

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

UNIVERSITY OF NOTTINGHAM

 SCHOOL OF AGRICULTURE

PROFITS

PLANNING

DEPARTMENT OF AGRICULTURAL ECONOMICS SUTTON BONINGTON LOUGHBOROUGH Price 2s. 6 .

Grateful acknowledgement is made to the farmers whose records form the basis of the report.

EGG PRODUCTION ON THE GENERAL FARNI

(1951-52 and 1952-53 Soasons, 1st 0otobor - 30th Septembex).

PROEITS
PLANNING
PROSPECTS
R. V. T. HUNT, B.Com.

Dopartmont of Agrioultural Economics University of Nottingham School of Agriculture Sutton Bonington, Loughborough.

JULY 1954.

CONTENTS

SECITION I

Introduction
Explanatory Notes 1
Summary of Finanoial Results 3
Comparison of 1951-52 and 1952-53 Results 6
Factors Affecting Profits 7
SECTION II - Planning the Poultry Enterprise
Standard Requirenents and Notes on Systerns 11
Does Egg Production Pay? 12
Is Poultry-Keeping the Best Investment? 14
Pigs v Poultry
Some Management Decisions 16
SECITON III - Future Prospects 21
The Supply Position 21
Foroign Cormetition and Cheap Danish Eggs 25-26
Sumnary 26
An Indication of Future Developments 27
Conclusions 28
APPENDIX
Receipts and Payments and Other AverageFigures per Bird:System: Batterios29
Deep Litter 30-31
Fion Yard 32-33
Folás 34
Range 35
Average Costs and Roturns per 120 Eggs Laid According to Number of Laying lionths 36
Avorago Costs and Roturns por 120 Eggs Laid 36
Costs and Returns por 120 Fggs Laid: System: Batteries 37
Docp Litter 38
fion Yard 39
Folds 40
Range 40

IIST OF TABLES

Table Page
1 Distribution of Flocks by Size and liethod of Housing 2
2 Averages per Bird According to Numbor of Laying Months, 1951-52 and 1952-53 3
3 Payments and Recoipts per Bird - 1st October, 1952 to 30th Septomber, 1953. 4
4 Averages per Bird According to liethod of Housing 5
5 Profit Margins 6
6 Distribution of Yiclds by Mothod of Housing (25 flocks for $10-12$ months) 8
7 Distribution by Mothod of Housing of Average Price Rocoivod per Dozon Eggs (25 flocks) 8
8 Distribution by Mothod or Labour Costs per Bird (25 flocks) 9
9 A Proiit Ready Rockonor: Possiblo IFargins for Commercial Eggs Production, Costs, Roturns and liargins in Shillings por Bird per Yoar 13
ITST OF CHARTS
Chart
I Total Fowl Population in the United Kingdomand Fovis Undor and Ovor Six ionths inEngland and Walos (Junc AgriculturalConsus)22
II Supply of Eggs in the Unitod Kingciom,JuIy - Junc Ycars - 1951-52 and 1952-53. 23
III Monthly Imports of Eggs in Shell (Million Dozons) 1952 and 195324

SECTIOMI

Introdnction

This report prosents the rosults of the second financial year of the poultry investigation in the countics of IFottinghanshire and Lincolnshire (Iindsey). At the time of writing, the egg-producing industry can bo said to be in a transition period, and the results presented here may be very different from those in future years. They do, however, show the offect of changing coonomic conditions and thus form a basis for speculation as to the probable future tronds. The section on Puture Prospects may, therefore, be of more interest than the actual results, but the two are really complementary.

The freeing oif the ogg and feeding sturfs markets, togethor with the gradual changeover to intensive winter egg production have meant a change of the whole pattorn of production. The rosults presented here are therefore, to somo extent historical, and their main function is to provido the background iniormation for a comnentary on recent happenings up to the tine of going to press.

Tho Sample

The records from 36 flocks wore available for the socond financial year. Of thesc, 21 kept records for the two years. The flocks varicd in size from 30 to 1,200 birds and all but two could be doscribod as "farm flocks". The deep littor and hen yard systom werc best reprosented as it was hoped to find more about these newer methods of housing.

Accountine Mothods and Explanatory Notes

1. AII the Eigures refor to tho year from 1st October, 1952 to 30 th Soptoriber, 1953.
2. The per bird figures are calculated on the avorage number of birds during the poriod, on a. hon-day basis, taking into account the number of days cach bird was in the flock.
3. Food costs
(a) The par bird figures for food and other costs aro for less than 12 months in some cases. The actual number of months has boen indicatcd belov.
(b) Where cockerels or othor poultry nore fod from the same food it has been assumed for the sake of simplicity that the value of the food
eaten is the same as the increase in value of the bircus. This is not strictly correct because there will be some labour and other costs to set against the increase in value and there may also be an element of profit in the increase in value. However, since the amounts involved were small the simplification is reasonable.
(c) Fome grow foods were charged at market values.
4. Labour was charged at standard ratos per hour: 2s. $8 \frac{1}{2}$ d. for men, and $2 \mathrm{~s} .1 \frac{1}{4} \mathrm{~d}$. for women.
5. Bird Depreciation
(a) Birds were valued at estimated cost of production based on a figure of 18 s . Od. for point of lay pullets. Birds bought at point of lay mere charged at cost price.
(b) Income from the sale of birds has been doducted from the difference between opening valuation plus replacenents, and the closing valuation. Income fron eggs is, thereiore, regaraed as the sole source of incone, and bird depreciation is regarded as an expense.
6. Equipment Depreciation was charged on all housing and oquipment for laying and growing stock. Where conversion of stone buildings was made, the cost of conversion only has been used as a basis for the depreciation charge. The depreciation charge mas 10 per cent for mooden huts and all general equipment, $12 \frac{1}{2}$ per cent for folds, and five per cent ior improvements to stone buildings.

7. Other Expenses

This item is mainly Puel , lighting and veterinary expenses. No charge has been made for ront, or interest on capital, and no credit has been allowed rom manurial residues. Overheads have not been charged.

8. Profits

The figures shown as profits are not striotly so, because all expense items such as interest on capital, overheads, etc, are not included. Profit in this report, therefore, is taken to mean the differenco between egg receipts and the expenses enumerated above.

DISTRIEUITON OF HLOCKS BY SIZE KND IETHOD O1 HOUSING
TibIE 1

Method	Batteries	Deep litter	Hen yard	Folds	Rance	Total
Flocks in group	5	12	10	5	4	36
iverage nuriber of birds:						
Less than 100	3	4	1	-	1	9
100 to 200	1	3	2	-	2	8
200 " 300	1	1	2	2	-	6
300 " 500	-	1	5	-	1	7
500 " 1,000	-	3	-	1	-	4
1,000 and over	\cdots	$1-$	$1 \times$	2	-	2

Item	1951-52				1952-53			
	Fumber of laying months			inll flocks	Number of laying months			
	Less than 9	$9-11$	12		$\begin{aligned} & \text { Less } \\ & \text { than } 9 \end{aligned}$	$9-11$	12	$\begin{gathered} \text { All } \\ \text { filocks } \end{gathered}$
Mumber of flocks	7	7	22	36	6	15	15	36
PiYMinTMS	f. S. c_{0}	Ci. s. d.	E. s. d.	c. s. ${ }^{\text {a }}$	c. S. ${ }^{\text {d }}$	£. s. ${ }_{\text {a }}$	©. s. d.	f. s. d.
Foods:								
Purchased Home growm	13.6. 4.9	1. 2.7.	1.2 .6. 13.2.	1.0 .9. 10.8	$\begin{array}{r}15.7 . \\ 7.9 \\ \hline\end{array}$	$\begin{array}{r} 1.1 .2 \\ 10.9 . \\ \hline \end{array}$	$\begin{array}{r} 1.5 .8 \\ \hline 8.2 \\ \hline \end{array}$	$\begin{array}{\|r} 1 . \\ 2.1 \\ 9 . \\ \hline \end{array}$
Total	18. 3.	1.11.6.	1.15. 8.	1.11.5.	1.3.4.	1.11.11.	1.13.10.	1.11. 3.
Labour	3. 9.	7. 4.	5.11.	5.9.	3. 4.	4.8.	6. 8.	5. 4
Bira dopreciation	7.10.	10.6.	9.2.	9.2.	8.0	10.11.	10.6.	10.3.
Equipnent ãepreciation Other expenses	1. $4 \cdot$	1. 8.	1.11. 9.	1.9. 8.	1.7. 1.	1.6. ${ }^{6}$.	1.6 6.	$\begin{array}{r}1.6 \\ \hline \\ \hline\end{array}$
Total expenses Profit	$\begin{array}{r} 40 \\ 1.11 .6 . \\ 11.0 \end{array}$	2.11. 6. 13.8.	2.13 .5 12.	$\begin{array}{rrr} 2 . & 8 . & 9 . \\ 12 . & 5 . \end{array}$	$\begin{array}{r} 1.16 .4 \\ 13.8 \end{array}$	$\begin{aligned} & 2.9 .3 \\ & 1 . \end{aligned}$	$\begin{array}{r} 2.13 .0 \\ 18.10 \end{array}$	$\begin{array}{r} 2.8 .8 \\ 18.8 \end{array}$
Total income (eges sold an $\bar{\alpha}$ consumeā)	2. 2.6.	3.5.2.	3. 5.10	3.1.2.	2.10.0.	3. 9. 8.	3.11.10.	3. 7.46
$\begin{aligned} & \text { Price por dozen egegs } \\ & \text { sold } \end{aligned}$	5.1.	4.9.	4.7.	4.9.	5. 4.	5.1.	4.10.	5. 0.
iverage number of eggs laia per bird	101	154	173	158	124	166	178	164

PiYTHMS IID PGCEIPTS PMP BIRD - 1st October, 1952 to 30 th Septerber, 1953.
THETH

Iten	Finethod of housine					Total
	Batterios	Deep Iitter	Hen jara	Folds	Range	
Itarber of flocks	5	12.	10	5	4	36
Pimumits	\&. s. ${ }_{\text {c }}$	E. s. d.	$\therefore . \mathrm{s} . \mathrm{d}_{0}$	£. s. ${ }_{\text {d }}$	\therefore. s. d.	¢. s. $\mathrm{d}_{\text {. }}$
Foods:		19. 9.	19. 7.	1. 8. 0.	15. 4.	1.2. 1.
Purchased Hone grorm	1.12 .6. 3.00.	19.9 8.6.	12. 9.	$\begin{array}{r}1.8 .1 \\ 8.1 \\ \hline\end{array}$	10.11.	1.2. 2.
Total	1.15.6.	1.8.3.	1.12.4.	1.16.1.	1.6.3.	1.11.3.
Labour	6.11.	4.8	3.80	7.10	6.1.	5. 40
Bird depreciation	11. 8.	8.10	10.10.	9.10.	12.10. 1.6.	1.6.
Equipment deprociation Other expenses	1. 8.	$\begin{array}{r}1.6 . \\ \hline .5\end{array}$	1. 5.	$\begin{array}{r}1.10 . \\ \hline 5 . \\ \hline\end{array}$	1.6	1.4
Total expenses	2.15.1.	2. 3.8	2. 8. 6.	2.15 .3.	2.6.8.	2. 8. 8 •
Prorit	1.5.9.	16.4	18. 7.	13.3.	1.3.6.	18.8.
Total income (eges sold and consured)	4.1.10.	3.0.0.	3.7.1.	3.8.6.	3.10.2.	3.7.40
Price per dozen eggs solä	5. 0.	5. 2.	5. $0 \frac{1}{2}$	4.9.	4.10.	5. 0
siverage number of egrs loid per bird	199	146	161	170	175	164

TABIE 4

Item	Batteries			Deep İitter			Hen Yard			Folds			Range		
	$\begin{array}{r} 1951 \\ -52 \\ \hline \end{array}$	$\begin{aligned} & 1952 \\ & -53 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Aver } \\ & \text {-age } \\ & \hline \end{aligned}$	$\begin{array}{\|} 1951 \\ -52 \\ \hline \end{array}$	$\begin{gathered} 1952 \\ -53 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { sver } \\ -a g e \\ \hline \end{array}$	$\begin{array}{r} 1951 \\ -52 \\ \hline \end{array}$	$\begin{gathered} 1952 \\ -53 \end{gathered}$	$\begin{aligned} & \text { iver } \\ & - \text { age } \end{aligned}$	$\begin{array}{r} 1951 \\ -52 \\ \hline \end{array}$	$\begin{aligned} & 1952 \\ & -53 \\ & \hline \end{aligned}$	iver	$\begin{array}{r} 1951 \\ -52 \\ \hline \end{array}$	$\begin{aligned} & 1952 \\ & -53 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Aver } \\ & \text {-age } \end{aligned}$
Number of flocks	8	5	-	5	12	-	9	10	-	6	5	-	8	4	-
iverage size of fiock	162	130	149	293	293	293	437	275	352	456	724	578	247	187	227
$\frac{\text { idjusted to } 12}{\text { months per bird }}$															
Tood lbs.	125	118	122	116	129	126	120	132	126	125	128	126	104	91	99
Labour hours	2.7	2.7	2.7	2.0	2.2	2.1	2.3	1.6	1.9	2.2	2.8	2.5	2.6	2.2	2.4
Yield eggs	199	213	200	180	192	188	178	199	189	160	170	154	168	175	170
$\frac{\text { idjusted to } 12}{\text { months }}$															
Iilortality as percentage of average number of birds	23	11	18	19	14	16	17	14	16	23	16	20	22	21	22
liortality as percentage of maximum number of birds	16	8	13	15	11	12	14	12	13	19	14	16	17	15	17

(1) The above figures are calculated from the per bird figures and thus give equal veight to all flocks irrespoctive of size.

Comparison of 1952-53 Results with those of 1951-52

The structure of costs for each season is very similax. Food costs wero just over 31 s . Od. por bird for 0.11 flocks in each sce.son; labour costs in the region of $5 \mathrm{~s} .6 \mathrm{~d}_{\text {. por }}$ bird and bird deprociation increased by about 1s; Od. from 9s. Od, to 10s. Od. due mainly to the lower prices for cull birds. On the roturns side the main change was in the price received for eggs, the increase being about 3 d. per dozen. Thus the difference in returns from the sale of eggs of about 6 s . Od. per bird can be explained minly by higher prices of eggs, the remander being due to higher yields. The higher yiolds are partly due to the greater number of intensive flocks in the $1952-53$ soason, although the intensive flocks were generally in lay for shorter periods.

The increase in profit margins from an average of 12 s . 0 a. to 18s. Od. is, therefore, lergely due to increased prices received for eggs. A part of this price increase was due to the exceptionally high egg prices in the late sumncr of 1953, which proved to be much higher then those of the winter which followed, is feature of the second financial year was the exceptionally good results from both the battery and range flocks. It must noted, however, that the sample contained only half the number of the previous year in each case. The newer methods - the Hen Yards and Deep Litter, have proved themselves under comnercial conditions on the general farm, but most farmers admit that they still have roon to leam and profit by their ow experience and that on others, in these newer methods.

PROFIT MLRGINS
T:BIF 5

Profit	Batteries	Deop Litter	$\begin{aligned} & \text { Hen } \\ & \text { Yard } \end{aligned}$	Folds	Range	Total
Below 5s. Od.	-	1	-	-	-	1
$5 \mathrm{~s}, \mathrm{Od}$, to 10s. Od.	-	2	1	1	-	4
10s. Od. " 15s. Od.	1	1	1	2	\sim	5
15s. Od. " 20s. Od.	-	4	1	1	1	7
20s. Od. " 25s. Od.	1	3	7	1	2	14
25s. Od. " 30s. Od.	1	-	-	-	1	2
30s. Od. and over	2	1	-	\cdots	-	3

In the 1952-53 season no flock showed a loss, and profits were generally higher than the previous year. is with the previous year, high profits were not coninined to any one syrstem of management.

In vien of the more recont decline in profits from egg production it is encouraging to note the number of flocks which made over \&1. a bird. It is also interesting to note that the capital saving method, the hen yard, had eight out of ten flocks with over 18s. Od. a bird profit.

Abstract

\section*{Faotors iffecting Profits}

\section*{(a) Level of Feeding in Relation to Eeg Production}

The relationship between the most important iten of cost and the most important iten of revenue is naturally a sound guido as to the efficioncy of egg production. It is equally obvious that the largest items of expense and revenue should show the widest variation from farr to farm. What then are the main reasons for these variations and how do they affect profits?

Variations in food costs.

The composition of rations fed, varied considerably from a.ll purchased to all hone grow and home mired, and costs of rations from about 30 s . 0 . to $40 \mathrm{~s} . \mathrm{Cd}$. a cmt. The actual amounts of food fed (adjusted to 12 months), varied from 85lbs. to 1801bs. a bird. Generally speaking the most intensive flocks, i.e. the batteries, fed little home grown food, and the most extensive flocks fed the most hone grom food. Host of the flocks were of a lightheavy cross, but the sample available was too smil to establish any relationship as to the effect of breed on anount of rood consuned. It does, however, seen reasonable to assume that the body sise of birds mould have some influence on the quantity or food eaten. Extensive flocks with access to grozing and stubbles would naturally consume less hand fed foods, although if palatable hand fed ioods of high quality were fed, thon foragine would be considerably reunced. Porhaps the main reason for variations in food consurmtion was the difference in the amounts of rood offered to the birds and also the amount of wastage. Where foods are fed ab lib, a record of food consuned would seen to be a mise measure to ensure that vastage is kept to a minimum, and that birds are not using more than normal requironents. shove all, the amount and quality of food offered should be related to the birds capacity to produce eggs. Capacity for egg production is not easy to gauge as it depends on both breeding and environmental conditions. Thus hens kept under iree renge conditions will havo a smaller capacity for ege production than hens kept under ideal intensive management. On the other heind, free range birds would have the capacity to produce eggs on cheaper foods.

In the first year, the tendency to overieeding was most marked in the extensive flocks (folds and range). In the second year the number of extensive flocks was reduced, and the flocks remaining mado more efficient use of feeding stuffs and thore was little, if any, evidence of overfeeding. On the other hand, the number of intensive flocks was increased, and there was on increased tendency to overfeeding. is reature of the second year's results was the relatively low food consumption on the battery flocks.
i.Ithough it is difficult to substantiate any assumption that overfeeding was widespread, it does seen that a closer check on foods used voulà have paid dividends in several cases.

Variations in Egs Receipts
DISTRTEUIION OF YIETDS BY MERHOD OF HOUSING (25 FLOCKS for $10-12$ NiONTHIS)
TABLE 6

Niethod	Batteries	$\begin{gathered} \text { Deep } \\ \text { IStter } \end{gathered}$	Hen yard	Folds	Range	Total
averase number of						
eges per bird						
Below 150	\cdots	\cdots	2	1	\cdots	3
150 to 180	\square	3	1	2	4	10
180 to 200	3	2	3	2	\cdots	10
Over 200	2	-	3	-	-	2
Total	5	5	6	5	4	25

DISTRIBUTION BY WEIHOD OF FOUSING OF AVERACE PRICE REGEIVFD PER DOZIM EGGS (25 FHOCKS)
SABE 7

Method	Numbor of flocks	Range of average prices received by flocks
Batteries	5	4s. 9d. to 5s. 4 d .
Deep litter	5	4s. 8d, to 5s. 5d.
Hen yard	6	$4 \mathrm{~s} .8 \frac{1}{2} \mathrm{~d}_{\text {. }}$ to $5 \mathrm{~s} .1 \mathrm{~d}_{\text {, }}$
Folds	5	4s. 7d. to 5s. 1 d .
Range	4	4s. 8a, to 5s. 1d.

The two tables above, show wide variations in both production and prices received for eggs. ilthough high yields and out of season production are very profitable, it is essential to consider roturns in relation to the costs incurred and food costs in particular. Thus the four free rance flocks all had good financial results with moderate yields and low food costs, whereas the batteries obtained good results with high yields and high food costs. Similarly, low prices per dozen eggs may be offset by low food costs and vice versa. Generally speaking, high yields were profitable provided that wastage did not occur, but in many cases a high rate or out of season production meant eerlier culling and shorter production periods, which partly offset higher average egg prices.

(b) Bird Depreciation

This is the next most important item of expense and depends on the death rate and the price received for culls. Cost of rearing will also affect replacenent cost, but as comparisons of egg production were the main ain, this has been standardised at 18s. Od. per bird.

Mortality

Heavy death rates are obviously something to avoid if at all possible, kut even in the best regulated flocks the unexpected can happen. fis with the first year's results, a high death rate did not always mean low profits, especially as it appeared to be linked with high production or a low food intake in a few cases. These cases mere, homever, the exception rather than the rule.

The price received for culls varied considerably from farm to fiarm, and according to the time of year. There were two peak prices for cull birds, at Christrias and Easter, and flocks culling earlior in the laying year received better avorage prices. The problen of when to cull is discussed in the soction on managenent problens pp. 19-20.

Labour Costs

DISTRIBUITIUN BY DETHOD OF LABOUR COSTIS PER BIRD (25 FIOCKS)

TABLE 8

Method Labour cost	Battories	$\begin{array}{r} \text { Deep } \\ \text { litter } \end{array}$	İen yard	Folds	Range	Total
Belon 4s. Od.	1	1	3	\cdots	1	6
4s. Od. to 6s. Od.	2	4	2	2	1	11
6s. Od. $=8 \mathrm{~s}$. Od.	-	-	1	-	1	2
8s. 0a. "10s. 0d.	-	-	-	2	1	3
Over 10s. Od.	2	-	-	1	-	3

The tine spent with poultry on genoral farms depends on factors other than the degree of intensity of production methods. Some poultry keepers spend more time with their poultry than would strictly be necessary. In many cases this was more than repaid by the response in egg yields to individual attention.

With the advent of american methods, we tend to hear the different systens compared in terms of the one man unit. In this oountry this is rather a convenient measuring stick rather than a description of the typical type of comraercial ege producing unit.

General fam flocks are the backbone of the industry and the mojority oi producers are on a rolatively mall scole. The popular ogg production unit is perhaps the one roquiring one or two hours labour por day and the porularity of intensive methods lies in the fact that a. larger number of birds can be kept for a given number of labour hours. In this may the incone fron poultry can be increased though income per bird my be much the same as under extensivo methods.

Tho ectual labour hours spent on the flocks investigated, would seem to suggest that one man should under average farm conditions, be able to look after at least 1,000 birds in batteries, on range, or in fold units, and that with deep litter and hen yard systens, up to and over 2,000 should be possible.

SECTIONII

PLMNNING TIE POULTRY ENTERPRTSE.

Some Standard Requirements.

Food
Rearing: 1 owt. for every four birds reared to point of lay,
Iayers: 100 to 140 lbs . depending on system of managenent and ra.te of lay.

Capital 4s. Od. per bird uprards depending on systen.

Motes on Systems

Batteries

This is the most expensive systom, but it has advantages in that space is used very economically, eeg production is high and nay give the best return if expensive purchased foods heve to provide the bulk oi the ration. The syster is foolprooi and safe, as fer snags con occur if the birds are f'ed a well-balancod ration. Birds can be kept quite successilully two in a cage. A further advantage is that low producers can easily be culled. Eggs are normally clean and should not require washing.

Deep Litter

If relatively smil numbers of birds (160-150) are to be housed, then it may be easy to find suiteble buildings for conversion, and capital costs can be kept low ($5 \mathrm{~s} .0 \mathrm{~d} .-10 \mathrm{~s}$. Od. per bird), but if lorger numbers are required, then copital expense may be up to and over \&1. a bird. Floor space needed is about four sq. ft. per bird.
idequate trough space is essential if vices are to be controlled. Tvelve feet of double sided trough should be suficicient for 100 birds if dry mash is fed. Where wet mash or eroin is fed, three tines this space will be required.

Hen Yards
This syster is the chenpest nothod of housing large numbers of birds, because it lends itself well to improvisation, and expansion of
oapacity is relatively easy if land is available. About two tons of strav should be suffioiont for 100 birds for 12 months, under norma weether conditions. Covered space should be provided at two sq. ft. a bird. The size of run is not important, but good protection from rind and weather is a big advantage.

Folds

Costs of new fold units are in the rogion of ef. per bird. The system is not as popular as when it wes introduced before the var, mainly because of the labour involved, and the advent of the newer intensive methods. The main advantage or folds is on the general form where a premiun is placed on grassland improvenent. inother advantage is that growers can be reared fron eight weeks in rolds, and so save labour and equipnent on rearing.

Renge

Like fold units, range flocks can still be a profitable sideline on the general farn, and with the change in seasonol pattern, prospects my be improved. Capital costs can be from 10s. Od. a bird uprards. Economies can be achieved by use of cheaper rations, moro grazing, and use of stubbles. There may also be scope for range flocks ruis in conjunction with intensive birals, to cut costs in periods of low prices.

Does Erg Production Pay?

The ansmer to this question is very much a relative matter, as different producers will have different ideas of what is a good profit. These ideas will depend on levels of efficiency, but also on the type of holdint. Where poultry provide a large proportion of the farm income the lovel of profit will be viewed in a different Iight from where they are a rinor enterprise.

The table below is designed to show the sort of profits which can be expected under various cost/price conditions, and at various levels of production.

The most important itens which can explain the variations in prosit per bird are the production and price of ecgs, and the cost of food. In the following table, costs other than food are standardised at the İigure of 18s. Od. made up of:- Bird deprociation 9s. Od., labour 6 s . Od., equipnent depreciation 2 s . Od., other expenses 1 s .0 d.

The table assumes that:-

1. A hen will eat 120 libs. of food a. year.
2. Inoone from eggs is the sole source of income, sale of birds being included against the charge of bird depreciation.

Total Costs in cach colum is the cost of 120 lbs. of food plus the charge of 18 s . Od. for "other costs".

Total Receipts are arrivod at by multiplying the production by the price or eggs.

There will be variations fron the standords shom in the taile, sone may have lower labour costs, others higher bird depreciation, and porhaps the biggest variation will be in the amount of food consuned. However, this will depend minly on the systen practised, and if wo assume that birds in batteries will consume 140 lbs . of food and those on range 100 lbs. , this means that an addition or deduction of 5 s . Od. a bird would be a fairly reasonable correction to the standard cost of food per owt.

A PROFIT REISE RECKONGR

Possible Margins for Comercial Egg Production, Costs, Returns and liarsins in Shillines per Bird per Year.
TABLT 9

Price of one dozen eges	Cost of one owt. food	PER CEMT PRODUCIION (360 EGGS $=100 \%$) or DOZENS OFEGGS PER BIRD PER YE h.								
		40\% or 12 dozen			50\% or 15 dozen			60\% or 18 dozen		
		Total costs	Total receipts	Margin	Total costs	Total receipts	Margin	Total costs	Total receipts	largin
3s.6d.	25s.	45	42	-3	45	52	$+7$	45	63	+18
	30s.	50	42	-8	50	52	+2	50	63	+13
	35s.	56	42	-14	56	52	-4	56	63	$+7$
	40 s .	61	42	-19	61	52	- 9	61	63	+2
	45 s .	66	42	-24	66	52	-14	66	63	- 3
4.s.0a.	25s.	45	48	$+3$	45	60	+15	45	72	+27
	30s.	50	48	-2	50	60	+10	50	72	+22
	35s.	56	48	-8	56	60	$+4$	56	72	+16
	40s.	61	48	-13	61	60	-1	61	72	+11
	45.	66	48	-18	66	60	-6	66	72	+ 6
4s.6d.	25s.	45	54	$+9$	45	67	+22	45	81	+36
	30 s .	50	54	± 4	50	67	+17	50	81	+31
	35 s .	56	54	-2	56	67	+11	56	81	+25
	40s.	61	54	-7	61	67	$+6$	61	81	$+20^{-}$
	45 s .	66	54	-12	66	67	+1 +1	66	81	+15
5s.0d.	25s.	45	60	+15	45	75	+30	45	90	+45
	30s.	50	60	$+10$	50	75	+25	50	90	$+40$
	35 s .	56	60	$+4$	56	75	+19	56	90	$+34$
	2,0s.	61	60	-1	61	75	+14	61	90	+29
	45 s .	66	60	-6	66	75	+ 9	66	90	+24

From this Table a farmer should be able to get a fair idea of what profit he can expect on his particular farm with his systen of production, assuming appropriate yields and level of pricos. The Table should also provide a comentary on the onterprise as production and prices change.

Is Poultry-Keoping the Best Invostrient?

Conditions vary so much from farm to form, and from one yoar to the next, that it is not possible to answer this question without reference to the conditions prevailing at the time. Wuch will dopend on the type and size oif fam, and the smallor the farm the more likely is the opportunity for keeping poultry as a means of incroasing the volune of business. the syston of poultry keoping will also influonce tho demands made upon the various resourcos. Extensive methods will use more land and labour, but loss food, than intensive methods. Batteries will usually require greater capital expense than doop litter, and hen yards less than either, and so on. Gencrally sposking, poultry are primarily competitors for capital and labour, although they can be fitted into the general farm organisation to spread out unevon demands made upon the labour force. They also compete with other classes of stock for the use of home grom cereals, and there is usually the further alternative of selling the cercals.

Whatever the problen, the answer and the approach will dopend on individual circumatances, but the fundanental factor is the consideration of the alternatives available, or in other words, weighing up the potentiol production of the farm resources, and balanoing this against any liniting factors, such as shortage of capital, land, buildings, and lack, or availability of suitable labour.

This is in foct what farners do, and it is suggested here that in many cases a little thought plus sone arithraetic, can help to indicate the effoct on prorits of any proposed change. his an example, the case of a Pigv Poultry enterprise is considered.

Pigs or Poultry?

The problem is analysed in terns of making use of a building which can be adapted to house 200 hens or 40 bacon pigs

AItornative I mo house 200 hens to be reared from eight weeks.

Capital Expenses

Additional rearing equipment $£ 20$.
Conversion of laying houso $£ 50$

Other equipnont, troughs, eto. .

Working Corital (i.e. outlay other than fixod capital incurred before the hens start laying). To buy eight weeks old pullets and roar to point of lay would cost about £1. per bird.

Total working capital £200
Total Capital Outlay

Estimated Expenses and Recoipts per Layer

Expenses	£. s. d.	Receipts	\&. s. ${ }_{\text {d }}$
Food: 1 cwt.	1.15.0.	Sales:	
Equipment depreciation	1.0.	15 dozen eggs (3)	
Stock replacenent (1)	12.0.	4s. Od. a dozen	3.0.0.
Other expenses	1.0		
Margin	11.0.		
	£3. 0.0.		83. 0.0.

Estimated yearly margin from average of 180 hens $=£ 100$.

MIternative II - To house 40 becon pigs

Capital Expenoos
Conversion of housing £200
Other equipment, troughs, scales, etc.

$$
0
$$

$£ 250$
Working Capital

Purchase of 40 weaners (3) E6.	$£ 240$
Food: 40×7 cwts. $32 \mathrm{s}. \mathrm{Od}$.	$£ 448$
Total vorking capital	$£ 688$
Total Capital Outlay	$£ 938$

Estimated Expenses and Receipts per Bacon Pig

Estinated margin for yearly throughjut of 100 baconers $=£ 210$.
(1) The ficure for stock replacoment is high because birds are reared fron eight weeks and not day old.

The figures shown in these two examples are nerely illustrations and farmers must adjust their estimes to fit probable prices and levels of perfomance. They do, however, show that an investment in a pig enterprise is likely to be far more oxponsive in terms or capital outlay, but on the other hand the potential rewards are also greater. The choice will depend on individual circunstances and prexerences, but a calculation of the type shom here can be helpful in indicating the relative norits of various alternatives.

Sone Manarement Decisions

For the farmer who decides that thero is a place for poultry on his farm (and there is undoubtedly a future for oge production on the general farm, a few inportont manegenent decisions are considered in the light of the findings of this investigation.

Choice of Stock

This is perhaps the most inportant decision which the poultry keeper has to make, because without good stock, all tho feeding, housing, and attention in the world will not produce first class results.

The experience of one comoperating fermer is very revealingHe kept two flocks of birds in two adjoining hen yards which were of identical oonstruction. In one yard were housed 260 birds fron one breoder, and in another 245 from a different breeder. Rations and conditions of managenent vere also the same. Based on the opening numbers of birds the first flock laid 195 eggs per bird in fon months and the sccond 155 in ten months. Allowing for the shorter production period of the second flock, this represents a difference of over 30 eggs per bira. itt the prosent guarantecd avorage of 4 s . Od. a dozen, this is worth Hos. Od. per bird.

Good stock aro well worth an oxtro 6d. or is. Od. a bird which may be osked, but a high price does not necossarily assuro the purchaser of better stock. However, above average prices of a mell-establishod brecder are usually a sign of woll satisfied customers.

To assist poultry koopers in the selection of suitable stook, the Ministry of isriculturo pullishes particulars of accredited poultry breeders and approved hatcherics operating under the "Poultry Stock Improvenont Plan". Control is raintained over the quality and hoalth of the stock produced by mombers of the plan, and county lists of such breeders and hatcherios can be obtaincd froe of charge, from County or Provincial Offices of Noide. S. Purchascrs of accroditod or approved stock can obtain frco post-nortom exeminations on the sarcaso of any bird which dies within 28 days of leaving an accredited breeding station, or an accredited or approved hatchery.

Losses through diseases like B.W.D. (Bacillary White Diarrhoea) can mean great rinancial loss, and the best safeguard is the reputation of an established broeder. ipart fron the advantages of getting healthy stock a possible difference in production between good and noderate stock of 10 s . Od. per bird, makes it well worth while trying to find the best birds on the market.

When to Bu, Chicks

Extension of the hatching scason is an advantage to the breeder and enables hin to spread his rixed costs over a longer production period. He can thus offer out of season chicks at lowor prices. This does not nocessarily mean that it is to the disadvantage of the egg producor, although it pays to be mary of any false economy through buying cheap chicks.

Although the actual cost of chicks is an inportant item, it is far more inportant to consider the potential production of the birds. In calculating the probable profits from birds hatched at a given tine, three rain points rust be considered:

1. Saving in cost oi chicks.
2. Effect on egg production and the seasonal pattern. 3. Effect on selling prico of cull biras.

Personal exporience is the best guide to the probable effect of changing detes or purchasing chicks, and rach will depend on the stendard of mangement. If few generalisations ma, however, be helpful:-

Normal Hatching Season (March and ipril)
The main advantage is in ease of rearing out of doors, and birds hatchod at this time should also lay their maximum number of eggs and a high proportion in the winter.

Early Hatched (January and Fobruary)
Birds hatchod at this tine of the year will catch the high late sumer prices as well as the winter prices. Thero is, however, a tendency for these birds to moult under average ferm conditions in the winter, but this can be avoided by good managerment and uniform housing conditions. Birds mould also have laid sufficient oggs to warrant early disposal if prices of culls are high at Enster. There is probebly less denger fron coccidiosis with birds hatched at this tine, as the ereatest danger is in the warn moist atmosphere in the Sumar months. The latest preventatives and cures are, however, very effective.

Gluturn Hatched

These birds are slower to mature and would probably lay fewer eggs. They would also be difficult to rear under normal farm conditions because of the cold, and more costly becauso of slower maturity and greater fuel requirements. The advantages lie in obtaining high late sumer and winter prices and the possibility of disposal of culls on the Christmas market.
issuming the difficulties of rearing, and of preventing birds going into a noult in the auturm, the financial prospects of auturm hatched birds compared with spring hatched loirds may bo sorething like this:-

Production Costs (per bird in shillings)

	$12 \frac{\text { Spring }}{\text { nonths }}$	$8 \text { noturnthen }$
Food	32	22
Rearing cost	18	20 (1)
Totals	50	42
Returns		

Egges: 180 () 4 s . Od. a dozen	60	
120 (3) 4s. 6d. a dozon		45
Cull birds: average 8s. Od.	8	
average 18s.0d.		18
Totals	68	63
Dilf'erence between Costs and Returns	18	21

The margins herc are not net profits, as labour and other costs havo not been includod, but the calculation shows that if theso aro tho cxpected levels of production and pricos, the winter hatched bird eives an additional profit of 3s. Od. per bird as a revard for the extra risk involved, and for a shortor production poriod.
(1) silthouch autum hatohed baect may be 1s: Od or so cheaper to buy they would probably be more costly to rear.

Method of Feeding

This will depend manly on the systen of production adopted and also on the availability of hone grown foods. Where home grom foods are available, home mixing can moan a saving of around 5 s . 0 . per bird and unless the prices of compound mashes becone more competitive it will still pay the farmer to use hone grom foods. is record of food consuined could be a valuable check against wastage on many farms and would also eneble birds to be fed nore in line with their capacity for ege production.

Are Food Costs Being Covered?

is food cost is the most important expense which can be roduced by culling, it is useful to know the number of eggs which a hen must lay in a month to cover its food cost.
issurning one hen eats 1 curt. of food a yoar, 12 hens eat 1 crit. or food a month,

- Cost of 1 crot. food Price of dozen eges the number of egigs a hen
rust lay in a month to cover food cost.
e.g. $\frac{32 s_{0}-0 d_{0}}{4 s_{\cdot} O d_{.}}=8$ oggs a. month to cover food cost.

When to Cu 12 I

The mein points to consider are:-

1. Change in value of the virds
2. Food cost.
3. Estinated future production and price of eggs.

A simple calculation can then be made to find out if it will pay to keep the birds.
c.g. What will the additional costs and returns be for keeping birds from spril 1st to September 1 st instead of selling out?

Additional Expenses per Eird
C. s. a.

Change in value (15 s .0 . to
10s. Od.) of birds inclucing mortality
Food cost $-\frac{1}{2}$ cwt.
Margin

Additional Receipts per Bird Sale of eges:

8 dozen (3) 3s. 9d. 1.10. 0.

Keeping Older Birds in the Flock

The main points to consider aro:-

1. The savine in cost of replacementis.
2. The reduction in ege production.

If wo assume similar rates of mortality for hons and pullets, then a pullet costing 18s. Od. to rear and worth 10s. Od. after one laying season, can be compared with a hen worth 10s. Od. at the boginning of her second season and 9s. Od. at the ond. This represents a 7s. Od. difference in bird depreciation of the two birds and therefore a saving of 7 s . Od. on roplaconent.

Translated into terms of eggs, this difforonce is equal to about 20 eges at 4 s . Od. a dozen, and the reduced production of the second season birds should not be greater than 20 if the two classes of birds are to make similar prorits.

Based on unculled flocks the reduced production is essually about 20 per cent, or 36 eggs for a 180 egg bird, but the differenoe could be narrowed with rigorous culling.

The Christins Markot

Hens kept on until Christras may be expected to show an appreciation so that a profit may be possible even if food costs are not covered by seles of oggs.

e.g. Possible Returns fron Octolor 1st to Christras.

Additional Expenses
idditional Incone

		idditional Incone	
Food:	s. d.		s. ${ }^{\text {d }}$
	8. 6.	Sale of oggs: $1 \frac{1}{2}$ dozen © 4 s. 6 d .	6. 9.
Margin	6.3.	Bird approoiation: $\text { (10s. Od. to } 18 \mathrm{~s} .0 \mathrm{~d} .)$	8. 0.
	14.9.		14.9.

Sinilarly a calculation can be made to see if it mould be worth while keeping birds on to sell at Easter. In this cose egg production would probably be higher, but the prico of culls lower.

In these calculations labour cost has been left out, not because it is unimportant, but because the labour cost would probaibly be incurred in any case. However, if there is an alternative use for labour, such as rearing pullets or other work, then labour should be charged as an adaitional expense.

FUMURE PROSPECTS

inthough the cost structure of the egg produoing industry may change with economic conditions, the order oi importance of the main expense itens will romain the sane. Food will continue to be the largest iten, and profits will still depend on the cost relationship between the input of food and output of eggs. "A knowledge of the structure of costs and changes over the last few years oan, therefore, be a userul guide to the probable offect of any future changes.

Over a year has elapsed since the croation of a freer market in eggs and although the last 12 months could hardly be typical of what to expect undor iree market conditions, there are sone lessons to be learned fron recent experience.

In the Sruing of 1953 when eggs were first freed, the indications were that prices were higher than would nomally be expected at that time of the year. The high prices which obtained in July and iugust lent argunent to the view that controls during recent years had depressed prices below the maket value. Egg prices had not been allowed to rise as subsidies on feed were removed. Homever, the prospects of an 8d. winter ege noro killed by a peculiar combination of circumstances:-

Firstly, a sharp rise in the price of eggs fron 4 d. to 8 d . coupled with a strong press campaign against high prioos vas sufficient to build up a consumer resistance.

Secondly, the seasonal production pattern did not work out quite as anticipated. This was due to the mild minter and the fact that nany producers have changed over to more intensive methods.

Thirdly, the importing programe tas presumably planned in expectation of high vinter prices.

The dopressing effect of all these factors on egg prices is now history, but it may be helpful to consicier these facts and the conditions which gave rise to them, to try to guess whether sinilar conditions are likely to occur in future years.
The Sumply Position
Higures or eggs available for consumption are based on estimates, and cannot necessarily be taken at their face value, but even so, it is probable that there is no great difference in the quantity of eggs available both now and before the war. The main

GFLRT I TOTAL FOML POPUIMTION ITY THE UNITED KINGDOM AND FOWLS UNDER AIND OVER SIX MONTHS IN ENGLLIND IND WILTES (JUTW AGRICULTURAL CENSUS).

Source: State of British Egriculture 1953-54. Published 1954. Agricultural Economios Research Institute, Oxford.

CHART II SUPPIY OF EGGS IN THE UNITTD KIMGDOY, JULY - UIE YEAPS.

Home Produced
$\frac{\text { Home Procuced }}{x y \text { Shell eggs }}$

Imported

Dried and liquid egg,

Thousand million shell eggs oquivalont

Source: State nf British Agriculture 1953-54. Published 1954. Agricultural Economics Iesearch Institute, Oxfora.

CHARE III MONTHYY IMPORTS OR EGGS IN SFEI (IAillion Dozens) 1952 and 1953.

Source: Central Statistical Oficice. Monthly Digest of Statistics. H.ilestationory Orice, Lonaon.
difference is in the sources of these eges and the methods of production. is greator mroportion are now produoed in this country by a greetor number of hons. Although ege yi.olds are ostinated at little higher than the premar figure of 149 eges per bird, there has been a steady rise after a sharp drop in the war years. There is little doubt that the introduction of intensive nothods hes dono yoh to increase the officioncy of efg production. Fower birds aro now being keat for a second laying season, and there is a tendency to cull birds carlier in the first laying year. Three or four years ago June numbers of adult birds vere 86 per cent of the pecenber numbers, wherces in 1952-53 they were only 77 per cent (1). The low Spring price of eggs together with the high Easter price of cull birds hove also tended to nean cerlier culling. inother point of interest is that many deep litter producers experionoed a marked fall in egg production in the sumaer months, whereas in the battery and range flocks it was usually considered most profitable to carry on production for a full twelve ronth period. It should be noted, however, that oontinuous culling was usually part of the policy of battery producers.

It is probable, therefore, that intensive methods enable eges to be produced conomically over periods of less than 12 months. Thus a flock producing 160 oges a bird in nine months may be producing oges more cheaply than a flock producing 180 eggs per bird in 12 months. Increased eificiency over the years since premar tines should perhaps be meosured in oges per bird per month, rather than per year. The small increase in eges per bird may, therefore, represent a greater increase in efficioncy than one might expect. This does not mean that the shorter production period is olvays more profitable, as this mould depend very rach on individual circunstanocs (2). Incroascd officiency mould mean that poultry koopers oould mork to a loss favourable roed/egg price ratio than oxisted in compotitive conditions before the rar.

Foreim Competition

The graph of monthly inports shons that these nere at a higher level in 1953 between the months of Miny and October, although the pattern was siriiler in the two years.

The bulk of our imports of oges come from Demmak, and elthough these are well below pre-war levels, the fact that they are available at about 1s. Oa. a dozem less than hone produced cegs means that the home industry is very vulnerable to competition from inports. Expansion of exports can be carried out quite quickly by
increasing bird nuribers, and the Danes could rery easily do this.

Cheap Danish Eggs

Various reasons have beon advanced for the cheap Danish egers, and the main ones mould appear to be:-

1. Lower Food Costs

Prices of wheat, barley and oats delivered at farms mexe on average ©5. a ton cheaper in Denmark than in Great Britain in the period October 1952 - Septeraber 1953. This is portily due to the faot that inport duty is payable in this country on cereals other than wheat, but not in Denrark, and mould account for about $£ 3$. a ton difference. The reminder is probably due to differences in distribution costs. Comoperatives in Denmark mean that farmers share in any economies in this direotion. ilso, protein supplenents are available to the Danes at cheaper prices.

2. Higher Production por Bird

Although figures for production per bird are not necessarily reliable, and comparisons between countries even less reliable, it does secm probable that yields are higher in Denmark. The policy of progeny testing, better lnom in pig brecding, is widely used, and producers are more quality conscious. It is estinated that production of eggs in Denmark was approyinately the same (177 million dozens) in 1952 as in 1938, whereas the nuriber of hens was reduced from 12 millions to 10 millions (1).

3. Lover Profit inargins

As agriculture is the chief exporting incustry in Dennark, production is geared to competitive pricos, and profits depend on a small margin and high turnover.

Surfary

A description has been given of the present supply position and the background to recent experience of the free market in the hope that readers will try to interpret the facts and decide for thenselves the probable course of future ovents.
is few quastions which are perhaps worth a little thought are enumerated below:-

1. in new seasonal pattern of proauction is energing. What are the prospects of hich late sumer prices? If there are prospects, what about earlier hatching?
2. The public has becone accustomed to having very cheap eggs, sometimes below costs of production in the exporting countries. this may be good for the retail grocery trade, but will it be easy to persuade the consumer to pay on economic price(1) even if eggs beome more scarce?
3. The consumer is still very dependent on home produced eggs, but imported eggs are very cheap. How vulnerable is the home producer?
4. Present marketing arrangements could hardly be described as ideal. A guaranteed price is in operation (now linked mith feed prices) and has involved the Governnent in heavy exchequer payments. Is it reasonable to assume that import and marketing arrangenents will attempt to minimise exchequer payments, and will this favour the home egg producer?
5. How are producers reacting to recent tronds? fre they going out of poultry, or are they increasing numbers to offact reduced profit margins?
6. Producers who have facilities for mixing their own rations have a. big advantage, worth about 5 s . Od. in reduced cost or keeping a bird 12 months. Can we expect any price competition betrieen feeding stuff compounders in view of wide dificrences in costs of compounds and straight cereals?
7. Will egg production be profitable at the present guaranteed average price of 4 s . Od. a dozen? (See Table 9 on pp. 13).

in Indication of Future Developinents

Research morkers have been developing new methods and techniques of egg production, and the work or Dr. Greenwood at Edinburgh deserves special mention, as it gives some indication of possible future trends. His experinewtrwith small numbers of related birds under a stabilised environnent - lights 12 hours a day, temperature $66^{\circ} \mathrm{E}$, and a relative humidity of 60 per cent, showed
exceptional perfomance when compred with birds under nomml conditions. The birds in the stabilised environnent reached sexual maturity four weeks oarlicr at 168 days; egg production was 235 eges per bird compared with 175 under nomal conditions, in a 50 week test period. from September 1 st to liugust 16 th.

It is obvious that similar results cannot be achieved by large flocks under comercial conditions, and the imediate lesson is to indicate the value of good housing. Better insulation and ventilation could go a long way towards maintaining reasonably uniform conditions, and would no doubt improve production on meny farins. There is also the possibility of reducing the amount of food required to maintain a bird's body heat by controlling environnent. Economies in food consumption, and increased output per bird would not need to be very great to make artificial heating an economic possibility. A reduction of food consumption by half an ounce a bird per day, together with an increase in production or half a dozen eggs per bird mould provide additional incone of about 5s. Od. per bira.

Conclusions

The two finanoial years covered by this investigation are perhops years of relative prosperity for ege producers. Prices of eggs are likely to be about 1s. Od. a dozen less than in 1952-53. Although this will be orfset to some extent by a drop in food costs, it will mean a substantial reduction in profits. This is not as drastic as it may appear, bocause efficient producers are nor in a position to increase size of flocks and thus maintain profit levels. This may well be achieved by more intensive methods without proportional increases in labour requirements. The lower levels of profits should not, however, moan that there will be a general increase in size of flocks, becouse mny less eificient producers will give up egg production.

The egg producer has the security or a guaranteed price, plus the knowledge that Government import policy will, in so far as it is able to influence imports, be calculated to minimise exchequer payments. If in addition, he makes the best use of his resources, with the aid of simple records, good housing, and abovo all, good stock, the man who pins his faith in poultry should have excellent prospects for the future.

APPENDIX

POULIRY COSTS INVESTIGATION 1952-53

Receipts and Payments and Other Average Figuros por Bird.

SYSTEM: Battorios

Item	Farm Code Number				
	23	33	43	49	68
PhYing in	\&. S. d.	S. S. ${ }_{\text {a }}$	C. s. d.	2. So do	\%. s. ${ }_{\text {d. }}$
FOODS Purchased	1.19.6.	1.15. 4.	1.7.6.	1.7.6.	1.12.10.
Home grown	1.9.	1.8.	4. 3.	7. 2.	$\underline{-}$
Total	2.1.3.	1.17.0.	1.11.9.	1.14. 8.	1.12.10.
Labour	10. 4.	5.7.	4.10.	3.2.	10. 9.
Bird dopreciation	12. 7.	9.0.	18.7.	8. 0.	10. 1.
Fquipment doprcciation	1. 5.	1. 8.	2. 0.	2.6.	7.
Other exponsos			5.		1. 2.
Profit	14.2.	1. 4.1.	1.10.11.	1.7.8.	1.12.0.
TOTAL (EgGs sold or consumed)	84.0 .0	E3.17. 4.	£4. 8. 6.	83.16. 0.	4.7.5.
llumber of layine months	12	10	10	12	12
Average number of bircis durine period	81.4	99.5	161.8	81.4	225.7
siverage number of eggs laid per bird	200.3	186.5	199.9	192.8	215.0
Per cent production on hen day basjis	57	61	66	53	59
Price rex dozen eggs sold	4s.10a.		5s. 4 d .	4s. 9a.	$4 \mathrm{~s} .11 \frac{1}{2} \mathrm{~d}$.
Average price of biras sola	9s. 4.c.	-	10s. 7a.	11s. 4 d .	10s. 6a.
Piortality as of avorage	23.3	7.0	3.7	6.1	9.7
Mortality as	15.8	6.8	3.0	4.5	7.9
Capital per arorazo number or birds	13s.11d.	16s. 5d.	£1.0s. 3 d.	61.2s.8d.	6s. 3á.
Capital per maximum number of birds	9s. 5a ${ }_{\text {c }}$	15s.10d.	16s. 5d.	16s. 6a.	5s. OG.
Food sonsumed (adjusted to 12 months) liss.	121	129	118	109	112

Recoints and Paynonts and Other dverace Pigures Der Bird
SYSTHI: Deep Inttor

Itom	Fiarm Code Munber					
	8	9	23	31	53	54
FOODS Purchasod	\cdots	1.16. 1.	16.11.	12. 9.	19. 2\%	1. 1. 9.
Home grown	19.0.	7.3	4.40	7.1.	13.9.	12. 5.
Tabaur Total.	19.0	2.3.40	1. 1. 3.	19.10.	1.13.6.	1.14.2.
Labour ${ }^{\text {Bira depreaiation }}$	6.1.	4.3.	6. 2.	3.9.	4.10.	4.2
Bird depreaiation	9.3.	8. 5.	13.11.	1.6.	11. 5.	10. 2.
Fquipuent depreoiation Other exponses	1.0.	1. 4.6	. 5°	5.1	1. 1. 1. 0.	1. 3.
Profit	1.0.4.	4.4	8. 5.	10.6.	1.10. 3.	1. 3.10 .
TOTN (Bges oolil os consumed)	$1 £ 2.16 .1$	3. 3. 2.	2.10.6.	1.16. 0.	64. 2. 1.	£3.13.11.
INuniocr of laying 9 12 9 6 12						
ivverage nuaber oí birds during period 741.4 74.6 37.5 14.8 .7 563.3 181.4						
Avorage numbor of						
Per cent production on hen char basis 46 43 44 40 53						61
Price per dozen egecs						
siverage price of birds						
Mortality as of avorage	18.2	18.8	21.3	6.1	16.3	
Mortality as $\%$ of maxirnurn	15.8	12.2	17.0	5.6	9.3	6.9
Capital per averago						
capital per maximum number of birds	8s. 3a.	8s. 7a.	5s. 40	4s.10a.	12s.3a.	£2.0s. 3 a .
Food oonsumed						
(adjustod to 12	97	153	99	129	127	147
months) Ibs.						

Receipts and Payments and Other iverage Figures per Bird

SYSTET: Deep Iitter (continued)

Item	Farm Code Number					
	58	59	63	66	67	68
Pivatents	c. So d.	fo. s. do.	\&. s. d.	E. S. d.	s. S. a_{0}	. So
FOOIS Purchased	17.10.	1.8.2.	1. 7. 0	13.8.	17.6.	1.
Home grown	9. 1.	13.		4.1.	11.9.	
Laboun Total	1. 6.11.	2. 1.7	1.	17.9.	1. 9.3.	1.6.0.
Bird depreciati		-9.	2.0.	4.5	2.10.	
Equipment depreciati					9.	
Other expenses				1.2	3. 4.	11
Profit	15. 8.	18.6.	17.8.	6.7.	1.3.9.	. 1
TOTAL (Eggs sold or oonsumed	¢2.18.8.	£3.15. 4.	£2.17.11.	-15. 3.	¢3. 8. 7.	63. 2. 6.
Nuriber of laying months	9	9	8	4	10	11
Average number of birds during poriod	252.0	28.0	341.4	920.5	96.7	132.8
Average number of eges						
laid per bird	141.1	172.3	188.5	71.4	153.0	160.1
Per cent production on hen day basis	52	62	55	55	50	47
Price per dozen eggs sold	5s. $0 \frac{1}{2} \mathrm{~d}$.		5s. 3d.	5 s .11 d .	5s. 5d.	4s. 8d.
uverage price of birds sold						
Mortality as \% of average	15.5	12s. 5d.	s. 0d.	13s. 9	40	s. 1d.
Mortality as \% of maxiruan	13.5	6.7	0.3	6.2		5.6
Capital per average number of birds	3s. 6d.	5s. 4.0	£1.3s.9a.	13s. 7a.	£1.12s.11a	£2.95
Capital per maximum number of birds	$3 \mathrm{~s} .1 \mathrm{~d}$	5s. Od.	\&1.3s. 2 d .	13s. 1d.	81.7s. 8 d .	62,0s
Food consumed						
(adjusted to 12 months) Ibs.	$1 \geqslant 7$	181	118	176	121	107

Recoipts and Payments and Other iverase Figures per Bird

SYSTHI: Hen Yard

Item	Farm Code Number				
	6	15	20	40	46
PIYMENTS	.f. s. d_{4}	£. S. ${ }_{\text {d }}$	d. s. d.	£. s. ${ }_{\text {c }}$	s. s. d.
FOODS Purchased	1.9.1.	15.3.	14.6.	1.11. 2.	7. 2.
Home grown	7.2.	17.5.	13. 5.	11. 7.	1. 3. 3.
Tabour Total	1.16. 3.	1.12. 8.	1.7.11.	2. 2.9.	1.10.5.
Labour	4. 1.	4.2.	6.7	6.0	
Bird depreciation	9.10.	12. 1.	11. 3.	11.10.	9.
Equipment depreciation	10.	1.3.	1.6.	1.2.	
Other expenses	1.9.	5.	-	-	
Profit	12.11.	1.0.8.	1.0.5.	1.2.0.	18.9.
Towi (Eggs sold or consumed)	83. 5. 8.	23.11. 3.	83. 7.8.	84.3.9.	£3. 1.3.
Number of laying months	12	9	8	11	10
Average number or birds during period	341.1	480.1	119.1	369.4	232.1
Average number of eges laid per bird	168.4	169.4	160.1	199.6	144.4
Per cont production on hen day basis	46	65	63	60	48
Prico per dozen eggs sold	4.s. $8 \frac{1}{2} \mathrm{~d}$	5s. 12.	5s. 17	5s. 1d.	5s. 1 d.
Average price of biras sold	8s. Od.	8s. 10.	8s.11d	9s. 9d.	-
Mortality as 5 of average	9.4	13.3	11.8	19.5	7.8
Mortality as \% of maximam	7.7	11.9	10.4	14.7	7.2
Capital per average number of birds	12s.11d.	12s: 9d.	17s.11d.	11s. Od.	7s. Od.
Capital per maximum number of birds	10s. 7 da	11s. 5a.	15s. 9a.	8s. 3 d	6s. 8d.
Food consumed (adjusted to 12 months) Ibs.	126	156	136	143	135

Receipts and Payments and Other iverage Pigures per Bird
SYSTEX: Hen Yard (continued)

Item	Farm Code Nurnber				
	51	55	56	65	67
Prymentis	c. s. d.	C. S. d.	E. S. d_{6}	©. S. ${ }_{6}$	f. s. d.
FOODS Purchased $\begin{array}{r}\text { Pome grown }\end{array}$	1.0 6.70 6.0.	1. 8.7	5.3. 15.9	1.10 .40 12.5.	$\begin{aligned} & 13.5 \\ & 11.8 \\ & \hline \end{aligned}$
Labour Total	1.6.70	1.17.5.	1. 1.0.	2. 2.9.	1. 5.1. 2.8.
Bird depreciation	11. 3.	13. 6.	10.0.	10.0.	9.1.
Equipment depreciation	1. 7.	1.0.	2. 6.	1.6.	2. 7.
Other expenses			1.	3.	-
Profit	6.0.	1.3.5.	1. 1. 0.	1.0.2.	1.0.4.
TOTiL (Eges sold or consumed)	E2. 6. 8.	E3.18.11.	£2.16. 8	£3.19. 4.	£2.19. 9.
Number of laying months	8	11	7	11	10
iverage number of birds during period	231.8	334.8	79.7	455.6	104.9
Average number of eggs laid per bird	110.9	189.4	131.6	188.8	145.5
Per cent production on hen day basis	47	56	60	56	48
Price per dozen eggs sold	5s. 2d.	5s. Od.	5s. 2d.	5s. $0 \frac{1}{2} \mathrm{~d}$	4s.11c.
diverage price of bircis sold	10s. Od.	7s. 5d.	10s. 13.	9s. 4 d.	11s. 7 d.
Mortality as of average	16.0	14.0	15.1	4.0	5.7
Mortality as F of maximum	1303	12.1	14.0	3.6	5.2
Capital per average number of birds	16s.1d.	9s.11d.	£1.5s.1d.	E1.100.90	21.5s.5d.
Capital per maximun number of birds	13s. 40.	8s. 7 d.	£1.3s.3a.	81.7s.9d.	£1.3s.3a.
Food consumed (adjusted to 12 months) Ibs.	120	125	128	151	103

Receipts and Payments and Other fverage Figures per Bird

SYSTEM: Folds

Item	Farm Code Number				
	3	19	27	39	68
	£. s. ${ }_{\text {d }}$	E. s. ${ }_{\text {d }}$	f. S. d_{*}	£. s. d_{0}	\&. S. d_{*}
PAYMENIS FOODS Purohased Home grow	1.11 .60 8.40	1.8 .3. 11.10.	1.17.10.	$\begin{array}{r} 10.2 \\ 1.0 .5 \\ \hline \end{array}$	$\begin{array}{r}1.12 .1 . \\ \hline\end{array}$
Total	1.19.10.	2.0.1.	1.17.10.	1.10.70	1.12.10
Labour	5.11.	4.5.	8.6.	9.5.	10.11. 11.2.
Bird depreciation	8. 3.	4. 5.	10. 3.	11. 5.	11. 2.
Equipnent depreciation	2. 4	1.9.	1. 5.	1. 4.	2. 2 .
Other expenses		1.10.	1.	-1	1. 0^{2}
Profit	5. 5.	15.6.	10.7.	14.0.	1.0.8.
TOTh (Eggs sold or consumed)	83. 1. 9.	83. 8. 0.	63. 8. 8.	23.6.9.	23.17 .2
Nunber of laying months	12	12	12	12	12
iverage number of birds during period	205.9	219.2	1,122.2	1,247.3	826.4
iverage nuriber of eggs laid per bird	157.1	136.9	177.0	185.9	190.9
Per cent production on hen day basis	43	44	49	48	52
Price per dozen eggs sold	4s. 9 a .	5s. 1d.	4s. 7 d .	4s. 7 a .	4 s .10 d .
Average price of birds sold	10s. Od.	9s.11d.	3. 92.	9s. 2d.	10s. 18.
Mortality as of average	31.6	10.0	17.9	-	19.5
Mortality as $\%$ of maximum	28.5	8.5	14.5	-	17.1
Capital per average number of birds	15s. 5d.	13s.10d.	10s.11d.	11s. Od,	17s. 3d.
Capital per maximum number of birds	13s.11d.	11s. 9a.	8s.10d.	7s. 9d.	15s. 2d.
Food consumed (adjusted to 12 months) Ibs.	120	139	143	119	117

Receipts and Payments and Other Lverage Figuros por Bird
SYSTEM: Range

Item	Farm Code Numbers			
	10	16	23	50
PAYPATS	c. s. d_{*}	E. S. d.	£. s. $\mathrm{d}_{\text {c }}$	E. s. d.
FOODS Purchased	14.7.	16. 5.	14.7	15.7.
Home grom	12.10.	10. 8.	8.11.	11, 6.
Total	1.7.5.	1.7.1.	1. 3.6.	1.7.1.
Labour	4.11.	3. 9.	8. 2.	7. 6.
Bird depreciation	19.0.	7.10.	15. 0	9.3.
Equipraent depreciation	1.7.	2. 5.	11.	1.1.
Other expenses		-		-
Profit	18. 1.	1.8.6.	1.3.10.	1.3.8.
TOThI (Eggs sold or consumed)	£3.11. 0.	1£3. 9.7.	£3.11. 5.	83. 8.7.
Number of laying months	12	12	12	12
siverage nuriver of birds during period	314.8	179.0	187.5	68.1
Average number of eggs laid por bird	173.9	175.9	174.4	177.1
Per cent production on hen day basis	48	48	48	49
Price per dozen eggs sold	5s. 1 a.	4s. 9a.	$4 \mathrm{s.11d}$.	4s. 8d.
Average price of birds sold	8s. 2a.	8s. 3d.	5s. $1 \mathrm{c}_{\text {c }}$	\cdots
Mortality as of average	34.6	14.5	25.1	10.3
Mortality as $\%$ of maximum	21.3	13.7	15.2	9.3
Capital per average nuraber of birds	13s. 6d.	£1.3s.5d.	8s.9d.	11s. 2d.
Capital por maximum number of birds	8s. 4 d .	\&1.1s.2d.	5s.4d.	10s. 2d.
Food consumed (adjusted to 12 months) lbs.	97	- 89	85	92

Avorage Costs and Returns per 120 Eres Laid Accordine to Nu:nber of Laving Mionths.

Number of Laying nonths	$\begin{gathered} \text { Less than } \\ 9 \end{gathered}$	9-11	12	$\begin{aligned} & \text { illl } \\ & \text { flocks } \end{aligned}$
Nunber of flocks	6	15	15	36
PrTMENTS	E. S. d.	E. S. d_{3}	£. s. d.	E. sid.
FOODS Parohased	17. 5.	14.10.	17.3.	16. 3.
Home grom	8. 1.	8.2.	5. 7.	7. 1.
Labour Total	1. 5. 6.	1.3.0.	1. 2.10	1. 3.4
Bird depreciation	3.11.	3. 5.	40.	3.11.
Equipment depreciation	1.8.	1. 2.	1. 0_{0}	1. 2.
Other expenses		2.	5.	3.
Total expensos	2.19. 2.	1.15 .10	1.15. 9.	1.16. 4
Price per 120 eggs	2.13.2.	2.10.7.	2.8.1.	2.10.0.
Prosit	14.0.	14.9.	12. 4.	13.8.

Lverage Costs and Returns por 120 Eggs Laid

System	Batterios	Dcop litter	Hen yara	Folds	Rango	Total
No. of Plocks	5	12	10	5	4	36
PAYMENTS	E. S. d.	£. s. ${ }_{\text {d. }}$	ε_{0} s. d.	£. s. d.	E. S. d.	E. s. d.
FOOD Purchased	19.8.	17.2.	14. 4.	19.5.	10.6.	16. 3.
Home grown	1.10.	7. 7.4	9.10.	5.11.	7.6.	7.1.
Labour Total	1. 1.6	1. 4.6	1. 4.2.	1. 5.4	18.0.	1. 3.4
	4.1.	4. 3.	2.8	5.4.	4.2.	3.11.
Bird dopreciation Equipment dopreciation	7. 0. 1.0.	7. 7.	8. 3. 1.	6. 5.	8. 9.	7. 8.
Other expenses.			2.	.	\cdots	3.
Total expenses	1.13.10.	1.17.11.	1.16. 5.	1.18. 8.	1.11.11.	1.16. 4.
Price per 120 oges	2. 9. 40	2.11. 8.	2.10.3.	2. 7. 9.	2. 8. 0.	2.10.0.
Profit	15.6.	13.9.	13.10.	9. 1.	16. 1.	13.8.

Costs and Roturns por 120 Eggs Laid

SYSTEM: Batteries

Item	Farm Code Number				
	23	33	43	49	68
Piyminits	£. S. d.	£. s. ${ }_{\text {d }}$	£. s. d.	£. s. ${ }_{0}$	E. S* d_{*}
FOODS Purchased	1. 3. 8.	1.2.9.	16.6.	17.0.	18. 4.
Home growm	1.1.	1. 1.	2. 7.	4. 6.	
Total	1.4.9.	1.3.10.	19. 1.	1. 1. 6.	18. 4.
Labour	6.2.	3. 7.	2.11.	2.0.	6. 0.
Bird depreciation	7. 6.	5.10.	11.1.	5. 0.	5.7
Equipment depreciation Other expenses	11.	1. 0.	1. 2.	1.6.	4. 8.
Total expenses	1.19.6.	1.14. 3.	1:14.6.	1.10.0.	1.10.11.
Price por 120 eggs	2.7.11.	2.9.9.	2.13. 1.	2.7.3.	2.8.9.
Profit	8. 5.	15.6.	18.7.	17.3.	17.10.

Costs and Returns per 120 Eggs Laid
SYSTEM: Deep Littor

Iten	Farm Code Number					
	8	9	23	31	53	54
PGYMENTS	\&. s. d_{0}	£. s. ${ }_{\text {d }}$	E. s. a_{0}	f. s. d.	£. s. d.	f. s. ${ }_{\text {d. }}$
FOODS Purchased		1.7.9.	17. 1.	19. 4	12. 4.	14.0.
Hone grown.	17.9.	5.6.	4. 4.	10.9.	8.7.	8. 0.
Total	17.9.	1.13.3.	1. 1. 5.	1.10.1.	1. 0.11.	1. 2. 0
Labour	5.8.	3.3.	6. 2.	5. 8.	3. 0.	2. 8.
Bird depreciation	8. 8.	6.7.	14.1.	2. 4.	7. 2.	6. 7.
Equipment depreciation	11.	1.0.	4.	8.	8.	10.
Other expenses	5.	1.1.	5.	-	8.	1.
Total expenses	1.13. 5.	2. 5. 2.	2. 2.5	1.18. 9.	1.12. 5.	1.12. 2.
Price per 120 eggs	2.12. 5.	2. 8. 6.	2.10 .11.	2.14.9.	2.11. 4.	2. 7. 5.
Profit	19. 0.	3. 4.	8.6.	16. 0.	18.11.	15.3.

SYSTEMT: Deep Littor (continued)

Item	Parm Codo Number					
	58	59	63	66	67	68
PLTMENTS	E. S. ${ }_{\text {d. }}$	E. S. d_{*}	E. $5 .{ }_{\text {d }}$	c. s. d.	£. s. ${ }_{\text {d. }}$	f. S. ${ }_{\text {d, }}$
FOODS Purchased	15.1.	19.8.	1. 4.3.	1.3. 0.	13. 8.	19. 5.
Home grown	7.9.	9.4.	$\underline{-}$	6.10.	9. 3.	$\underline{-}$
Total	1. 2.10.	1.9.0.	1. $4 \cdot 3$.	1. 9.10.	1. 2.11.	19.5.
Labour	4.0.	4.9.	1.10.	7.5.	2. 3.	4.3.
Bird depreciation	9.3.	5.0.	7. 5.	8.10.	7. 5.	7. 4.
Equipment deprociation	4.	4.	2. 1.	2. 0.	2. 7.	3.9.
Other expenses	2.	6.	3.	-	-	3.
Total expenses	1.16.7.	1.19.7.	1.15.10.	2.8.1.	1.15. 2.	1.15. 0
Price per 120 eggs	2. 9.11.	2.12.6.	2.12. 1.	2.19.3.	2.13.9.	2.6.11.
Profit	13. 4.	12.11.	16.3.	11. 2.	18.7.	11.11.

SYSTEM: Hen Yard

Item	Farm Code Number				
	6	15	20	2,0	46
PAYMENTS	£. s. d.	$\text { f. s. } \mathrm{d}_{0}$	2. $5 . d_{0}$	E. s. c_{0}	f. So ${ }_{0}$
FCODS Purchascd	1. 0.9.	10.9.	10.11.	18. 90°	6.0.
Home grow	5. 2.	12. 14	10,12	7.8	12. $4=$
Total	1. 5.11.	1. 3.1 .	1. 1.0.	1. 5. 51	To 50. 4
Labour	2.11.	3. 0.	5.0.	3. 8.	1.11,
Bird depreciation	7. 0.	8.7.	8. 5.	7.1.	7.9.
Equipment depreciation	7.	11.	1.1.	90	5.
Other expensos	1. 3.		-		-
Total expenses	1.17. 8.	1.15.10.	1.15.6.	1.17.3.	1.15.5.
Price per 120 eggs	2. 6.10.	2.10.6.	2.10 .10	2.10.5.	2.10 .11.
Proxizt	9. 2.	14.8.	15.4.	13.2.	15.6.

SYanem: Hon Yard (continued)

Iton	Farm Code Number				
	51	55	56	65	67
PLYMENTS	S. S. d_{0}	$\text { E. s. } \mathrm{d}_{0}$	E. S. d_{0}	6.s. do	E. S. ${ }_{0}$
FOODS Purchased	1. 2. 4	18. 2.	4.9.	19.6.	11. 1.
Home grown	6.6.	5. 7 n .	14.50	8.0,	9.8.
Total	1.8.10.	1.3.9.	19.2.	1.7.6.	1. 0.9.
Labour	1. 5.	2. 1.	1.11.	3.0.	2. 2.
Bird depreciation	12. 1.	8. 7.	9.2.	6.5.	7.6.
Equipment depreciation	1.9.	8.	2. 3.	1. 0.	2. 1.
Other expenses		\%	1.	$\cdots 2$	-
Total expenses	2. 4.1.	1.15. 2.	1.12. 7.	1.18. 1.	1.12.6.
Price per 120 eggs	2.10.6.	2.10. 0.	2.11.9.	2.11. 1.	2. 9.3.
Profit	6.5.	14.10.	19.2.	13.0.	16. 9.

Costs and Returns per 120 Eges Inid

SYSIEM: Folds

Iten	Ferrn Code Numbers				
	3	19	27	39	68
$\frac{\text { P:YMENTS }}{\text { FOODS }} \text { Purchased }$	f. s. d_{*} 1. 4.1	$\begin{aligned} & \text { £. s. } d_{0} \\ & 1 . \\ & \hline . \end{aligned}$	E. S. d_{0}	f. S. ${ }_{\text {d. }}$	\&. S. d_{0} 1. 0.2
Home grom	1.4.1.	1. 8.11.	1. 5. $4 \cdot$	14.3.	1. 0. 2
Total	1.10. 5.	1. 9.8.	1. 5. $4 \cdot$	1. 1.1	1. 0.2
Labour	4.6.	3.4.	5.8.	6.6.	6.10
Birca depreciation	6. 4.	3.9.	6.11.	7.11.	7. 0 .
Equipment depreciation	1.10.	1. 3.	11.	11.	1.4.
Other expensos	-	1.5.		-	2.
Total expenses	2. 3.1.	1.19.5.	1.18.11.	1.16. 5.	1.15.6.
Price per 120 eggs	2.7.2.	2.11. 1.	2.6.0.	2.6.1.	2.8.6.
Profit	4.1.	11. 8.	7. 1.	9. 8.	13.0.

SYSTTEM:
Range

Item	Farm Code Numbers			
	10	16	23	50
$\frac{\text { PAYMENTS }}{\text { FOODS }}$ Purchased Hone grown Total	$E_{0} s_{0} \mathrm{~d}_{1}$	f. s. ${ }_{\text {c }}$	f. s. d.	\&. s. d.
	$\begin{array}{r} 10.1 . \\ 8.10 . \\ \hline \end{array}$	11. 7.4 78.	10.10 6.1.	10.10. 7.10.
	18.11.	18.6.	16.2.	18. 4
Labour	3. 5.	2. 7.	5.7.	5. 1.
Bird depreoiation	13. 1.	5. 5.	10. 4.	6. 3.
Equipment depreciation	1.1.	1. 7.	8.	9.
Other expenses			\cdots	\cdots
Total expenses	1.16.6.	1.8.1.	1.12.9.	1.10.5.
Price per 120 eggs	2.9.0.	2.7.6.	2.9.2.	2.6.6.
Profit	12. 6.	19. 5.	16. 5.	16. 1.

