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ABSTRACT

The policy debate on global warming has raised the prospect

of large taxes on Greenhouse pollutants leading to a very

substantial rise in the price of energy. Models in which

output is produced according to a technology in which capital

(K), labour (L) and energy (E) are substitutable run into the

difficulty of how to allow parsimoniously for the higher likely

substitutability between K and E than between L and E.

Nesting all three factors in a single CES aggregator function is

unsatisfactory because of the constancy over pairs of factors

of partial substitution elasticities. This paper is a variation on

the CES theme. It presents a new composite three-input

production function (based on CES and Leontief components)

which allows the partial substitution elasticities between

capital and labour, capital and energy, and between labour

and energy, to differ but to remain individually constant.

JEL classification D2, El.
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THE NESTED BINARY CES COMPOSITE PRODUCTION FUNCTION:

CRTS with different (but constant) pair-wise elasticities
of substitution among three factors

by

Alan A. POWELL and Maureen T. RIMMER.

Monash University

1. Motivation

The policy debate on global warming has raised the prospect of large
taxes on Greenhouse pollutants (see, e.g., Oliveira Martins et al., 1993). This
is turn could lead to a very substantial rise in the price of energy. The
experience of the OPEC oil price shocks suggests that large energy taxes could
result in significant substitution away from energy and into capital (and to a
lesser extent, labour).

The default setting of models in the ORANI (Dixon, Parmenter, Sutton and
Vincent, 1982) family precludes substitution between primary factors and
materials (where the latter includes energy and fuels). A simple approach
towards rectifying this situation is to treat energy as an honorary primary
factor so that it is included among the inputs in a CES aggregator function
near the top of the production tree.

Of course this is second best. The first best (but usually infeasible)
alternative is to model the production process in great detail (along the lines of
activity analysis or the multisectoral CGE approximation thereto). Putting
energy as an aggregate input near the top of the production structure obviates
the need for the massive amounts of data required by the detailed approach.
There is a serious disadvantage with putting energy along with capital and
labour into a CES aggregator, though: all three pair-wise substitution elas-
ticities have the same value, a happenstance which can have bizarre conse-
quences. For example, with output held fixed, a large rise in the price of
energy will lead to equal percentage rises in the demands for labour and
capital. In jocular discourse this is referred to as the tread-mill effect of
greenhouse abatement.

The problem addressed in this paper is how to nest capital (K), labour (L)
and energy (E) within a composite or nested production structure in a way
which allows the Allen-Uzawa partial substitution elasticities vKL, vicE and vLE
to be chosen at will by the person calibrating the model. It is well known that
a production function in which these three elasticities differ cannot be a CES
function; i.e., one in which each of the three elasticities is globally constant.
Whilst several functional forms allow differing vii values, many of them

• Without implicating him in any remaining errors, we wish to thank Keith R McLaren
for critically reading a draft.
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2 Alan A. Powell and Maureen T. Rirnrner

probably also involve unacceptably large variations in the vij in response to
changing relative prices. This is an unwelcome degree of flexibility since
neither prior beliefs nor econometric evidence give much guidance on what
sorts of variations are acceptable.

In this paper we build on two well known and simple tools, the two-factor
CES production function and the Leontief function to obtain a composite
(nested) production function with the following properties:

(i) constant returns to scale prevail;

(ii) the three Allen-Uzawa partial substitution elasticities can differ in
virtually any desired way;

(iii) even under a doubling or more in the price of energy relative to
capital and labour, the variation in each of the partial substitution
elasticities is very slight under a suitable calibration of the model.
Under another calibration of the model, these three elasticities can be kept
absolutely constant, even when relative prices change by a large multiple.

Below we assume that labour is a composite obtained by a CRESH (Hanoch,
1971) or other aggregation over occupations, and that the (K, L, E} aggregator
function under focus is nested within a Leontief function (of which the other
principal arguments are likely to be material inputs).

2. Structure of the Proposed Composite Production Function

The nested production function proposed here is built from binary CES

functions defined on the three factors K (capital), L (labour) and E (energy).

Notionally each factor is split up into two parts; each of these then combines
with one of the other two factors in a CES nest, with a total of three such nests
being formed. This is depicted in Figure 1, while notation is given in Table 1.

Lower-case Roman letters indicate the proportional changes in the variables

denoted by the corresponding upper-case letters. Thus, for example, 14 sig-
nifies the proportional change in Kr,, where the latter symbol indicates the

amount of capital K assigned to the KL nest in Figure 1.

Formally the production function for the output Y of the (K, L, E) factor
nest is:

where

a, a al
Y = {Cm: CKE' 'LE

ij = Aii 81j) Ji 1
1/p-

(2.1)

(2.2)

( ij = KL, KE, LE; i = K, L; j = L, E; i#j) .



I.

3The Nested Binary CES Composite Production Function

`.‘

Leontief y

\\\\V\N

I.

Figure 1 Triad of binary CES functions. KL, KE and LE combine in fixed

proportions to give the output Y of the IK, L, E} factor nest. The entities

shown above against a shaded background are unobservable. Putting i =

LE in (2.2) above indicates the quantity of total labour usage L which is

assigned to the production of the notional aggregate LE (see Figure 1.)

The CES functions (2.2) can be written schematically:

for example,

ij = CESii (aii 1, aii j); (i#j) (2.3)

= CESLE (aLE L, aEL E) • (2.4)
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3. First-Order Conditions for Cost Minimization

in Differential and in Levels Form

First-order conditions for cost-minimization are now written down; levels
solutions are numbered in formats like (3.1L), while equation numbers like
(3.1D) are the corresponding linearized (differential, or proportional change)
forms - note that the latter refer only to the calibration in which the
(ij = KL, KE, LE) are absolutely constant. With all three factors commanding
positive prices, a necessary condition for cost minimization is that fixed
proportions among KE, KL and LE be maintained; that is, that

L 1 •= CKE 
.... 

CLE

y = (Id) = (17 = (1) ;

(3.1L)

(3.1D)

where y and (ke), etc., are the pEoportional changes in Y and KE, etc. It is also
necessary that KE, KL and LE be produced at minimum cost; hence the
following CES factor demand functions apply:

kid = (ki + anSLK (PL PK)

röKL  PL 1 PKLCYKLKid = hrld-Alj 8KL ( 1 - 8IJ (1 - 5K0 PK

1K = (kl + YFJJSFJJ (PK -

LK = [E/AKL] [(1 - 8KI)
r(1_ 8K0 PK 1 PICIPICL

ISICL 8„1,

kE = (ke ) + aKESEK (PE - PK)

8KE
KE = [ITE/AKE1 8KE + (1- 51rE)I. 

r 
 (1 - EKE)

PE 1 
PKEaKE

PK

eK = (ke + aKESKE (PK - PE)

EK = [ITE/AKE (1 - oKE) + OKE[ oKE "r)E

( 1 5110 PK PICEGICE

lE= (le + aLESEL (PE PO 

1/PKE

(3.2D)

(3.2L)

(3.3D)

(3.3L)

(3.4D)

(3.4L)

(3.5D)

(3.5L)

(3.6D)
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r(1 — 801,0 PE 1 PLE°LELE = [/ALE] - 81,0 8LEL 
C. PL

eL = (le aLESLE (PL - PE)

[EL = EgiALE1 (1 _Ado kEr(1_81.0 PLEGLE

L 5LE PE

(3.6L)

(3.7D)

(3. 7L)

The levels demands for K, L and E are found by addition of the relevant
components above:

K = KL + KE ; (3.8L)

E = EK + EL . (3.10L)

The differential forms of (3.8L)—(3.10L) are:

aKLIKL + aKEkE = k , (3.8D)

(3.9D)

(3.10D)

aLK1K aLE1E = 1 ,

aEKeK aELeL =

Using (3.1) and the above identities, we eliminate some of the unobservables
(namely, kid, kE, 1K, 1E, eK, and ei), and obtain the differential forms of the
factor demand functions:

k = aKLaKLSLK (PL - PR) aKEaKESEK (PE - PK) ;

1= y aLKaKLSKL (PR - PI) aLEGLESEL (PE - PI) ;

e = aEKaKESKE (PR - PE + aELGLESLE (PL - PE) •

(3.11D)

(3.12D)

(3.13D)

The corresponding factor demand functions in the levels are obtained by
making the appropriate substitutions from (3.2L)—(3.7L) into (3.8L)—(3.10L).

Allen-Uzawa pair-wise substitution elasticities can be defined at two
different levels: between each pair of factors making up the binary CES nests
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Table 1

Notation

LK KL:

EKEEKE:

EL a- LE :

:

LK:

KE:
EK :

EL:

LE:
K :

L :

E :

Pj (j=K,L,E) :

ocii (i,j=K,L,E; i#j) :

A-- •

•• :513

Si :

cu-•

gir A /cii :

a notional CES aggregate of capital and labour

a notional CES aggregate of capital and energy

a notional CES aggregate of labour and energy

the amount of capital assigned to the KL nest

the amount of labour assigned to the KL nest

the amount of capital assigned to the ICE nest

the amount of energy assigned to the KE nest

the amount of energy assigned to the LE nest

the amount of labour assigned to the LE nest

the total use of capital — K KL+ KE

the total use of labour — L a LK + LE

the total use of energy — E EK + EL

the price of factor j

the proportion of factor i assigned to nest ij; for

example, cc= Kid /K is the proportion of capital

assigned to nest KL. Note that these are

variables, not parameters. Also note: r.j#iaija 1.

the (micro) elasticity of substitution between i and
j in the production of ij ( ij = KL, KE, LE)

multiplicative parameter of the CES production
function for ij

distribution parameter for factor i in the CES

production function for ij ( ij = KL, KE; LE). Thus

(11J- Aij[8 + , - 8 ) ji

where pij= - 1

( ij = KL, KE, LE; i = K, L; j = L, E; i j)

the overall (macro) elasticity of substitution of
factor i for factor j (i, j = K, L, E)

the share of factor i in the value of ij :

SLIc= PLLIci (1301(÷ PKKL
= PLaLKL (PLaLKL PKaKLIC) -77

Outer-nest input-output coefficient for ij

Leontief-CES combined parameter (ij = KL, KE, LE)
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KL, KE and LE; and among the three aggregate factors K, L and E. Assuming
price taking behaviour (as we have done above in deriving the factor demands),
the partial substitution elasticities among the aggregate factors may be defined
as:

ln(i) 
virainp./ {PLL+PKK+PEEf

fixed Y, Pi, i j

= K, L, E; j)

From (3.11D)—(3.13D) it follows that the connection between the two sorts of
partial substitution elasticities is:

aLKaiciPKL (PL L + KK + PE E)/ (PLaLKL + PKam,K) ,

vKa= aEKaKEGKE (PL L + KK + PE E)/ (PEa EK— - E + PKaKE K) - - —

vLE= aELaLEGLE (PL L + KK + PE E)/ (PEaELE + PLaLEL) ,

(3.15)

(3.16)

(3.17)

where the a.- (ij = KL, KE, LE) are the partial substitution elasticities applying

to the binary nests KL, KE and LE. Note that the allocation shares (auc, aEK

etc.) are variables, rather than parameters.

Equations (3.15)—(3.17) reveal two possibilities for calibration of the
model: either the micro elasticities (the as) can be treated as parameters,
implying variation in the macro elasticities (the vs); alternatively (and this
requires careful interpretation), the macro elasticities can be treated as
parameters, in which case the micro elasticities must be free to vary.

The choice between these alternatives depends on how one regards the
binary nests. If they are taken literally as the preferred technological specifi-
cation, then the constancy of the as will be chosen. This option will guarantee
global regularity.

If one regards the available empirical evidence as being conveniently
summarized by the vs, however, one will not feel squeamish about allowing the
endogenization of the as as variables while keeping the vs constant at their
initial values. In this case the binary nests are regarded as a convenient
device for preserving the regularity of the production system (which they will
do, provided no a is driven to a negative value); that is, the story about the
latent variables KL, LE, etc., has only an 'as if interpretation.

1 With each micro production function (those for KL, KE and LE) having just two
inputs, each cross substitution elasticity must be non-negative to ensure regularity. A
more general statement of the required curvature conditions is given in Allen (1938),
p.505.
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Can a cyji be driven to a negative value by a valid choice of the exogenous
variables (Y, PK, PL and FE)? We will show that provided all the vs have been
set to positive numbers, the answer is "No!". We will do this by reductio ad
absurdum:

Suppose some particular au were negative. Even so, the Leontief
production functions (2.3) and the CES demand functions (3.2L)-(3.7L)
guarantee the positivity of KL, KE , LE, KL, KE, LK, LE, EK and EL (and
hence of every au), as well as of aggregate K, L and E. Now solve the
relevant equation among (3.15)-(3.17) for the aii that was assumed to
be negative. Provided the corresponding vii has been set to a positive
value, the solution so obtained is positive, contradicting the initial
supposition. Hence with every vii positive, no au can be driven to a
negative value by any set of relative prices, and the global regularity of
the underlying micro system is preserved.

4. Illustrative Hypothetical Partial Equilibrium Simulation Experiment

A simulation experiment was conducted with the aim of illustrating the
stability of the pair-wise macro substitution elasticities for the nested
production function described above, and to show that the model can be
calibrated in such a way that variations in the factor mix under a large
increase in the price of energy seem plausible.

The experiment was conducted over 252 sub-intervals with the price of
energy doubling over the entire interval. This allows results to be plotted as a
function of the ratio of the price of energy to the prices of the other factors.

The wage and rental rates PL and PK were set exogenously at one
throughout the simulations. The initial value of the price of energy PE was 1.
The initial values of K, L, E and Y were set at 3, 6, 1 and 10, which would
reflect a stylized economy in which capital accounted for one third of value
added, and in which the cost of energy was around one tenth of total value
added. The initial (arbitrarily selected) values of the macro Allen-Uzawa
substitution elasticities were:

vim = 1.28; vicE = 0.5; vidE 0.1.

The value of v is the default long-run value of capital-labour substituion
elasticities in the ORANI model, while the remaining vs are an educated guess.

The as were set initially at the following arbitrary values:J

an,. 0.75; aKE = 0.25;

0.90 , • a -aLK LE - 0.10;

ccEK = .75; aEL = 0-25 •
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4

The constant substitution elasticities within the binary CES nests in the
base case are determined from (3.15) — (3.17). The resulting values, which are
held fixed throughout the initial simulation, are:

cym, 1.45, aKE = 0.40, GLE 0.34 .

In each sub-interval, factor demands and the values of the ars were calculated
in MS Excel 7 using (3.2L)-(3.7L). The simulation was repeated treating the
macro substitution elasticities (vKL, vKE and vLE) as parameters which were
assigned the values set out above.

Some of the simulation results are shown in Figures 2a-2f and in Table
2. Results are given under both choices of parameters:

• micro partial substitution elasticities, cr, saKE and LE'cT  held constant;

• macro partial substitution elasticities, vKL, vKE and VLE, held constant;

To enable the charts to be read more easily, each is repeated three times: once
when the maximum energy price rise envisaged is a doubling; once when it is a
quintupling; and once when a hundred-fold increase is contemplated.

Relative to a non-nested 3-factor CES function, the production function
proposed in this paper is relatively heavily endowed with parameters. Whereas
the 3-factor CES function has four parameters (one substitution elasticity, one
parameter to convert from units of input into units of output, and two
independent distribution parameters), the function (2.1)-(2.2) has nine
parameters, as follows:

Pararneter Number

= Aij /Cii 3
3

511 3

total 9

The pii s are related to the aij s in the usual CES way (pc 1/-- 1); the 8ijs
and data on prices can be used to work out the ocij s (or vice-versa). To do this
we note2 that the share of factor i in the value of ij implied by cost
minimization is

p-• 6- , „ + ) , - p • - 6-5.. p. p.ij 6j

2 See, e.g., Dixon et a/. (1980), p. 298.

(4.1)

(i,j = K, L, E; i#j) .
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anation in the macro partial substitution elasticities under a doublin
in the relative price of energy with the micro substitution

elasticities held constan

macro partial substitution elasticities
1

A

rice o energy relative a capital and labour multipl

Figure 2a

ariation in the micro partial substitution elasticities within the three CES nests o
ithe binary CES composite production function under a doubling n the

relative price of energy with the macro substitution elasticities held constant

micro partial substitution elasticities

apital-labour

1.51.4  1.6 1.7 1.8 1.9

Price of energy relative to capital and labour (multiple)

Figure 2b



macro partial substitution elasticities

The Nested Binary CES Composite Production Function 11

Variation in,the:iniacrop4ttilsti0.0jtOpp lpl4gplt!pplOp(0.,:lfjV4614.incrpase':
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elA8tidtiOSIfieidconstan

Capital-energy

energy relative to capital and labour multiple
•

Figure 2c

Variation in the micro partial substitution elasticities within the three CES nests of
the binary CES composite production function under a five-fold increase in the
relative price of energy with the macro substitution elasticities held constant

micro partial substitution elasticities

Capital-labour

2.5 3 3.5 4 4.5
Price of energy relative to capital and labour multiple

Figure 2d
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anation:in the macro partial substitution elasticities under a one-hundred-fold increase
n the relative price of phOgy: ,with. the micro substitution

elasticities  held .d.o.r.Istan
macro partial substitution elasticities

.0

ct.

Price of energy •relative o capital and labour multiple

Figure 2e

Variation in the micro partial substitution elasticities within the three CES nests o
the binary CES composite production function under a one-hundred -fold increase in

relative price of energy with the macro substitution elasticities held constant
micro partial substitution elasticities

0.4

11 21 31 41 51 61 71 81 91 101

Price of energy relative to capital and labour multiple

Figure 2f



The Nested Binary CES Composite Production Function 13

Table 2

Simulation Results

micro substitution elasticities (aii)
held constant

macro substitution elasticities
-(v) held constantu 

PE as a multple of PL or PK

1 2 5 100 2 5 100

L -6- 6.05 6.15 7.01

K --3-- 3.12 3.36 5.33

E T 0.88 0.77 0.63

Y TO 10 10 10

v KL 172-8 1.33 1.49 4.66

v KE 75. 0.42 0.33 0.26

vLE 71 0.09 0.08 0.08

GKL 1-.4-5 1715 1-.45 1745

GKE 0710 00 0-2-0 07-40

cTLE 654 05-4 075.4 0-.-34

aLK 7-6 0.89 0.88 0.77

aLE 71 0.11 0.12 0.23

aKL .75 0.72 0.67 0.42

aKE .25 0.28 0.33 0.58

aEL .-2-5 0.24 0.24 0.22

aEK .77-5 0.76 0.76 0.78

PE T 2 5 100

6.03 6.09 6.21

3.19 3.62 9.24

0.83 0.64 0.42

10 10 10

138 1:2-8 1.7 -E3

75 :-g- -:g

:T 7i tr.
1.45 1.45 1.45

0.40 0.40 0.40

0.34 0.34 0.34

0.89 0.87 0.75

0.11 0.13 0.25

0.72 0.66 0.34

0.28 0.34 0.66

0.22 0.18 0.36

0.78 0.82 0.64

2 5 100

Note: - indicates initial setting. The prices of energy and the rental rate on
capital are held fixed at unity.
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By definition, however, we also have that

Pi aii i
S
U
•• = { Pi aii i + Pj aiiil '

(4.2)

(i,j = K, L, E; i#j)

L.
Hence at any given set of factor prices we can infer the values of the Si.is from
the as or vice-versa. For example, if the as are given (as in the starting

.1 .1
point for the hypothetical simulation above), we would start by computing
We would then calculate the -°us as

piviip _si.1
5ii = { i. + (T. 

L 
sii

Ji 
(4.3)

The 1.t.iis can then be calculated using the given as and the bench-mark data
on Y, X, L, E, PK, PLand PE. If values are 'known' either for the aiis or for the
-vs at the bench-mark data setting, then equations (3.15) through (3.17) can 
be used to recover the unknown substitution elasticities u(vs or as as the
case may be).

In'our initial calibration above, we started with as s and v•-s •9 equally, we3 u 
could have started with ans 5-d ••u Gus.

5. Concluding Remarks

The salient lack of flexibility of the multi-factor CES production function
is the constancy over pairs of factors of its partial substitution elasticities.
Above we have shown how CES and Leontief functions can be used to build a
composite 3-factor production function in which all three Allen-Uzawa partial
substitution elasticities can differ from one another while individually
remaining constant. The composite production function is globally regular,
and is a suitable vehicle to encapsulate prior intuition and/or empirical
evidence on the ease of substitution that applies between the members of
different pairs of factors. The above exercise was motivated by the need to
allow higher substitutability between energy and capital than between labour
and energy, but the tool is generic.
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