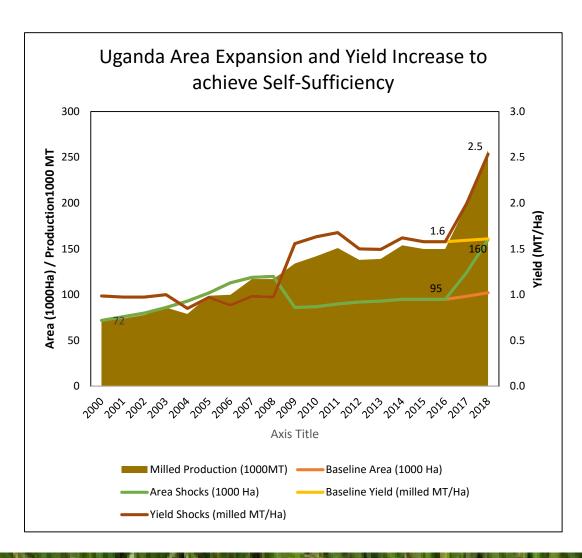
Non-linear functions are linearized
 =>variables in the model are in percentages
 rather than nominal values

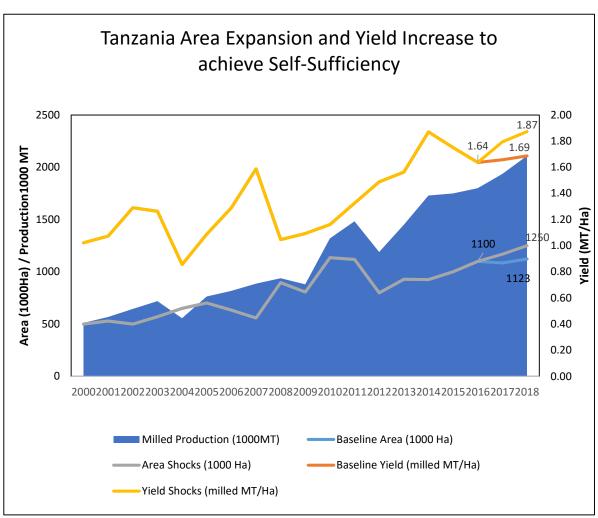
- Two-stage production 'nest'
- 9 rice commodities (Set C)
 - LGP, LGB, LGW, MGP, MGB, MGW, FRP, FRB, FRW
- 76 regions (Set R)
- Baseline data => 2013-2015 average


Supply and Demand Elasticities


	Area Harvested		Yield		Per Capita Consumption	
Kenya	Variable	Coefficient	Variable	Coefficient	Variable	Coefficient
	$Ln(Area_{t-1})$	0.6824***	LnTrend	0.2555***	Ln Real GDP per capita	2.1904***
	$Ln\left(\frac{RicePr_{t-1}}{MaizePr_{t-1}}\right)$	0.2898***	Dummy ₂₀₀₇₋₂₀₀₉	-0.7480	LnRiceRetailPr	- 0. 930 7 *
	$Dummy_{1994}$	1.1447***				
D						
Rwanda	$LnArea_{t-1}$	0.7749	$LnRealProducerPr_{t-1}$	0.2056	Ln GDP Per Capita	1.3348***
	$Real Producer Pr_{t-1}$	0.2834**	LnTrend	1.1052***	$Ln\left(\frac{RiceRetailPr}{MaizeRetailPr}\right)$	-o.7568**
			$Dummy_{2009}$	0.3739*		
Tanzania	$LnArea_{t-1}$	0.3319*	LnTrend	0.3725***	Ln GDP Per Capita	1.5886***
	$Ln(IntlRicePr + Tariff)_{t-1}$	0.2519***			$Ln (IntlRicePr + Tariff)_{t-1}$	-0 . 2600***
** 1						
Uganda	$Ln\ Area_{t-1}$	0.5666***	$Ln\ Shift Trend_{2009}$	0.5046***	Ln GDP Per Capita	0.6383***
	Ln RiceRetailP r_{t-1}	0.9709**			$Ln\left(\frac{RiceRetailPr}{MaizeRetailPr}\right)$	-0.5467***
	Ln ShiftTrend ₂₀₀₉	-0.3212***			,	J.,

NRDS vs AGRM


Kenya	Base (2014-2016 average)	NRDS Target (2018)	AGRM Projection (2018)
Area Harvested (1000Ha)	34	35	47
Yield Milled	3	3	3
Milled Production (1000MT)	89	116	124
Consumption (Milled 1000MT)	543	244	622
Self-Sufficiency (%)	16%	48%	20%
Rwanda			
Area Harvested (1000Ha)	16	55	17
Yield Milled (T/Ha)	4	4	4
Milled Production (1000MT)	58	243	65
Consumption (Milled 1000MT)	99	204	114
Self-Sufficiency (%)	59%	119%	58%
Tanzania			
Area Harvested (1000Ha)	1008	695	1123
Yield Milled (T/Ha)	2		2
Milled Production (1000MT)	1760	1265	1894
Consumption (Milled 1000MT)	1899	_	2100
Self-Sufficiency (%)	93%		90%
Uganda			
Area Harvested (1000Ha)	95	240	102
Yield Milled (T/Ha)	2		2
Milled Production (1000MT)	151	515	164
Consumption (Milled 1000MT)	233	499	259
Self-Sufficiency (%)	65%	103%	63%


Area Expansion and Yield Improvement Requirements to SS

Area Expansion and Yield Improvement Requirements to SS (ctd')

Area Expansion -Yield Improvement Equivalence

Country/Equivalent	1 MT/Ha	1000 Ha
Kenya	18,846 Ha	0.053 MT/Ha
Rwanda	4,516 Ha	o.22 MT/Ha
Tanzania	652,173 Ha	0.0015 MT/Ha
Uganda	72,222 Ha	o.014 MT/Ha

Price Subsidies to achieve self sufficiency

	Kenya 2030		Rwanda	Rwanda 2018		Tanzania 2018	
	100%	200%	400%	100%	200%	40%	40%
Area Harvested	69	78	92	21	23	142	1256
Yield	3.03	3.03	3.03	4.44	4.82	1.61	1.69
Production	209	237	278	92	112	228	2117
Per capita use	16	16	16	9	9	5	36
Total Consumption	1026	1026	1026	114	114	215	2103
Imports	823	795	754	22	2	28	16
Exports	o	o	o	o	O	40	30
Self Sufficiency	20%	23%	27 %	81%	99%	106%	101%

Implications of rice self-sufficiency

KENYA		2030 Baseline	Scenario 1 (SSF at current efficiency)			
					% cha	nge in
		Value (\$ 1000)	Value (\$ 1000)	% change in qtty	Price	
Production	LGP	151618	826691648		345%	122380%
	LGB	161609	833747072		320%	122714%
	LGW	166244	834587264		314%	121113%
	FRW	84	. 110		30%	ο%
Consumption	LGW	1933953	812735424		-65%	121112%
	MGW	323	421		30%	ο%
	FRW	61058	79560		30%	o%
Efficiency gain						
required	345 ⁹ /	ó				
Producer subsidy						
required (\$1000)	353,014,691					

Implications of rice self-sufficiency (ctd')

RWANDA		2018 Baseline	Scenario 1 (S	SSF at current	efficiency)
				% change in	% change in
		Value (\$ 1000)	Value (\$ 1000)	qtty	Price
Production	LGP	40305	1785380	93%	2194%
	LGB	41400	1787507	93%	2137%
	LGW	45776	1795959	93%	1933%
Consumption	LGW	149376	1932441	-3 <mark>6</mark> %	1933%
Efficiency gain required	93%				
Producer subsidy required (\$1000)	823,275				

Implications of rice self-sufficiency (ctd')

		2018				
TANZANIA		Baseline	Scenario	ı (SSF at curren	nt efficeincy)	
		Value (\$ 1000)	Value (\$ 1000) (% change in qtty	% change in price	
Production	LGP	749756	3137388	28%	226%	
	LGB	751070	3143800	29%	225%	
	LGW	770253	3169405	29%	219%	
	MGB	8	8	4%	ο%	
	MGW	8	8	4%	o%	
Consumption	LGW	1873901	5029417	-16%	219%	
	MGW	906	946	4%	ο%	
	FRW	15524	16210	4%	o%	
Efficiency gain						
required	28%					
Producer subsidy						
required (\$1000)	478,678					

Implications of rice self-sufficiency (ctd')

UGANDA		2018 Baseline	Scenari	o 1 (SSF at current e	efficiency)
		Value (\$ 1000)	Value (\$ 1000)	% change in qtty	% change in price
Production	LGP	131166	3121493	73%	1273%
	LGB	132076	3123327	76%	1270%
	LGW	137107	3135251	67%	1272%
Consumption	LGW	313199	2902034	-32%	7 63%
-	FRW	196	216	10%	
Efficiency gain requi	red 73%				
Producer subsidy					
required (\$1000)	1,224,667				

Summary and Conclusions

- NRDS limitations:
 - Kenya consumption under-estimation
 - Tanzania flawed production data; limiting exports potential
 - Rwanda & Uganda Overly-ambitious targets
 - Over-emphasis on supply lifting; less emphasis on demand shifting and/or value-addition
- Self-sufficiency
 - Unlikely and unrealistic in the intermediate time horizon
 - Very costly
 - Will highly impact on consumers
 - De-linking domestic markets from international markets increases vulnerability to local production shocks such as drought
- Extremely challenging and probably needless for these countries to strive to attain self-sufficiency without dramatic changes in resource allocation, productivity and consumption trends.
- Vital that, efficiency of use of resources such as water, land and other inputs is improved for sustainable self-sufficiency

