

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

UNIVERSITY OF NOTTINGHAM

SCHOOL OF AGRICULTURE

THE COST OF FORCING NARCISSI AND TULIPS DURING THE 1952-53 SEASON.

DEPARTMENT OF AGRICULTURAL ECONOMICS
SUTTON BONINGTON
LOUGHBOROUGH
Price 2s. Od.

F.R. No. 121

THE COST OF FORCING NARCISSI AND TULIPS DURING THE 1952-53 SEASON.

K.A. INGERSENT, M.S.

Department of Agricultural Economics University of Nottingham School of Agriculture Sutton Bonington, Loughborough.

PREFACE

This report represents our first systematic attempt in the East Hidlands Frovince, to make an economic appraisal of a horticultural enterprise. Consequently it bears the marks of a pioneer effort.

The number of producing-units on which the report is based is so small that extreme caution must be exercised in drawing any conclusions which might be applicable to a wider group of cुrowers, oven within the limits of the East Midlands area. Moreover, we have dealt with only one season's results. Nevertholess, by showing physical and financial dotails of the bulbforcing onterprise at individual nursories, and by making comparisons between them, some indication is given of the nature of the economic decisions which have to be made by the bulbforcer.

Furthermore, it is hoped that the experience gained in obtaining information from growers, and in compiling the report, will enable us to make a more effective job of further economic studies of horticultural crops which we undertako in the future.

In conclusion, we wish to acknowledge the very generous co-operation of the growers who suppliod the information on which tho report is based.
K.A.I.

THE COST OF FORCING NARCISSI AND TULIPS DURING THE 1952-53 SEASON.

Five growers supplied particulars relating to their bulb-forcing enterprise. Three of these gave details of forcing narcissi and theips, one of narcissi only, and one of tulips only. There are, therofore, tour records of narcissi and four records of tulips.

The five holdings to which these costings relate are scattered over a wide area comprising Loicestershire, Derbyshire, Nottinghamshire ank Lincolnshire.

Size of the Enterprise.

The size of the bulb-forcing enterprise may be measured in terms of the weight or number of bulbs forced. The following table shows the number of tulips and weight of daffodils forced and costed on the heldings included in the study.

Nursary code number	Quantity of bulbs foroed	
	Tulips	Narcissi
1	$1000^{\prime} \mathrm{s}$	cwts.
2	76	-
3	76	240
4	40	150
5	40	70
	-	12

Relative Importance of Bulb-Forcing in the Business.

Nurseries 1,2 and 3 are specialists in bulb-forcing which ranks as a main enterprise in the business. Nursery 4 is a mixed holding erowing a. wide variety of orops. Forced tulips and narcissi are grown as a catchcrop between successive crops of cucumbers and tomatoes. Nursery '' is a mixed holding where a small quantity of narcissi are forced in arw srace which may be available in houses partinlly occupied by other crops.

In the case of Nursery 3, the tulips costed were only a small part of a very much larger tulip-forcing enterprise.

Varietal Differences and Vari tions in Growing Techniques.

A considerable number of different varieties of both narcissi and tulips were foroed by this small. group of five growers. Fourteen different narcissus varieties and 41 different tulip varieties are included in the costings.

A full list of the varieties costed on each nursery is attached together with details of the number of bulbs planted. Bulbs prepared for early forsing by pre-cooling are donotod in the list by a letter P placed after the varietal name.

Particulars of the source and grade of bulbs forced on the holdings costed may be sumnarised as follows.

Kursery 1.

All the tulips forced were imported. Of the total of $76,350,38,000$ were $12^{\prime} \mathrm{s}, 28,000$ were 12 up's and the remainder 11 's and $11 / 12$'s.

Mursery 2.
Half the narcissi forced were imported and half English grow. The majority of the imported bulbs.were doublo-nosed $2^{\prime} \mathrm{s}$, but there were somo double-nosed 3's and mother-bulbs. The English bulbs were "as lifted" with only non-flowering bulbs removed.

All the tulips wore imported. of a total of 36 purchses of different varicties and grades, 19 consisted of 12 up's, one of $12{ }^{\prime} \mathrm{s}$, five of $11 / 12$'s, and 11 of 11's.

Nursery 3.
All the narcissi forced were English-grown except one ton of Ornatus Max. All the bulbs purchased were mixed double-nosed l^{\prime} s.and $2^{\prime} s$.

The tulips were imported 12 up's.

Mursery 4.

All the narcissi forced were English-grown, and "as lifted", with nonflowering bulbs removed.

All the tulips were imported $11 / 12$'s.

Nursery 5.

All the narcissi forced were imported double-nosed l's.

Bulb Varieties and Numbers on Costed Murseries.

IURSERY 1		NURSRRY 2	Tratry 3	
Tulips	No.	Narcissi Tonnage	Narsisgi	Tonnage
Her Grace	10,000	Carliton	Ho ${ }^{\text {a }}$ (${ }^{\text {(}}$)	$2 \frac{1}{2}$
Delice (P)	10,000	Flower Carpet)	Carcon	2
Albino	8,000	Flower Record)	Neveri	13 $\frac{1}{4}$
Hildegarde	5,850	Golden Harvest)	Orstus Vax	1
Delice	5,000	King Alfred) 12	Magnititcaice (P)	$\frac{3}{4}$
Hildegarde (P)	5,000	Mon立gite)		
Philip Snowden	5,000	Rembrendt)	Tu7ins	WO.
Fridjof Nansen	4,000	Scarist)	Rose Conelard (P)	40,000
Prunus	4,000	Elegans)		
Allbright	3,000	Van Sion)	ELRETSY 4	
Copeland's Purple	3,000	Tulips \quad No.	Narnisoi	Tonnage
Bartigon	2,000	Blue Parrot)	Cariton	$1 \frac{3}{4}$
Copeland's		Copeland's)	Crecseuness	$1 \frac{3}{4}$
Rival	2,000	Rivel)		
Great City	2,000	Cordeil Hull)	Tulins	No.
Mothersday	2,000	Crater)	Rue Goreland	20,000
Kurillo Max	2,000	Dillenburg .)	Wibitan	20,000
Princess Margaret	2,000	Early Queen)		
Red Pitt	2,000	Great City)	NUESRRY 5	
		John Gay .)		
		Krelafg's ,	Narcissi	No.
		Triumph)	Gostoz Harvest	1,500
		Orange Early 176,500	Carison	2,100
		Queen)	Goiden Farvest (P)	1,000
		Orange Wondor		
		Ossi Oswalda)		
		Philip Snowden)		
		Piccadilly ...)		
		Prunus (
		Special Pink ,		
		Sunbuast .)		
		Rhineland)		
		Ursa Minor)		
		Utopia)		
		Van der Ercen)		
		William Pitt (

GROWITG PRACTICES.

These were not found to differ very markedly amongst the growers included in the study, except in the timing of the crop, which led to variations in the heating requirement. Further reference will be made to this later. There were, however, a few rather minor differences in growing technique which should porheps be mentioned.

On Nursery l, the method of covering the boxes after planting tulip bulbs was somewhat unusual. Instead of novering with ashes or straw and standing outside, as is the usual method, the boxes were covered with peat and buried in a two fect deop trench excavated in an empty glasshouse. As might be expected this practice is rather more labour-consuming than the conventional one, as figures presented in a subsequent table of labour requirements (Table 3) indicate. However, the grower concerned was satisfied that the value of this extra labour was returned to him with good dividends.

Coming now to the operation of bunching, it may be noted that two of the growers marketed their flowers in bunches of six, (IVurseries 1 and 5) whereas the remaining three tied in bunches of 12. At Nursery 1 each bunch of tulips mas also marked with a brand label, placed in position by the buncher at the time of tying.

Lastly, it may be mentioned that there was some variation in the type of box used in the forcing process. The specialists (Nurseries 1, 2 and 3) all used cut-dow bulb-cases (the containers in which Dutch bulbs are packed for export). On the other hand, the non-specialists (Nurseries 4 and 5) used Dutch tomato boxes.

MARKETING.

Differences betweon growers in the mattor of marketing policy have tro main aspects:
(i) Type of market utilised.
(ii) Date of marketing.

(i) Type of Market.

It was not possible in overy case where flowers were sold on both the wholesale and rotail markets, to determine precisely the quantity and value of flowors sold in each type of markot. As far as could be dotermined, however, the proportions were as follow:

Nursery number.	Narcissi				mozins			
	Per cent wholesale		Per cent retai		Fer cent	vhetege	Per cont	t rotril
	Blooms	Value	B700ms	Value	Bjocme	Talias	Eincms	Valu0
1	-	-	-	-	82	82	18	18
2	49	44	51	56	49	46	51	54
3	100	100	-	-	100	100	-	-
4	$87 \frac{1}{2}$	$87 \frac{1}{2}$	$12 \frac{1}{2}$	$12 \frac{1}{2}$	$87 \frac{1}{2}$	$87 \frac{1}{2}$	$12 \frac{1}{2}$	12 ${ }^{\frac{1}{2}}$
5	53	49	47	51	,	-	-	-

In addition to sales direct to the consuming public, sales to retailers have been counted as "retail sales" for the purposes of the above table and subsequent discussion.

The flowers sold wholesale from Núrseries 3 and 4 went to large markets outside the East Midlands area. The remainder were sold very largely in local wholesale markets.

(ii) Date of Marketing.

The accompanying table shows the dates between which narcissi and tulips were sold from nurseries included in the study.

Nursery number	Narcissi		Tulips	
	Date of first sale	Date of last sale	Date of first sale	Date of last sale
1	-	-	17th December	28th March
2	15th January	8th April	1\%ih January	2nd May
3	I2th December	llth March	1zth January	23rd January
4	29th Jonuary	31 st March	18th January	14th March
5	10th December	15th March	-	-

Hecting.

The aocompanying table shows the dates between which narcissi and tulips were forced in heated houses on the nurseries included in the study.

Nursery number	Narcissi		Tulios	
	$\begin{aligned} & \text { Date at which } \\ & \text { bulbs first } \\ & \text { recoived heat } \end{aligned}$	$\begin{aligned} & \text { Date at which } \\ & \text { bulbs Inst } \\ & \text { rocoivod heat } \end{aligned}$	Date at which bulbs first received hoat	$\begin{aligned} & \text { Date at which } \\ & \text { bulbs last } \\ & \text { received heat } \end{aligned}$
1	-	-	Ist December	28th March
2	lst January	3 rd April	Ist January	3rd April
3	24th November	9 th Maroh	5th December	23rd January
4	4th January	4 th Liarch	24th Decembor	14th March
5	14th November	15th March	-	- -

A comparison of these dates with those shown in the table of marketing periods will reveal the fact that part of the narcissus crop on Nursery 4 and part of the tulip crop on Nursery 5 were forced without heat. On Nursery 4, the $1 \frac{3}{4}$ tons of the narcissus variaty Cheerfulness was forced without heat. On Nursery 2 approximately 35,000 tulip bulbs (nearly half the total number of bulbs forced) were forced without heat.

All the boilers used for bulb-forcing on the nurseries under study were coal or coke-fired. On Nursery l, heat was supplied by a forced draught boiler burning coke-breezc, and on Nursery 4 by a coal burning boiler fitted with an automatic stoker.

COSTING PROCEDURE.

A. Naturo and Quality of Costins Data.

This study is based upon two types of information supplied by the participating growers.
(i) Furchuses of raw material used only in the bulb-forcing enterpriso, and sales of flowers.
(ii) Estimates of the labour required to perform particular operations, estimates of fuel consumption during a specific period, and so forth.

The type of information falling within the first of these categories tonds to be highly accurate since it is generally on record in the form of recciptod bills, salos notes, etc.

On the other hand, the type of information in the second category can rarely be obtainod with the same degree of accuracy, since growers do not nomally keep a record of the anounts of labour required for a specific task or the amount of a rew matorisl such as fuel used for the production of a
particular crop or during a particular poriod. The nearest we can get to the correct quantity is the grower's "best estimate" which is based partly on memory and partly on oxperience and hence must vary in accuracy from one grower to another. However, we can never expect to get 100 per cent accuracy from any grower using this method.

Hence, in the detailed analysis of costs and returns shown in the tables, the jndividual items can be classified into two main categories.

(a) Highly Accurate.

This group contains all purchases and sales which are specific to the bulb-forcing enterprise, e.g. purchases of bulbs, sales of flowers etc.

(b) Not Highly Accurate.

This group contains all itoms involving leibour costs and raw materials not used exclusively in the bulb-forcing enterprise.

Since the final estimates of overall costs and returns were calculated on the basis of information falling within both of these catogorios, it is difficult to assess their reliability. But it wouid certainly be unwise to regard them as being highly accurate. Nevertheless, it is thought that even whon allowance is made for a fairly large margin of orror in the results shown for each producer, cortain tendencios remain apparent which may indicats important facts about the bulb-forcing business.

B. Types of Cost Included.

In the main, only direct costs were included in the calculations. Ovorheads such as the maintenanco and repair of glasshouses and heating apparatus, and wator and eloctricity charges were not token into account. However, in a few spocial cases, charges having the nature of overhead costs were mode, as will be explained in succeeding paragraphs.

C. Labour.

The charges for labour were as follow unless the grower paid more than the standard rate, when the full amount was charged:

Per hour	s.d.
Men	2.6.
Women	1.11.

The grower's own labour was charged at the standard rate.

D. Marketing Costs.

No marketing costs incurred by the grower after the flowers had left the nursery, such as carriage or wholesaler's deductions, are specifically shown. All such items wore doducted from gross market receipts in arriving at the growers' net receipts which sppear in the tables.

No selling costs wre allowed for salos of flowers at the nursery.

E. Heating.

Heating costs include only the cost of fuel and stoking-labour.
The grower was asked to give his best estimate of the fuel consumption and man-hours of stoking-labour during the forcing season, and these were then charged up at the appropriate rates to give the total heating cost for the season.

In the case of one of the non-specialist growers other crops received heat from the boilers used for bulb-forcing. Under such circumstances heating is in effect an overhead cost. The method of cost-allocation adopted in this case was merely that of dividing the grower's astimate of total fuel and labour costs during the bulb-forcing period between bulbs and othor crops on the basis of the heated glasshouse area occupied by each.

The allocation of heating costs between "prepared bulbs" and "natural bulbs" was on the basis of the number of "ton-weeks" (narcissi), or " 10,000 bulb-weeks" (tulips), of heating represented by each of these categories. F'or example, one ton of prepared narcissus bulbs receiving heat for four weeks would represent $1 \times 4=4$ ton-weeks of heating cost. Similarly, two tons of natural narcissus bulbs receiving heat for six weeks would represent $2 \times 6=12$ ton-weeks of heating cost. Therefore, in a. case where propared and natural bulbs were being forced in these proportions the total heating cost during the forcing would be allocated betweon propared narcissi and natural narcissi in the ratio $1: 3(=4: 12)$. It should be noted that no attempt was made to reflect differences in the rate of fuel consumption at different periods of the season.

F. Box Depreciation.

Each grower was asked for his estimate of the average life of the boxes he used for forcing, and hence, given the total number of boxes utilised during the season, the average annual replacement cost (assuming a constant annual rate of replacement) at current prices was calculated. The individual nuisery averages were then pooled and averaged to give an overall average annual replacement cost per unit quantity of bulbs which was used throughout the costings as the basis of box depreciation.

To the extent that there boxas ape alag unod th the produotion of other
 doprogiation is really an oyphead cast, Howeypy, hlthough thege are the goncitions undef whioh the bezes were uecd on twe of the holdinge, the whole of tho annual doprociation was in fact ghargad to the bulba.

0. Mangna,

Hach of the yarious mearuyea po folative "profttatinity" used in this atudy is peferred to as a "rapgin", Eve干y maygin 18 based on the differenoe betwoen total groway' net wecospta and the sum of all the costa of whioh acogunt hes beon takon, The tom"profit" has delibequtely begn avoided, singe its use might be takan to tmply that all goste inoluding a proportion of pyerheads, had been chargid to the bulb-forolng enterprise,

PRESENTATION OP REBULTS AND QONOLUBIONA:

I. NARETSSI.

A. Aralysis of Exponsos, Reocipte and Haging:

Tablo IA shows dotaile of the raxin theme of expenditurg, peturna and maygthe for forcod nergisei on gach of the nupegitos ingluded in tho atudy, Dotails aro show soparatoly fop proparad bulbe; natupal bulbe, and alt bulbs at qach nuraery; In opdof to fralifotg oomporisions botwoen producars, most of the ticme of geat and retume haye been put on o common basia ofthof ono ton of bulbs ov a bunch of a dozon blooms. h Howovef a ferf itoma are also ahown on "per nursery" basis to indioate hifforenoes in the soale of production.

The foltowng arg rome of the satinnt fatures of the items ohom in TabIo 2A,

(i) Cost of Bulbs.

This is the gost pey ton of bulbs delijyored at the nupsery including at1 pxponsas suoh es caryiage, impopt duty and the cost of pooling. Differonoes in ohoioe of souroe, grado and variety of bulbs merulted in wide dafterence日 in oost per ton, it is of interest that the nursery showing the groatest totat mergin pof ton (Furbery 4) fopged the cherpept bulbs, Tha high priag of bulbs per ton at Nuragry 5 pag probably paptially dug to the fact that thoy wofo bought in very eman quantities,

Ti)
The equivalont ogats and retums pop ton shown for propared bulbs at Hupgopy 5 should bo treatad fith the utmost rospryc, since tho numbor of bulbs actually sorood was very manll.

TABLE IA

Nursery: 3 paid less per ton for prepared bulbs than the other three nurseries paid for natural bulbs. It seems that differences in source, grade, and variety affect the price of narcissus bulbs far more than the cost or pre-cooling.

(ii) Growing Costs.

These include all costs inourred from the time of planting until the time when the flowers were cut. In absolute terms the variation in cost per ton between the nurseries was not very large, though in relative terms it appears to have been of some significance, except when we compare Nursery 4 with Nursery 5.

Growing costs at Nursery 3 were approximately the same for both prepared and natural bulbs.

In no case did growing costs form more than a very small proportion of total net expenses.

(iii) Picking and Packing.

This includes all costs incurred from the time of cutting to the time when the flowers left the nursery.

The variation in costs between the nurseries was quite large both absolutely and relatively, except in comparing Nursery 2 with Nursery 4. The variation may be attributed partly to varietal differences, partly to differences in labour skill and partly to differences in technique, such as the size of the bunch in which the flowers were tied.

In three cases out of four picking and packing costs were the second largest item contributing to total net expenses.
(iv) Heating Costs.

The composition of these costs has been explained in an earlier section.
The variation in costs between tho nursories was large both absolutely and relatively. This was to be expected since the bulbs were forced at widely differing parts of the season, and in one case (Nursery 4) approximately half the crop received no heat at all. (1) There does not appear to have been any recognisable relationship between heating costs and total margin per ton. Heating costs were very low at Nursery 5 where the bulbs were forced as a catoh-crop in conjunction with other crops which carried the major portion
(I)

Hoating costs per ton were, nevertheless, relatively hịgh at Nursery 4 becauso the heated crop occupied the house for an abnormally long period.
of tho winter's fuel bill; but in spite of this, the margin per ton was much lower than at Nursery 4 mich had a relatively high heating cost per ton, but paid nearly $£ 100$ per ton less for bulbs.

As one mould have expected, hoating costs per ton for prepared bulbs at Nursery 3 were higher than those. Por natural bulbs. Actually the difference in cost may have been greater than that indicated, in the table, since as has been previously oxplained, no allowance was made for differontial rates of fuel consumption at different parts of the season. In fact, however, the rate of consumption may weil. have been higher in Deocmber than in Fobruary or March.

(v) Deprocintion of Boxes.

The cost of this item per unit quantity of bulbs was; by definition, the same at all the nurseries.

(vi) Total Expenses.

There was $£ 77$ par ton difference in total expenses between the highestcost producer and the lowest-cost producer, and tho lattcr's oxpenscis wore only 66 per cont of those of the former. These extremes in the range of costs were associated with the two non-specialist producers; and tho highostcost producer was the smallost-scale producer in terms of the total number of bulbs forced.

Part of the highest-cost producer's extra costs wore due to the fact that he forced a proportion of prepsered bulbs, wheroas the lowest-cost producer had no preparod bulbs. On a ton for ton basis the highest-cost producer's costs were $£ 27$ per ton higher for prepared bulbs than for natural bulbs. Considering the crop as a whole, however, the extra cost per ton attributable to the propared bulbs was only \&6. On the other hand, at Nursery 3 there was no significant difference between costs per ton incurred for the forcing of prepared and natural bulbs.

(vii) Total Grower's Not Rocoipts.

The variation between producers was rather less than was the case with total oxpenses. The differonce in receipts per ton botween the producer ranking highest and the producer ranking lowest was £54, and the lattor's rocoipts amountod to 80 per cont of those of the former.

It is interost that the highest-return producor was also the highestcost producer. On the othor hand, the lowest-cost producer ranked lowest but ono as regards recoipts per ton.

The highost-roturn producer's extra return per ton for flowers forced from propared bulbs was fl 7 l on a ton for ton basis, and approximately
£3.10s. 0d. for the crop as a whole. In the case of Nurscry 3, however, propared bulbs returned e40 per ton extra on a ton for ton basis and $£ 17$ por ton extre over'the crop as a whole.

It may also be romarked that both the highost-return producer and the lowost-roturn producer sold approximately half their output of flowers at solf-wholosale or retail prices.

(vii.i) Total Marein.

Tho difference in total margin per ton between the producer ranking highest and the producer ranking lowest was $£ 60$. Furthermore the Jowestranking producer only obtained just over 30 per cent of the margin obtained by the highest-ranking producer. The producer with the highest margin per ton (Nursery 4) was the one that was noted earlier as having the lowest total expenses and the second lowest total grower's net receipts per ton.

The producer with the highest margin per ton did not force prepared bulbs. At Nurseries 3 and 5, however, the effect of including propared bulbs was to increase the overall margin per ton by $£ 17$ in the one case, and to decrease it by $£ 2$ in the other case.

The general inpression gained from these results is that the highest margins per ton were associated either with a combination of relatively low total expenses and relatively lov total receipts, or with a combination of relatively high total expenses and relatively high total receipts. Of the two factors the level of expenses appears generally to have been the more important.

(ix) Costs, Returns, and Largin por Dozon Blooms.

The average cost por dozen blooms, the averago grower's not return per dozon blooms, and the average margin per dozen bloons are shown in the table because it is thought that growers may be accustomed to thinking in these torms rather than in torms of costs, returns, and margin per ton. However, it will be recognised that the degroc of success attained in the enterprise comnot be measured on the basis of margin per bunch alone. The margin per bunch can be regarded as the margin per ton divided by the number of bunches sold per ton; or, in other words, the margin por ton is the product of the margin por bunch and the yield in bunches por ton. Henco a high margin per bunch will coincide with a high margin por ton only if the yield is high; and a low margin per bunch combined with a high yield may well be equally as profitable, or more profitable, than a higher margin per bunch combined with a lower yield. An illustration of this point, involving two of the nurseries included in the table, will be found in the succeeding section.

(x) Number of Dozen Blooms Sold.

The difference in yield between the highest-ranking producer and the lowest-ranking producer was $1,041 \frac{1}{2}$ dozen blooms per ton. The latter's yield was approximatoly 60 per cent of that of the former. Nuch of the difference was probably due to variations in the grade and variety of bulbs.

The yields of flowers is cloarly one of the most important factors contributing to the degree of success attained by the narcissus-forcing enterprise. Amongst this group of foreses, Nursery 4 secured tho largest sale of blooms per ton, and also the highest average margin per dozon blooms. Hence it was inevitable that Nursery 4 should have the highest margin per ton. On tho other hand, Nursery 2 had a lower yield of flowers per ton than Nursery 5. Hence, although Nursery 2 secured a higher margin per dozen blooms, Nursery 5's yield advantage was great enough to put it in front of Nursery 2 on total margin per ton.

(xi) Margin per $£$ of Total Expenses.

Perhaps this is the best measure of the economic suocess of an enterprise. Applying it here we find a range, for all bulbs, of 11s. $9 \frac{7}{4} \mathrm{~d}$. to 2 s . $8 \frac{1}{4} \mathrm{~d}$. Pursery 4 had the highest maryin per \& of total expenses and the highest margin per ton of bulbs. \cdots. On the other hand, Nursery 5 which ranked second on margin per ton dropped to third place in ranking on margin per \& of total expenses. Similarly Nursery 2 come up from third to second place. The explanation for this is that total expenses per ton were higher on Nursery 5. The margin por $\&$ of total expenses is, in effect, margin per ton divided by total expenses per ton.(I) Hence two growers may have the same margin per ton of bulbs, but the one with the lower level of expenditure per ton will have the highest margin per $\&$ of total expenses.

B. Further Analysis of Costs.

Following on the tentative conclusion arrived at in the previous section that the level of production expenses was one of the most important factors determining the success of the narcissus-forcing enterprise, some further analysis was made of the principal expense items in order to determine their, relative importance.
(1)
i.e. Margin per $£$ of total expenses $=$

Margin por ton
Total expenses per ton

Table $2 A$ shows the relative importance of the cost of bulbs and the cost of labour as clements of total production costs. (I). It will be seen that the "cost of bulbs" ranged from 84 per cent to 60 per cent, the "cost of labour" from 23 por cent to 10 per cent and "other costs" from 23 per cent to two per cent of total costs. Bulbs and labour, then, were the two main olemonts of cost, but the cost of bulbs was in all oases by far the more important. It is clear that with a cost structure such as this, any appreciable saving on the oost of bulbs can bo expected to rosult in a significant reduction of total production costs. The same is true, but to a somewhat lesser extont, of labour costs.

With rogard to the "other costs" show in the table, heating costs accounted for the largest proportion of these.

It was possiblo to get some further insight into the composition of labour costs by analysing the labour requiroment per ton of bulbs into its component operations. This is done in Table 3A, where the hours of labour. utilisod per ton of bulbs for each of six operations on the four nurseries are shorm. The total labour hours are further subdivided into hours of work performed by male and female workers respectively. A briof examination of this table makes it abundantly clear that an attempt to economise in the use of labour on any of these holdings would be likely to meet with the best results if attention were concentrated on the operation of cutting and bunching, which was by far the most labour-conduming oporation in every case.

C. Summary and Conclusions.

It has been found that amongst this small group of four nurseries which forced narcissi during the 1952-53 season, the producer with the lowest costs per ton of bulbs realised the greatest margin per ton of bulbs, and per $£$ of total expenses. Furthermore when the nurseries are ranked on the basis of total grower's not receipts per ton the lowost-cost and highest-margin producer ranks lovest but one. Conversely, the producer with the highest costs por ton of bulbs ranks: second on margin per ton, but only third on margin per $£$ of total expenses. At the same time, he ranks first on the besis of total growr's net receipts per ton.

Average margin per bunch is of limited value as a measure of economic success since it takes no account of the numbers of bunches sold. On the other hand, the measures totel margin per ton and margin per $£$ of total net oxpenses both reflect, average margin per bunch and the number of bunchos markotod per ton of bulbs.

Nurgery 4, with the highest maxin per ton and the highost yield inevitably had the highest margin per ton of bulbs. However, the margin per ton of bulbs takes no account of difforences in the anount of capital employed in the forcing procoss. In order to do this the margin per $£$ of total net

The cost of indiroct labour such as that forming a part of "hoating costs" is included in "other costs" and not in the "cost of labour".

COST OF BULBS AID COST OF LABOUE AS A PERCFMTAGE OF TOTAI COSTS MaCISSI
TABLE $2 A$ M...ISS

Mursory code no.	A LI B U L B S							
	2		3		4		5	
Itom	8	Por cont	£	Por cent	¢	Per cont	2	Por cent
Cost of bulbs	1,751	83	970	60	333	63	118	84
Cost of Inbour	210	10	368	23	. 75	14	19	14
Other costs	159	7	273	17	121	23	3	2
Total costs	2,120	100	1,611	100	529	100	140	100

LABOUR REQUIREMETYT - HOURS PER TON OF BULBS
MARCISSI

Nursery. code no.	A L L B U L B S											
	2			3			4			5		
Oporation	Mo.1e	Female	Total	Hale	Female	Total	Male	Female	Total	Inale	Femal	Total
Planting \& covering	11	13	24	34	-	34	1	54	55	7	30	37
Carrying in	15.	-	15	22	\sim	22	12	-	12	8		8
Growing on under glass	1	-	1	24	-	24	10	5	15	31	-	31
Cutting \& bunching	31	77	108	158	144	302	86	-	86	161	-	151
Packing	4 9		4 9	8	-	8 \sim	86 6	-	10 6	9	-	9
Total	71	90	161	268	144	412	125	59	184	223	30	253

expenses must be taken. Nursery $4^{\prime} \mathrm{s}$ costs per ton were $£ 25$ lower than at any of the other nurseries and this was an important factor contributing to this producer's margin of lis. Y $\frac{1}{4} \mathrm{~d}$. per $£$ of total net expenses. It is perhaps significant that this producer forced only Enflish bulbs, which were £ 34 per ton cheaper than those forced at any of the other nurseries.

The two specialist producers who forced bulbs on a fairly large scale ranked third and fourth on total margin per ton of bulbs and second and fourth on margin per $£$ of total net expenses. The most suocessful producer forced on a scale approximately half-way between that of the specialists and the smallest producer. The latter forced less than one ton of bulbs and usod the crop only as a catch-crop to fill up odd spaces in his glasshouse during the winter months.

It will be noted that the most successful producer did not force prepared bulbs, but two other producers did so with contrasting results. At Nursery 2 tho margin per ton was more than four times as great for prepared bulbs as for natural bulbs, but at Nursery 5 the margin per ton was actually lower for proparod bulbs. Another point to be borme in mind is that the forcing of prepared bulbs extonded the length of the forcing season, so that although it may have been no more, or even less profitablo than the forcing of natural bulbs, so long as any profit was shown at all total income was incroased.

The relntive proportions of wholesale and retail sales of flowers do not secm to explain any part of the differences in the degree of success attained amongst this group of producers. The most successful producer did not consider that rotail sales paid him any better, and, in fact, he sold about seven oighths of his flowers wholesale. At the same time the least succossful producer sold 100 por cent of his crop wholesalc.

The main conclusion is that if these producers are to use this season's rosults as a guide to future planning they will look chiefly to a reduction of production-costs as o means to improving the profitability of the narcissi-forcing enterprise. The most important opportunities for doing this lie in two directions.

The first of these is concorned with the price paid for bulbs. Since tho outlay on bulbs forms such a largo proportion of total production-costs it stends to reason that any saving that can be affected hero may be expected to pay good dividends so long as the valuo of flowers produced is not roduced to an equal or greator extent. Judging from the rosults of this study the cheaper bulbs yield quito as well as the dearer bulbs on a woight for woight basis, and, although tho market value of the flowers may be somewhat lower, the former consideration outweighs the latter.

Clearly the question of the relative merits of different varieties and grades of bulbs, fron different sources, with regard to yield potentialities and the market value of the blooms, will repay very careful investigation by the growor. Unfortunately it was not practicable to obtain any information of general interest on these points from the present study.

The second of the main aroas of opportunity for the reduction of production costs is that of labour utilisation, particularly as rogards cutting the flowers and proparine them for market. Some of the main points to be investigated are the techniques of picking, bunching and packing; the position and the lay-out of the packing shed; and the relative proportions of male and female labour. A few seconds saved on each bunch of flowers that leaves the nursery can result in a very substantial improvement in the overall profitability of the bulb-forcing enterprise.

II. TULIPS.

A. Analysis of Expenses, Receipts and Margins.

Table 1 B shows details of the main items of expenditure, raturns, and margins for forced tulips on each of the nurseries included in the study. Details aro shown separately for prepared bulbs, notural bulbs, and all bulbs at each nursory. In order to facilitate comparisions between producers most of the items of cost and returns have been put on a common basis - either "per 10,000 bulbs" or "per bunch of a dozen blooms". Hovevor, a fow items are also show on a "per nursery" basis to indicato differencos in the scale of production.

The following aro some of tho salient features of the itoms shom in Tablc 1B.

(i) Cost of Bulbs.

This is the cost per 10,000 of bulbs dolivered at the nursory, including all oxpenees such as carriage, import duty, and the cost of cooling. Differencos in choice of source, grade and variety of bulbs resulted in fairly wide difforences in cost. It is of intorost that tho nursery showing tho groatost total margin per ton (Nursory 2) forced bulbs at the high end of the cost range. On the othor hand, the nursery showing the smailest total margin per ton (Nursory 4) forced the choapest bulbs. The relatively high prico of bulbs at Nursery 2 was at least partially due to the fact that a number of unusual and uncommon varieties vore purchased. Howevor, this oxtra expondituro apparently rocoived its coonomic justification in the relutivoly high total grower's not receipts per ton. Nursery 2 took approximatoly $£ 1.16 s .0 d$. in grower's nct recoipts for evory il. Os. Od. spent on bulbs, whoreas Nursory 4 only took: £l. 12 s . Od. for every £l. Os. Od. sront in tho same may.

FORCED TUITPS DURING THE 1952-53 SEASON.
TABLE IB

Nursery 3 paid less per 10,000 for prepared bulbs than two of the other nurseries paid for natural bulbs. It seems that dipferences in source, grado and variety affect the price of tulip bulbs far more than the cost of pre-cooling.

(ii) Growing Costs.

These include all costs incurred from the time of planting until the time when the flowers were cut. In absolute torms fine variation in costs botween the nurseries was not very large, though in relative torms it appears to have been of some significance, except when comparing Nursery 3 with Nursery 4.

Growing costs at Nursory 1 wore oxactly the samo for both prepared and natural bul.bs.

In no case did growing costs form more than a very small proportion of total oxponses.

(iiii) Picking and Packing.

This includes all costs incurred from the time of cutting to the time when the flowors loft the nursery.

The variation in cost betroen the nurseries wes quite large both absolutely and rolatively, cxcept in comparing Nurserios 2 and 3. The variation may bo attributed partly to varietal ditforonce, partily to differences in labour, skill, and partly to differences in technique, such as the size of the bunch in which the flowers were tied. only on one of the nurseries did picking and packing costs exceed 10 per cent of total expenses.

(iv) Heating Costs.

The composition of these costs has been explained in an earlier section.
The variation in costs between tho nursories was large both absolutely and relatively. This was to be oxpectod since the bulbs were foroed at widely difforing parts of the season, and in one case (Nursery 2) approximately 45 per cent of tho bulbs plantod received no heat at all.

As far as those four producers are concemed thero appoars to have beon an invorse relationship between hoating costs and total margin per 10,000 bulbs. The total margin foll consisterily as hoating costis por 10,000 bulbs increased.

At Nursory 2, whoro tho total margin por 10,000 bulbs was highest, hoating costs formed just over four per cont of total expenses. On the other hand, at Nursery 4, where the margin was lowest, heating costs formed nearly 24 per cent of total expenses.

It should be notod that e.t Nursery 1 heating costs per 10,000 bulbs wore lower for prepared bulbs then for natural bulbs. This is due to the fact thet, on the average, the prepared bulbs occupiod the forcing-houso for \mathfrak{a} shorter time than the natural bulbs. However, this apparent differenco in cost may be mislooding sinco, as has been proviously explained, no allowance was made for differential rates of fued consumption at different parts of the season. But, in fact, the rate of consumption may well have beon highor in December than in February or March.

(v) Depreciation of Boxes.

The cost of this item per unit quantity of bulbs was, by definition, the samo at all the nurseries.

(vi) Total Exponses.

Thore was $£ 30$ per 10,000 bulbs differenco in total expenses betwoon the highest-cost producor and the lowost-cost producor, and the latter's exponses were only 79 per cont of those of the former. Tho lowest-cost producor (Nursery 4) was tho only non-spocialist of the four; he was also tho smallest-scalo producer. Part of the extra cost incurrod by the highost-cost producor (Nursery 1) was duo to the fact that ho forcod a proportion of preparod bulbs, whercas the lowost-cost producor had none.

Thore doos not appoar to havo boen any rocognisablo rolationship betwoen total oxpensos and total margin por 10,000 bulbs.

The whole of tho difforonce in total expenses por 10,000 between proparod bulbs and natural bulbs at Nursery 1 appears to havo been accounted for by the difforence in the original cost of the bulbs. But it is noticoable that Nursery 3 producod tulips from preparod bulbs much moro choaply than Nursory 1.
(vii) Total Grovor's Not Rocoipts.

The variation between producers was rather greater than was the case with total expenses. There was $£ 65$ per 10,000 bulbs difference in total growers' net receipts between the highest-ranking producer and the lowestrenking producer, and the latter's receipts amounted to 65 per cent of those of the formor. The highost receipts were obtained by the highestcost producor, and the lowest receipts by the lowest-cost and non-specialist producer. The highest-return producer sold approximately 80 per cont of his flowers through a wholesale market and the lowest-return producer nearly 90 per cent. The highest-return producer's extra roturn for
flowers forced from prepared bulbs was $£ 70$ on a 10,000 bulb for 10,000 bulb basis and $£ 13$ for tho crop as a whole. But it is noticeablo thet at Nursery 3 the return for flowers forcod from propared bulbs vas little more than half that obtained at Nursory 1.

Although tho relationship is not entirely consistent, there appours to be some evidence pointing to a direct relationship betwoon total grower's net roceipts per 10,000 bulbs and total margin per 10,000 bulbs. Another way of putting this is to say that costs did not riso so fast as roceipts por 10,000 bullbs.
(viii) Total Margin.

Tho difference in total margin per 10,000 bulbs botween the producor ranking highost and the producer ranking lowest was $£ 44$. Furthormore, tho lowest-ranking producor only obtainod just ver 14 per cent of the margin obtained by the highest-ranking producer. The producer with the highost margin (Nursery 2 l came at the low ond of the range of total. expenses por 10,000 bulbs and at the higg end of the range of total grower's net receipts por ton, i,e. his costs were rolatively low and his returns wore relativoly high. On the other hand, tho producer showing the lowest marein (Nursery 4) had both the lowost total expenses and tho lowest total grower's net roceipts per 10,000 bulbs.

The producor with the highest margin por 10,000 bulbs did not forco preparod bulbs. At Nursory l, howevor, tho effect of including prepared bulbs was to increase the overall margin per 10,000 bulbs by 12.

The highest margins per 10,000 bulbs appear to have been more consistently associated with a relatively high level of recoipts than with a low lovel of expenses.

(ix) Coste, Roturns and Marein per Dozen Blooms.

The avorage cost por deron blooms, the avorage grower!s net return por dozen blooms, and tho averago margin por dozen blooms are show in the table becausc it is thought that growers may be accustomed to thinking in these torms rather than in terms of costs, returns and margin per 10,000 bulbs. However, it will bo recognised that the dogree of succoss obtained in the enterprise cannot be measured on the basis of margin per bunch alone. The margin per bunch can be regurded as the margin per ton divided by the number of bunches sold per 10,000 bulbs; or in other words, the margin per 10,000 bulbs is the product of the margin per bunch and the yield in bunches per 10,000 bulbs. Hence a high margin per bunch will coincide with a high margin per ton only if the yield is high; and a low margin per bunch combined with a high yield nay well be equally as profitable, or more profitable; than a higher margin por bunch combined with a lower yield.

However, as far as the group of producers included in this study are concerned, the yield differences were so small that their rankings on costs, returns, and margin per bunch are identical with their rankings on costs, roturns, and margin per 10,000 bulbs.

(x) Number of Dozen Blooms Sold.

The difference in yield between the highest ranking producer and the lowest ranking producer was 35 dozen blooms per 10,000 bulbs. The latter's yield was approximately 95 per cent of that of the former.

Considering the yields obtained at each of the four nurseries, the differences aro so small that it would be unsafe to attribute any of the differences in economic success to them. As far as this group of nurseries was concerned, yield variation between nurseries was an insignificant factor in determining the varying degrees of success attained by them.

(xi) Margin per £ of Total Expenses.

Perhaps this is the best measure of the economic success of an enterprise. Applying it here we find a range, for all bulbs, of $8 \mathrm{~s} .10 \frac{3}{4} \mathrm{~d}$. to ls. $3 \frac{1}{4} \mathrm{~d}$. The ranking of the four producers by the size of this margin was the same as their ranking on total margin per 10,000 bulbs. IVursery 2 not only obtained the highest total margin but did so at a relatively low level of expenditure per 10,000 bulbs. On the other hand, at Nursery 4 the level of expenditure por 10,000 bulbs was virtually the same as at Nursery 2, but the margin per 10,000 bulbs about one seventh as large. Hence Fursery 4'.s margin per $£$ of total expenses was only about one seventh of that at Nursery 2.

B. Further Analysis of Costs.

Table $2 B$ shows the relative importance of the oost of bulbs and the cost of labour arselements of total production costs. (1) It will be seen that the "cost of bulbs" ranged from 80 per cent to 66 per cent, the "cost of labour" from 16 per cent to seven per cent, and "other costs" from 27 per cent to nine per cont of total costs. Bulbs, then, accounted for by far the largost of these three eloments of cost on all the nurseries. It follows that, since the cost structure is of this nature, any appreciable saving on the cost of bulbs can be expected to result in a significant reduction of total production costs.

The relative importance of the "cost of labour" and "other costs" is not so well defined. On two of the nurseries labour costs exceeded other costs, and on the other two nurseries the position was reversed. "Heating costs" wore tho most important element of "other costs", and it was on the nurserios where heating costs were relatively high that "other costs" exccoded the "cost of labour".
(I)

Here, the "cost of labour" does not include the cost of indirect labour such as that included as a part of "heating costs".

COST OF BULBS AND COST OF LABOUR AS A PERCEUTAGE OR TCTAI COSRS
TULIPS
PABLE $2 B$

$\frac{\text { Nursery code no. }}{\text { Itom }}$	AL L BUIES							
	1		2		- 3		4	
	\&	Per cont	£	Fer cent	£	Por cont	E	Per cent
Cost of bulbs	770	- 70	699	80	359	76	300	66
Cost of labcur	177	16	102	11	47	10	31	7
Other costs	152	14	75	9	71	14	125	27
Total costs	1,099	100	876	100	477	100	456	100

LEBOUR REQUIREMETS - HOURS PER 10,000 EULBS
TULIES

TAPYE 3 B TULIES												
Nursery	ALL BULBS											
code no.	1						3					
Operation	Wale Tomatomotal			$\frac{2}{\text { Malolemele\|Total }}$			Majetromato fotal			$\frac{4}{\text { Ha? TEma'eltotal }}$		
Planting \&												
covering	12	12	24	10	12	22	14	-	14	1	16	17
Carrying in	24	-	24	20	-	20	$8 \frac{1}{2}$	-	$8 \frac{1}{2}$	11	-	11
Growing on under glass	20	-	20		gligibl		15	-	15	10		
Cutting \&							1		1	10	-	10
kurching	44	45	89	18	34	52	43	-	43	19	-	19
Dacking	9	10	39	-	$3 \frac{1}{2}$	$3 \frac{3}{2}$	5	-	5	4	-	4
Cerving out	9	-	9	20		20	$8 \frac{1}{2}$	-	$8 \frac{1}{2}$	5	-	5
Tobal	118	67	155	68	$45^{\frac{1}{2}}$	$117 \frac{1}{2}$	94	-	94	50	16	66

Some further insight into the composition of labour costs is provided by Table 3B where the hours of labour utilised per 10,000 bulbs for each of six operations are shown. The total labour hours are further subdivided into hours of work performed by male workers and hours of work performed by female workers. Two points of interest emerge from a briof examination of this table. The first point is that the total hours of labour por 10,000 bulbs was higher on the two most profitable nurseries than on the two least profitable nursorios. The second point is that although "cutting and bunching" was the most labour-consuming operation on all the nurseries, the two producurs who accomplished it with the least number of hours of labour per 10,000 bulbs wero less successful than tho two producors who used relatively more labour for that operation. Howover, it does not necossarily follow from these two observations that the most succossful producers could not heve boen oven more successful had they used less labour, or, that the least successful producers would have boen better off had thoy usod moro labour. As wo havo soon, many factors other than the officioncy of labour use contribute to the degree of success attained by the tulip forcor. The fact romains that if labour can be suvod in the performenco of any operetion, without a more than equivalont increase in other costs or docrease in the valuo of tho final produc.t, the producer is bound to gain. Furthermore, since cutting and bunching was the most labourconsuming operation on all of theso holdings it should be tho obvious first choice for any efforts directed towards improved work-porfornance.

C. Sumnary and Conclusions.

It hes been found that amongst this small group of four nursorios which forced tulips during the 1952-53 soason, the producor with the lowest total expenses per 10,000 bulbs obtained the highest margin per 10,000 bulbs, and the highest margin per \& of total oxpenses. Howover, this producer's success was attributable not only to a low level of expenses but also to a relatively high level of returns. The least successful producer's expenses were virtually the same as those of the most successful producer, but his total receipts per 10,000 bulbs were £44 less.

The loast successful producer was less of a spocialist than the other three, and he also forced on the smallest scale in terms of the total number of bulbs forced.

The most successful producer did not force any propared bulbs. Howevor, another producer increased his margin per 10,000 bulbs by nearly $£ 12$ and his margin per f of total expenses by about is. 6d. as a rosult of forcing proparod bulbs.

Forced tulips bear many of the characteristics of a luxury trade, and forcers generally find themselves selling on a relatively high-class market which is very sensitive to the preferences of buyers for particular types and varieties of flowers, and which easily becomes glutted with the less
popular varieties, or flowers of inforior quality. These charactoristics. aro probably most noticeable in the large wholasalo markets.

If the tulip forcor is to make the most of his economic opportunities, therefore, it is highly importont that he should carefully select his market and plan to catcr for its noeds and preforences in all such matters as variety and quality of flowers, prosontation and soason of supply. It is porhaps of some significance that tho most succossful producer sold approximatoly half his output of flowors on the self-wholesula and rotail markets, though too much woight should not be attachod to this, since selling costs tond to offset much of increased returns resulting from this mothod of salo. It is perhaps unfortunato that a dotailed examination of markoting policy could not be included in this study, but the information avajlable could not be used for the purpose of drawing useful general conclusions in this field. Further consideration of this matter must therefore be left to the individual grower.

Turning to the second method of getting better economic results from forced tulips, namely cost-reduction, there appear to be three main areas where this might bo accomplished. The first of these is concorned with the cost of bulbs. This item accounted for from 66 per cent to 80 per cont of total production costs. Although there is nothing in this study to suggest that the producer should strive to obtain the choapest bulbs to the exclusion of all other considerations, the fact romains that sinco this itom accounts for such a high proportion of production costs any saving which can be mado by succossful bargaining with tho bulb merchant will be likely to pay handsomo dividends.

The socond of the important itoms of production costs is labour. Amongst the producers includod in tris study, the cost of labour accountod for from sevon per cont to 16 por cent of total cost. Although the moro successful producers expended a groater number of l_{i} bour hours per unit number of bulbs than the loss successful producors, there is nothing to sugecst that any ono of thom could not have roducod costs still furthor, and incroased profits, by an even moro economical uso of labour brought about by improved work-performance. An analysis of labour requirements for various operations has indicated that the greatest opportunitios for the improved use of labour lie in the cutting of the flowers and preparing them for market. Some of the main points to be investigated are the techniques of picking, bunching and packing; the position and lay-out of the packing sheds; and the relative proportions of male and fomale labour. A few seconds saved on each bunch of flowers which leavos the nursery can result in a vory substantial improvement in tho overall profitability of tho bulb-forcing onterpriso.

The third of tho main items of production costs is accounted for by the cost of hoating the forcing house.

One of the producers in this study incurred heating costs amounting to 24 per cent of total production costs. The cost of heating per unit quantity of bulbs depends upon weather and temperature conditions and hence indirectly upon the time of year when forcing takes place. High heatirig costs may be justified if high returns from the sale of out-oiseason flowers can be counted upon to ropay the additional cost. But this is a matter requiring the most careful consideration. In the present study the most successful producer forcod almost half his crop late in the season without heat. However, the decision regarding the relative proportions of bulbs to be forced with and without heat, is really a soparato issue. Quito apurt from this, cvery endeavour should be made to supply heat most economicsilly to the heated portion of the crop. Some of the points to be considered are the design and efficiency of tho boilor, including mothods of stoking and choice of fuel; the minimising of hoat loss through the proper lagging of pipes and the olimination of draughts in tho forcing house, and the maintenance of proper temperature control to avoid wasteful fluctuations in the supply of heat.

To sum up, the study has indicated that success in tulip-forcing depends on careful attention to costs, particularly for bulbs, labour and heating, and the improvement of returns through catering for the requirements of a carefully selected market.

COPARISOC OF THE FORCING OF NARCISSI WITH THE FORCING OF TULIPS.

Three of the producers participating in this study forced both narcissi and tulips. The results. from these nurseries, therefore, provide some basis for a fow very tentative conclusions about differences in the economic opportunitios afforded by the se two crops.

The most significant fact seems to be that whereas with the two largescale specialist bulb forcers tulips were more succossful than narcissi, vith the non-specialist, forcing bulbs on a modest scale on a "mixod nursery", the reverse was tho case. This result gives somo support to the hypothesis that forced narcissi are likoly to bo more successful than forced tulips on mursorics whore bulb-forcing is a subsidiary onterprise which is carried on with rclatively non-spocialist tochnical. skill and managomont. The producor who trosts forced norcissi as a wintor catch-crop is in a position to keop his coists of production down to a rolatively low level becausc ho can use rosources of labour and housing-space which are surplus to the requiroments of his other crops, and which it might otherwise bo difficult to use profitably. Howover, it irportant that such a producor should obtain a high yicld of flowers per unit quantity of bulbs forced, because in viow of the conditions under which he is producing he cannot expect to market a very high quality product. His success doponds on the salo of a large quantity of modorate quality flowers chesply produced.

There seem to be grod grounds for suggesting that forced tulips will not lend thomselvos so well to treatment as an unspocialisod subsidiary enterprise. On the production side the level of tochnical injli is probably higher than that required for narcissi. Tr order to be anocossful the producer has to attain to the somowhat dioncilt trin ousoctives of keeping his costs low and keoping tho quality ot his fowex thish. The tulip market seens to be very sensitive to dirforencos an the iope, variety and quality of flowers. The succesoful poodroor hes to pey particulsr attontion to all these points. Fonce thewo aro good gatends for suggesting that tulip-forcing is likely to be most successini in the hands of the specialist.

