
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


r 10[Atlhojetq
Impact Research Centred Eleventh Floor, Menzies Building

LMonash University, Wellington Road, CLAYTON
Vic. 3168 AUSTRALIA

Telephone: (03)5655112 (from overseas: 61 3 565 5112)
Telex: AA 32691 Telegrams: MonashUni
Fax: (03) 565 5486 (from overseas: 61 3 565 5486)
Electronic mail: impacl@vaxc.cc.monash.edu.au

Paper presented to the Third General Equilibrium Modeling Conference
Wilfred Laurier University, WATERLOO, Ontario 24-25 October 1992

AN IMPLICITLY DIRECTLY ADDITIVE DEMAND SYSTEM:

ESTIMATES FOR AUSTRALIA

by

Maureen T. RIMMER

Industry Commission

and

Monash University

Alan A. POWELL

Monash University

LIBRARY

JUN 

A
GIAN NI FOUNDATION OF
GRICULTURAL ECONOMICS 

 1 1

Preliminary Working Paper No. OP-73 October 1992

ISSN 1031 9034 ISBN 0 642 10201 5

The Impact Project is a cooperative venture between the Australian Federal Government and Monash University, La Trobe
University, and the Australian National University. By researching the structure of the Australian economy the Project is building a
policy information system to assist others to carry out independent analysis. The Project is convened by the Industry Commission on
behalf of the participating Commonwealth agencies (the Industry Commission, the Australian Bureau of Agricultural and Resource
Economics, the Bureau of Industry Economics, the Department of Employment, Education and Training, the Department of
Immigration, Local Government and Ethnic Affairs, and the Department of the Arts, Sport, the Environment and Territories).

The views expressed herein do not necessarily represent those of any government agency or government.



ABSTRACT

The problem of endowing large, applied general equilibrium

models with numerical values for parameters is. formidable. For

example, a complete set of own- and cross-price elasticities of

demand for the ORANI model involves 2282 = 60 K items. Invoking

the minimal assumptions that demand is generated by utility maxi-

mization reduces the load to about 26 K — obviously still a number

much too large for unrestrained econometric estimation.

To obtain demand systems estimates for a dozen or so generic

commodities at a top level of aggregation (categories like 'food',

'clothing and footwear', ...), typically Johansen's (1960) lead has

been followed, and directly additive preferences imposed upon the

underlying utility function. With the move beyond one-step

linearized solutions of the ORANI model, the functional form of the

demand system adopted becomes an issue. The most celebrated of

the additive-preference demand systems, Stone's (1954) linear

expenditure system (LES), has one drawback for empirical work;

namely, the constancy of marginal budget shares (MBSs) — a liability

shared with the Rotterdam system (Barten, 1964, 1968; Theil,

1965, 1967). To get around this, Theil and Clements (1987) used

Holbrook Working's (1943) Engel specification in conjunction with

additive preferences; unfortunately both Working's formulation and

Deaton and Muellbauer's (1980) AIDS have the problem that, under

large changes in real incomes, budget shares can stray outside the

[0,1] interval. It was such behaviour that led Cooper and McLaren

(1987, 1988, 1991, forthcoming 1992) to invent MAIDS, a system

with better regularity properties. MAIDS, however, is not globally

compatible with any additive preference system.

In this paper we specify, and estimate, at the six-commodity

level, an implicitly directly additive-preference demand system

which allows MBSs to vary as a function of total real expenditure and

which is globally regular throughout that part of the the price-

expenditure space in which the consumer is at least affluent enough

to meet subsistence requirements.
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AN IMPLICITLY DIRECTLY ADDITIVE DEMAND SYSTEM:

ESTIMATES FOR AUSTRALIA*

by

Maureen T. RIMmER and Alan A. POwELL

Industry Commission Monash Universityand
Monash University

1. Introduction

The problem of endowing large applied general equilibrium models with

numerical values for parameters is nowhere more difficult than in the consumption

side of the models. In the ORANI model of the Australian economyl, for instance,

there are 228 commodities recognized (114 input-output commodities, each with a
locally made and an overseas variant). A complete set of own- and cross-price

elasticities of demand hence involves 2282 60 K items. Invoking the minimal

assumption that demand is generated by maximization of a strictly quasi-corve

utility function reduces the information load to about 26 K (i.e., 227 + (T) ).

Obviously such a large number of elasticities could not be estimated econometrically

from available data without the use of prior restrictions on functional form.

The traditional approach in applied GE work involves starting at some higher
level of aggregation — in the case of ORANI, with about a dozen generic
commodities. Each of these is defined as a simple aggregate of a subset of the 114
input-output commodities. The latter in turn are seen as Armington (CES)
aggregates of the domestically sourced and the foreign commodity of the same
name. The elasticities of substitution between the domestic and the foreign variant
of each input-output commodity are then estimated, where feasible, from time-

series data (see, e.g., Alaouze (1977), Reinert and Shiells (1991), Reinert and
Roland-Holst (forthcoming 1992)).

To obtain demand systems estimates for the dozen or so generic commodities

(categories like 'food', 'clothing and footwear', ...), typically Johansen's (1960) lead

has been followed, and directly additive preferences imposed upon the underlying
utility function (e.g., Tulpule and Powell (1978)). The principal advantages of the
additive preference postulate are two:

(1) it greatly reduces the number of parameters that have to be estimated.

Whereas the 12 commodity system estimated under minimal assumptions

involves (122) = 66 substitution parameters, additive preferences when

fitted in the levels need involve no more than 12 (and only one, the so-

called 'Frisch parameter' if fitted in the differences);

(2) at the high level of aggregation at which it is applied, additive preferences
fits time-series data well, with little evidence of gross misspecification.

Disaggregation from the 12 or so commodities at the top level to the 100 or so
input-output commodities presents serious challenges. Where econometric work

The authors would like to thank Russel Cooper, Eric Ghysels, Jill Harrison, Brett Inder and
Keith McLaren for helpful suggestions.

1 Dixon, Parmenter, Sutton and Vincent (1982).
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can be done at a finer level of disaggregation, however, it is relatively straightforward
to incorporate new elasticities at the input-output level of disaggregation (Clements
and Smith, 1983) provided that the utility function is nested so as to leave
undisturbed its upper levels.2

With the move beyond one-step linearized solutions of the ORANI model, the
functional form of the demand system adopted becomes an issue, even within the
additive preference framework (at which we continue to work at the top level of
aggregation).3 The most celebrated of the additive-preference demand systems,
Stone's (1954) linear expenditure system (LES), has one drawback for empirical
work; namely, the constancy of marginal budget shares (MBSs)4 — a liability shared
with the Rotterdam system (Barten, 1964, 1968; Then, 1965. 1967). Holbrook
Working (1943) provided a parsimonious yet empirically successful way of allowing
marginal budget shares to respond to income levels; his is the Engel specification
adopted within Deaton and Muellbauer's (1980) almost ideal demand system (AIDS).
Theil and Clements (1987) used Working's specification in conjunction with additive
preferences; unfortunately from the current perspective, their system is formulated
and implemented only in the differentials. And in any event, Working's formulation
(and AIDS) has the problem that, under large changes in real incomes, budget
shares5 can stray outside the [0,1] interval. It was such irregular behaviour that led
Cooper and McLaren (1987, 1988, 1991, 1992a) to modify the AIDS system to
become MAIDS, a system with regular properties over a much wider subset of the
price-expenditure space. MAIDS, however, is not globally compatible with any
additive preference system.

What we hope to achieve in this paper is to specify, and to estimate, at the six-
commodity level, an additive-preference demand system that is globally regular
throughout that part of the the price-expenditure space in which the consumer is at
least affluent enough to meet subsistence requirements and which allows MBSs to
vary as a function of total real expenditure. Such an estimated system will be
directly comparable (via its Frisch 'parameter') to other additive-preference systems
currently in use in applied general equilibrium work, but will be more flexible in its
treatment of Engel effects than the LES or Rotterdam models, and have better
regularity properties than AIDS or other versions of Working's model. Our starting
point is Hanoch (1975).

In Section 2 a special case of Hanoch's directly, but implicitly, additive-
preference demand system is set out. In Section 3 the model is endowed with a
stochastic dimension, and a strategy for its estimation is developed. Sections 4 and
5 respectively contain a brief description of the data, and a full account of the
estimation results. A concluding perspective is offered in Section 6.

2 Failing the availability of disaggregated estimates, it is common practice to use a globally
additive preference specification, even though it is known that this is a serious
misspecification of the demand structure at the detailed level.

3 When working with small displacements of an additive-preference demand system, only the
local values of the demand elasticities are relevant. To determine a complete set of the latter
it is only necessary to know the local values of the expenditure elasticities, and of the Frisch
'parameter'.

4 Let xi stand for the quantity of i demanded, pi for its price, and M for total nominal
expenditure. By the Jul marginal budget share we mean piaxi/aM.

5 By budget share or average budget share (in the notation of the previous-footnote) we mean
Pixi/M.
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2. AIDADS —A Generalization of LES

2.1 The new expenditure system

The demand system now derived will be referred to as AIDADS (an implicitly

directly additive demand system). Hanoch (1975) defines implicit direct additivity

by the utility function:

(2.1.1) u) = 1,

where (x1, x2, ... , xn) is the consumption bundle, u is the level of utility, and the Ui

are twice-differentiable monotonic functions satisfying appropriate concavity

conditions. Using some intuition stemming from Cooper and McLaren's MAIDS and

from the LES, we choose the U1 as follows:

[ai + G(u)] , xi - yi, /  xi ?ix
(2.1.2) Ui [1 + G(u)] 

 ln   - in )
A eu A eu

(i = 1, 2, ..., n)

where G(u) is a positive, monotonic, twice-differentiable function, and the lower-

case Greek letters are parameters, with

(2.1.3) 0 5_ ai, 131 5_ 1; a1 = 1 = pi

i=1 i=1

Hanoch (1975) notes that the first-order conditions for minimizing the cost M of

obtaining a given level of utility u are (2.1.1) and:

(2. 1 .4) ?aU1/.x1 = pi. = 1, 2, n)

where A, is the Lagrange multiplier on (2.1.1) and (p p2, , pn) is the set of

commodity prices. In the case of our choice of the Ui, (2.1.4) becomes:

Pi •
(xi - yi) 11 + G(u))

(2.1.5)

Hence

(2.1.6) 1 - Yi)

Using the budget identity

E Pi xi

where M is total money expenditure (endogenous in this problem), by adding (2.1.6)

across i and using (2.1.3), we obtain:

(2.1.7)

= [cci + [3i G(u)) / [1 + G(u)] .

(i = 1, 2, ..., n)

= 1, 2, ..., n)

(2.1.8)

whence

X -1 (M - P' = 1.
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(2.1.9) = (M - .

where in (2.1.8) and (2.1.9) p'y is shorthand for I pi Yj . Back-substituting from
(2.1.9) into (2.1.6), after rearrangement we obtain

(2.1.10a) pi (xi - yi) =$1 (M - WY) . (i =1, 2, ..., n)

where Oi was defined implicitly by (2.1.2) as

[ai +131 G(u)]
(2.1.10b) 

= [1 + G(u) • 
(1 = 1, 2, ...,

For later use we note that Oi may be interpreted as the share Wi of discretionary
expenditure on commodity i in total discretionary expenditure (M - p' y).

In the form (2.1.10b) we see the direct connection between the LES and
AIDADS: setting every al equal to the corresponding pi causes Oi to collapse to just
, which reduces (2.1.10a. b) to the LES. Note that the Ois add over i to unity.

An alternative derivation of (2.1.10a) keeps total expenditure exogenous, not
only in the final expenditure system, but also in the problem faced by the optimizing
agent. Instead of minimizing M subject to a given u with preferences constrained by
(2.1.1), maximize u subject to (2.1.1) and (2.1.7), by first constructing the
Lagrangean:

(2.1.11) [ 

n

L = u + A Eui (c,, u) _ 1
1=1

+ x(M- P'x)

The first-order conditions are (2.1.1), (2.1.7) and

Du
(2.1.12) +A-

i al
a a- = X Pi •

j=1

By taking the total differential of (2.1.1) it is apparent that6

au aui E auk(2.1.13)
aXi aXi

k=1

(1 = 1, 2, ..., n)

(i = 1, 2, ..., n)

that is, that the term multiplied by A in (2.1.12) vanishes identically. Substituting
from (2.1.13) into (2.1.12) and using (2.1.2), we obtain

(2.1.14a)

(2.1. 14b)

aui
axi

k.,1 auk
— X Pi Zdai

k=1

Ot (Xi —?!) •
Clearing fractions and summing over i we obtain:

6 See (2.4.3) and (2.4.4) below.

(i = 1, 2, ..., n)
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auk] -1
(2.1.15) X (M -12(

k=i

Back substituting from (2.1.15) into (2.1.14a), we recover (2.1.10a).

2.2 Substitution properties

Hanoch (1975, p.400) notes that the substitution elasticities associated with
implicit direct additivity are:

(2.2.1)

where

(2.2.2) a1(x1' u) =

and

(2.2.3) Wk

ai(xi, u) ai(xj, u)

ak ( xk, u) Wk
k=1

- DUi/ axi

xi a2 (axi axi )

xkpk / M,

(i#J, ,j = 1, 2,

= (x1- y1)/X1

(1 =1, 2, n)

(k =1, 2,

where in (2.2.3) we have assumed that the consumer behaves optimally (i.e., that
(2.1.4) holds. The Ws are to be interpreted as budget shares. Substituting from
(2.2.3) and (2.2.2) into (2.2.1), we obtain:

(2.2.4) a ij
(Xj , (M - pt y)

xi xj
(i#J, ,j = 1, 2, n)

These take exactly the same form as the partial substitution elasticities in the
matching LES. If the ys are all positive (as is insisted upon in some interpretations of

additive preferences), the aii in LES and in AIDADS tend to unity as income grows

very large.

At this point it is clear that AIDADS has exactly similar substitution properties
to LES, but that the former has richer Engel possibilities. These come at the
expense of an additional (n-1) parameters; namely, the (n-1) independent values of

ai•

2.3 Engel properties — I

Not much further progress can be made without specifying a functional form
for G. Here we keep the LES interpretation of y as the subsistence bundle, and
require as well that

(2.3.1a) lim u(x)

(2.3.1b) lim u(x)
x-47-F

(2.3.1c) lim G(u)
--)00

and
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(2.3.1d) urn G(u) = 0.
U --) -00

(Above x is the bundle (xi, x2, ..., xi)), and the notation x --> 00 implies that every
xi grows without limit, while x y+ implies that each xi converges to its
corresponding Pyi from above.) G's monotonicity together with the bounds imposed
on it above ensure that Oi behaves logistically, remaining always in the (oar pi]
interval. It can be shown that if ai < pi, the logistic behaviour of Oi implies that
the lowest value of i's marginal budget share is ai, occurring when total expenditure
is just enough to cover purchase of the subsistence bundle Py; the upper asymptote of
MBSi as expenditure grows without limit is pi. If, on the other hand, ai > pi, the
largest value of i's marginal budget share is oci, occurring at the subsistence
expenditure level; its asymptote as expenditure grows indefinitely large and lowest
value is pi.

The Engel elasticities in AIDADS are:

M [agyaM1 M (M - p'
(2.3.2) Ei =  

Pi Yi 13' 7) Pi Yi Pf

0:0i M [a/au] [a/M1 M (M - p' y)

+ $1 (M - 13' + 11)1 (M - p'

(i = 1, 2, ..., n)

Further progress cannot be made without specifying a functional form for G. The
simplest G(*) satisfying (2.3.1c&d) is:

(2.3.3)

In this case

(2.3.4)

G(u)

avau (pi- eu /(1 + eu) . (i .1, 2, ..., n)

We must defer deriving an expression for au/aM until after we have developed the
differential form of AIDADS .

2.4 Differential form of AIDADS

The log differential of (2.1.10a) is
d(xi - yi)

(2.4.1) = d ln + d ln (M - y) - d ln pi .
Oci Yi)

The first right-hand term above is:

(2.4.2a)

(2.4.2b)

.d in
Elie'  _  eu 
÷ eu 1 + eu 

du

13i -
e'-''f

ai + eu(ai + (31) + Elj 
e2u

(i = 1, 2, ..., n)

/ du , (i = 1, 2, ..., n)

which tends towards zero as ai [31 as expected, since in the LES Oi 13 is a
constant.
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To complete the development of (2.4.1) we need to solve for du in terms of

parameters and observables. We start by noting, from (2.1.1), that

n n
v aUji E athi

(2.4.3) dxi = 
_- -

du.
'4.4 aXi -Z
i=1 U i=1 Xi

Setting all dxj = 0 (J i), and taking the quotient of the remaining differentials, we
obtain the ith marginal utility7

aui
EaUk(2.4.4) _ (i = 1, 2, ..., n)

axd

29J#1 k=1 
ài

The total differential of the (implicit) direct utility function u is

(2.4.5a) du 
= E dxi

j =1 i#j

j=1

v ‘11,auk] dx j
axi

k=1
44 au(2.4.5b)

(2.4.5c)

From (2.1.2),

(2.4.6)

E dxj (say) .

j=1

4i / (xi - Pyi) ;

while from (2.1.2) and (2.3.3),

aui {xi— yi d4)i
(2.4.7a) = - + ln

A eu J du
and

(2.4.7b)
d4)i

(Di - 0i) eu (1+eu) .

= 1, 2, ..., n)

(i = 1, 2, ..., n)

= 1, 2, n)

Notice the logistic behaviour of 4)i displayed in (2.4.7b) — the speed at which 4)i
approaches its asymptote pi approximates proportionality to its distance from that
target. Substituting (2.4.7b) into (2.4.7a), we obtain

(2.4.7c) = - + ln 
1A e' 

(13i - 4)i) eu / (1 + eu).
aui xi— Yi 

(i = 1, 2, ..., n)

Keeping in mind that the Pis and (1)is each add over i to unity, the sum over i of
(2.4.7c) is

7 The first time we introduce a partial derivative (and on some other occasions for emphasis),
we list explicitly the other variables being held constant.



8 Maureen T. Rimmer and Alan A. Powell

(2.4.8)
pu

-1 + ( ) 
+ 

(pi - in (xi - yi).
1 eu

i=1

Hence the coefficients C in (2.4.5c) are:

(2.4.9a)
al _ c axi - =

(i = 1, 2, ..., n)

-1

- oil 
eu 

bri- V 1+ Cu 24(Pi-00 1nki- yi) - 11} •[ 

n,-,

Using (2.1.10a), we are able to write Cj as:

(2.4.9b) Cj = (vi _
) 1 +

n
- P

i=1

i= 1

0=1, 2, ..., n).

2.5 Engel properties — II

We are now in a position to continue development of an expression for the
Engel elasticities. To do so we envisage a change (dx 1, dx2, dxn) in quantities
brought about by a change dM in total spending power at fixed prices. Then

(2.5.1)

The resultant change in utility is

axi
dxi am.] 

prices 

dM .

n

(2.5.2) du = E l•- Iaxii• '1-a I dM •
xi, i*j mi prices

Taking the quotient of the differentials, we obtain

(2.5.3)
ai
ami

prices
E c •amJ=1

(1= 1, 2, ..., n)

Note from (2.1.1a) that the response of the ith MBS to a change in total spending is

a axi
Pi 

prices
(2.5.4a)

-SR] (Pi xi) =
prices

aoi
(2.5.4b) = (M - PP Y) 'FDA' Oi • (i = 1, 2, n)

The derivative aoi/am by the chain rule is

(2.5.5)
aoi
am] 

prices

ai
aui ami

prices prices

dch aLi

du DM j 
prices 

•
(i = 1, 2, n)
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Substituting from (2.5.3) and (2.3.4) into (2.5.5), we obtain:

(131-01) eu i a2Ci

(2.5.6) = a =1, 2, ..., n)
DM (1 + eu) J uM •

j=i

Substituting from (2.5.6) into (2.5.4b) and denoting the ith MBS (namely, pi axi/aM)

by Nip we obtain

(2.5.7) = (NI — 13' 
el

1 + eu 
E w 4-

ij=1  •

From (2.4.9b) we see that the ratio Ci/pi is independent of j:

(2.5.8) Ci/13.1 - (M -p'
- 1 eu 

1 + eu
1=1

(Pi-Oi) in (xi- - 1
Ti

(1=1,2.....n)

0=1, 2, ..., n)

Substituting from (2.5.8) into (2.5.7), and keeping in mind that the wis add to unity,

we obtain:

n(oi _ 4) i) el[  eu  
2a (pi - in (xi -7j) - 11 1xiii = Oi - 1 + eu 1 + eu 

0j) (i=1, 2, ..., n)

j=1
1

= Oi - 2 13j in xi 11.1) - 1 - 
(1=1. 2, .... n)

(43(i1-+aei9) e2u ) (1 +eueu) (i - ai) ( - 
j=1

-1
(1 eu)2

- (pi - ad E (13i _ ai) ln (xi - yi) - '  (i= 1 , 2, ..., n)

j = 1 
eu

(2.5.9) =- (p1- a' (1=1, 2, ..., n)

where

(2.5.10) Ed. E(- ai) in (xi - yi) - (1 + ue92 
1[. 1=1

Rearranging (2.1.10a), the ordinary budget shares WI are:

Pi Yi M - p'y
(2.5.11) W1 

,k  

- IM

The Engel elasticities ei are found as the ratios of the MBSs, , to Wi:

(2.5.12) ei = lwi •

(1=1, 2, ..., n)

(1=1, 2, n)

where the numerator of (2.5.12) is defined by (2.5.9). The limiting values of the
Engel elasticities can be discerned by considering the limiting values of Z-F, and of Wi.
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As real income grows without limit (i.e., as nominal income grows without limit at
fixed prices)8

(2.5.13a) Jim = 0;
-)00

(2. 5. 13b) lim

hence it is obvious that as real expenditure grows without limit, all Engel elasticities
tend toward unity. As we shall see, however, these asymptotes are not necessarily
approached monotonically. The other limiting case of interest is when for all i,
and al coincide. In that case, yi and Oi also coincide, and (2.5.12) gives the LES
Engel elasticities.

Figure 2.1 shows the qualitative behaviour of budget shares as real expenditure
grows. The different panels allow comparison of AIDADS with homothetic demand
systems (such as Cobb-Douglas and the CES direct utility function), with Working's
Model/AIDS, and with the LES.

3. Strategy for Estimation9

3.1 Estimating equation I — non-stochastic part

As noted above,

(3.1.1) sth = Wi = pi(xi - yi)/(M - p!y) (i = 1, 2, ...,

is the share of total discretionary spending represented by discretionary spending
on commodity i. Hence from (2.4.7b),

a
(3.1.2) dwi d-T:i du = (pi — o) eu / (1+eu) du.

dth
(i = 1, 2, ..., n)

8 In taking the limit of E it is helpful to replace (x1- yi) in (2.15.12) by 4)1(M-p'y)/p1 (see (2.1.10a)).
9 The estimation by maximum likelihood of an implicit function was explored by McLaren

(1991). The development here follows McLaren's suggestion.
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PiYi

Budget Share

Working's model/AIDS: a necessity

Underlying utility function is homothetic (e.g.. Cobb-Douglas or CES)

Log Real Total Expenditure an M)

Figure 2.1(a) Engel curves which show globally constant unit elasticity

or which are irregular in certain regions (indicated by shading)

Budget Share

Wi

0 In Y
(subsistence bundle)

Linear Expenditure System
Engel curve for a necessity

PIi >13i P 'Y

= Pi +{ Pi7i 13i Ps }/M

„

P - Pi Y - • -  

Log Real Total Expenditure an M) •

Figure 2.1(b) Engel Curve in the Linear Expenditure System for a necessity

The irregular region of the LES is indicated by shading.
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1111 I13'1

Budget Share

wi
Linear Expenditure System
Engel curve for a luxury

WI = Pi + { - Pi p' y }/M

Log Real Total Expenditure (In M)

,,,,,,,,,, • 
,,,,,,,,,,,,,,,,,,,,,,,,

{ Pi; Pi P' }/M

Figure 2.1(c) Engel Curve in the Linear Expenditure System for a luxury
The irregular region of the LES is indicated by shading.

Budget Share

WI

0.4

0.3

0.2

0.1

Possible Engel Curves in
AIDADS for necessities

Nrri
IN

Tr'

ln p' y

i

Log Real Total Expenditure an M)

Figure 2.1(d) These Engel Curves for the AIDADS system were generated
by simulations using the framework shown in Figure 3.1.
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1

0.8

0.6

0.4

0.2

Another Possible Engel Curve
in AIDADS for a necessity.

poi

1.011111111Minglaillgisnimilimilunfin

in Log Real Total Expenditure an M)

Figure 2.1(e) These Engel Curves for the AIDADS system were generated
by simulations using the framework shown in Figure 3.1.

Budget Share
WI

0.6

0.5

0.4

0.3

0.2

0.1

In IY

Possible Engel Curve
In AIDADS for a luxury attleittliatiii!'111

Log Real Total Expenditure an M)

Figure 2.1(j) This Engel Curve for the AIDADS system was generated
by simulations using the framework shown in Figure 3.1.
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Equation (3.1.1) may be expressed as:

(3.1.3) = W1 = Pi (xi - y1)/(M - pty) ,

Pi xi M Pi Yi

M (M - Pt?) (M - PtY)
Pi Yi 

ANT
1 (M - PtY) (M - P'Y)

Taking the total differential of 2.5.11), we obtainil

1\4 (3.1.4) dwi = ( - Pt?)
Pi 

dch + yi d m _ pty

Pi Yi 

(4)i M - Pt?

Using (2.4.7b), and writing

(3.1.5) v = M - Pt?

we can rewrite (3.1.4) as:

_ ((pi - 0i) eu
(3.1.6) dWi =  

(1+eu)

PiYi
du +

dIM m-PtY)

/M-Ptd ln + Y)
M

(i = 1, 2, ..., n)

(i = 1, 2, ..., n)

( 
Pi  (M -11?

- 
) ln M

4)1+ M Pt? 
= 1, 2, ...,

Equation (3.1.6) is a set of n linear equations in the vector w (dWi, dW2,

dWn)'. Because the shares WI add to unity, only (n-1) of these equations are

Independent. The value of wn is obtained as
n-1

(3.1.7) wn = - Ew
j=1

An operational version of (3.1.7) is obtained by replacing d(*) by A(•t), and
d(*)/(*) by A ln (*), where the difference operator is:

(3.1.8) A(t) = (*t+1

By , nit and nit we shall mean respectively:

(3.1.12)

, wit

4t

nit

Ct

= • W - W •it+1 it '

=

, Pit+1 
= ln (p1 

Pi 
1

t I:

(  
= ln

Mt - Ptt ?

(1=1, 2, ..., n; t= 1, 2, ..., T-1)

(t= 1, 2, ..., T-1)

(1=1, 2, ..., n; t= 1, 2, ..., T-1)

(t=1, 2, ..., T-1)
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(3.1.13) = ln NH
rt+1

(t= 1, 2, ..., T-1)

(3.1.14) o) = ut.4 t + pt x + vt t - 15mt mt (t=1, 2, ..., T-1)
t 151) t 15 ,

(n-1)xi (n-1)xl lx1 (n-1)xi lx1 (n-1)x1x1 (n-1)xi lxi

(3.1.15) ith element of *tit = 
Mt 

(Mt - P't ?) ((pi - 0i) eut  )

(1+eut) 
(i = 1, 2, ..., n-1)

(3.1.16) ith element of pt = 

Mt 

(Pit Yi ) . (i = 1, 2, ..., n-1)

mt

Then an operational version of (3.1.6) is:

in which

(3.1.17) ith element of 'avt = 
(Mt - P't I')

Mt it :

(3.1.18) ith element of 15ut = 
Mt - P't 1 (G3i - 0i) eut  )

Mt (1+eut)

(13it y
Pit ?it  )(Mt — P't 1

+ Nit — 
P't 

Mt ((3.1.19) ith element of.t5mt

where t subscripts have been made explicit to emphasize that the coefficients in
(3.1.14) are time-dependent. (3.1.14) thus represents the tth observation on (n-1)
non-stochastic equations explaining the expected values of differences of the budget
shares of (n-1) of the goods.

3.2 Estimating equation H— stochastics and error correctionlo

Equation (3.1.14) is about as far as economic theorizing will take us. To

complete our specification we add an error-correction term and append zero-mean

disturbances eit. If et is the vector (elt, 2 et. m), the system becomes:

10 In the treatment above we did not need to distinguish between the realized values of the
endogenous variables (the xits and transformations thereof) and corresponding values
computed from given values orthe exogenous variables (p. M) and of the parameters (a,[3, y and
u1) via (2.1.10a). From hereon the latter values of endogenous variables will be referred to as
their equilibrium values. When stochastic errors and an error correction term are intro-
duced, we have to make further distinctions. We shall append the symbol A to the xits to
indicate their conditional expected equilibrium values; i.e., the values.these demands would
take on if the parameters were set at the values indicated and if simultaneously the
stochastic terms assumed the value zero. For brevity, in the text these conditional expected
values also are referred to simply as equilibrium values. Where the xits appear without a A,
this indicates the realized values of these variables — that is, the data on them. Further,
when equations involving an error correction mechanism are fitted, the fitted values of the
endogenous variables are the sum of two components: (i) the expected equilibrium values
conditional on the estimated values of the parameters; and (ii) the error correction. We refer
to the values so obtained simply as fitted values of endogenous variables.
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(3.2.1) cot = 15ut 15pt nt I5vt Ct int P (Wt-i Wt-i ) e t
(r1-1)xl (n-1)xl lx1 (n-1)xn nxl (n-1)xlx1 (n-1)xl lx1 lx1 (n-1)xl (t=2, 3, ..., T-1)

0
where p is a scalar error correction coefficient, while W_1 'and Wt_1 respectively are
the (n-1)-vectors of equilibrium and realized values of Wgt_i).11 We specify the eit to
follow the joint normal distribution with contemporaneous. variance-covariance
matrix v2SIt and with zero own and cross lag covariances. Notice that premultiplying
(3.2.1) by a row vector containing (n-1) negative units gives the equation for share n.

An alternative to (3.2.1) is to fit the shares equations in the levels. Given our
ability via the differential version of the system developed above in Section 2 to
generate the ut series for any given parameter set from data on exogenous variables,
it is straightforward to implement (2.1.10a). After a slight rearrangement, plus the
addition of time subscripts, an error correction term and stochastic errors vit , this
equation can be written12:

(3.2.2)

that is,

(PitYi 
Wit Olt + Mt 

-(1 - 13) {Wit-1- Wit-1) + v it ;

0

or Wit = Wit (1- p) {Wit-i Wit-i ) vit
0

(3.2.3) Wit-Wit = vit •(1- PI) Wit-1- Wit-1 1 (1= 1, 2, ..., n-1)

For later discussion we note, in passing that a value of p = 0 would seem to make the
discrepancies { it_i- Wit_i } between actual and equilibrium shares a random
walk.

Following Deaton (1975), Selvanathan (1991) has recommended (and
demonstrated the efficacy of) placing sensible restrictions on the variance-
covariance matrix of the disturbances in demand systems. In the case of a system
whose left-hand variables are changes AWt in shares Wt, the recommended form of
the contemporaneous variance-covariance matrix has typical element Wi(81j - W ),
where a superscript bar indicates a sample average, and Su is Kronecker's delta.13
We adopt the following covariance structure:

11 The equilibrium value W: 1 is computed as (pi,(t_nxiA

12 The coefficient - (1 - p) on the error correction in (3.2.2) has been chosen so that the first
difference of that equation yields (3.2.1)

13 Late in our research plan it occurred to us that there is no particular reason for averaging the
shares over the sample when the model is fitted in the first differences. In that case, Wit is
predetermined from the viewpoint of the difference W1-W1 _1, and (3.2.2) could be replaced
with -

E(etej = (Wt -Wt Wst) = v2 Ot (t=2, 3, T-1)

where Wt is the (n- 1) vector of budget shares at t. We plan to use this covariance structure in
future work.
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(3.2.2) E(etet) = v2 (W - w Wr ) = v2 a
lx1 (n-1)x(n-1) lx1 (n-1)x(n-1)

(t=2, 3, ..., T-1)

where W = (W1, W2, ..., Wn_i) is the (n-1)-vector of mean values of the Wit and W

is the corresponding diagonal matrix.14 For future reference we note that has a

simple analytic inverse; namely15,16

(3.2.3) fl 
-1 

=

1 1 1 1
 +

wn wn wn

••••

1 1 1 1
+ •••

Wn W2 Wn Wn

••• ••• ••• •••

1

Wn

•••

1 1
+

Wn- 1 %

3.3 Computation of ML Estimator

Equation (3.2.1) is a full-rank system of (T-2) realizations on (n-1) share

equations. To estimate it we treat the levels values of the shares Wit as

predetermined, and the changes WI t+1 - Wit in budget shares as codetermined. The

time-dependent coefficients in (3.2.1) are functions of the unobservable variable ut.
We define an additional parameter u1 as the level of utility prevailing in period 1 of

the sample. Conditional on the parameter set, we compute the value of ut as:

t- 1

(3.3.1) ut = ui E Au, (t2,3.....

•1
where

(3.3.2) LUr

j=1

(T=1, 2, ..., T-1)

A

in which A is defined by (3.1.8), the xj, are the utility-maximizing quantities

(conditional on the values of the parameters and on the exogenous variables M, and

pr), and:

14 Given absence of autocorrelation, moving from the levels to the differences of the shares

should just multiply the error variance by 2: this constant is absorbed within v2.

15 The lemma underlying result (3.2.3) is as follows: Let B be an nxn non-singular matrix, and

let r and A both be rxn matrices, with r n. Further, let the rxr matrix (1 + AB-in be non-
singular. Then (B rA)-1 = B-1.._ B-lro AB-irr iAB-1.

In the present case B is a diagonal matrix, while (I + A13-1T) is a scalar.

16 If the errors v,t in (3.2.2) are classically well behaved, then the covariance structure for the

errors ettin (3.2.1) has the same correlation pattern as (3.2.3), but a higher variance.
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(3.3.3) Cyr
right-hand side of (2.4.9b) with A
and 'V' subscript appended to x1.

Equation (3.3.1) cannot be implemented directly, since the Cit
functions of ut — the latter via Op since

A

Xjt = Yj + P't ;
It

(see (2.1.10b)) is

(3.3.4)

in which

(3.3.5) Oft =

[9 +13j G(ut))

[1 + G(u,)

(T=1, 2, ..., T-1)

0=1,2, ..., n-i)
A

and the x it are

(T=1, 2, ..., T-1)

0=1,2, ..., n-i)

(T=1, 2, ..., T-1)

0=1,2, ..., n-1)

We can, however, evaluate (3.3.2), as follows. Taking differences of (3.3.4) (and
neglecting higher order terms), for t = 1 we obtain:

a
(3.3.6) —L I

AxjA ') ai Au + (A.1 - A11) 0j1(ul
t1

in which 
=

(3.3.7) Ajt (Mt - Pjt •

Next we use (2.4.7b) to evaluate the partial derivative in (3.3.6) as:

(3.3.8) 
=

t=i

[13i -4)j (ui)] eul

( 1 + e u 1 ) •

(1, )
0=1,2...n)

0= 1, 2, ..., n)

Substituting from (3.3.8) into (3.3.6), and thence into (3.3.2) for t = 1, we obtain:

13, ),
(3.3.9) Atli = Cji(ui)( 

[ -4 (u1)]

j=1 
(1+e 
, 

1) A11Au1f(Al2 Aj1)0ji(u1)).-

Since from (2.4.9b) C11(u1) A11 is independent of j, and since the terms

[13j Win eul

(1+eul)

sum over j to zero (the f3is and 4)j5 both being shares), the coefficient of Aui on the
right-hand side of (3.3.9)1s zero. Hence (3.3.9) simplifies to:

(3.3.10) = raC11(u1) (Al2 - Aji) 41j(u)

j=1

We then compute u2 as (u1 + Atli), evaluate the new 0i2s via (3.3.5), and

compute Au2; we cycle recursively in this way until full time series for ut and the 4)jts
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are built up (i=1, 2.....n: t= 1, 2, ..., T-1).17 This process is illustrated by the flow

chart given in Figure 3.1.

With this much operational knowledge of how to construct the variables and
coefficients of (3.1.14) conditional on the parameters of the system, we are able to
"write the associated log likelihood function as:

(3.3.14) L = constant.' - (T-1) ln I v2 SI I -

(T-1)(n-1)
= constaq -

2
in v2 -

•

T-1

E e't
t=2

n-1 n-1 T-1 8

2v21 E E eit1-11
1=1 j= 1 t=2 .-CT;r1

2v2
fri et

•

where oij again is Kronecker's delta:

The log likelihood function can be concentrated (i.e., pre-maximized) with

respect to v2 by differentiating (3.3.14) with respect to that parameter, setting the

resulting equation to zero, and solving for v2:

n-1 n-1 T-1 5
1 

(3.3.15) v2 = (n-1)(T-1) E E
1= 1 j= 1 t=2 W ik.Tn

Substituting from (3.3.15) into (3.3.14), we obtain the concentrated log likelihood
function:

(3.3.16) L* =
n-1 n-1 T-1

1 
5

1(T-1)(n-1) E E eit{j1 
} 

constant3 - *2

i=i j= 1 t=2 W1 Wn

The above function was maximized over [a, [3, y, p, ui} using. GAUSS 386 version 2.2
on a 80486 IBM compatible personal computer.

A

17 Notice that with the 4)jts now available, the xits can now be directly computed; this provides a
check on the approximation (3.3.6).
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Set values of parameters

Set u

Figure 3.1: Flow chart for data/parameter transformations
in computation of the ML estimates
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4. The Data

Equations (3.2.1) and (3.2.2) were estimated from annual time series data for
the thirty-five year period spanning fiscal years 1954-55 through 1988-89. Most of
. these data were obtained directly from two ABS sources in Canberra.

Current and constant price data from 1960-61 onwards were supplied directly
by the joint publishing office of the following two ABS publications: Australian
National Accounts: National Income and Expenditure (Cat. No. 5206.0), and
Historical Series of Estimates of National Income and Expenditure, Australia (Cat.
No. 5207.0). These series spanned the six commodity group disaggregation listed in
Table 4.1.

Table 4.1

The Six Commodity Level of Disaggregation of

Final Consumption Expenditure

(1) Food

(2) Tobacco, Cigarettes, Alcoholic drinks

(3) Clothing, Footwear

(4) Household durables

(5) Rent

(6) All other expenditure

Constant-price data were based on four different constant price base years.
Overlapping subintervals allowed linking of the data to a unique base year. In
addition, some of the earlier constant price data were provided as quarterly data.

Current and constant-price data were not available on request for the early
years of the study period. To cover the early years, data for the period 1953-54
though 1967-68 were obtained from the 1969 publications of Cat. No. 5206.0 (for
current-price data) and Cat. No. 5207.0 (for constant-price data). The details
regarding constant-price data are given in Table 4.2.

Table 4.2

Details of Available Constant-Price Data

Period Base Year Type of Data

1953-54 to 1967-68 1959-60 Annual

1959-60 to 1974-75 1966-67 Quarterly

1965-66 to 1979-80 1974-75 Quarterly

1974-75 to 1988-89 1984-85 Annual
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The total expenditure variable in this model, Mt has been interpreted as
nominal expenditure per head. Population data were obtained directly on request to
Canberra from the Demographic Section of the ABS. These data were used to
convert constant-price expenditure data into per capita form. There was a break in
the population series at 1971 due to the introduction of an estimate of under-
enumeration from the 1971 Census. This under-enumeration adjustment is
included in all population figures from this time onwards. Both the original and the
under-enumeration compensated figures are available for the transition year and
these measures provide a fixed proportional adjustment for under-enumeration in
earlier years.

The quarterly data were first aggregated to annual data and then the data were
linked following the principles outlined in Adams, Chung and Powell (1988) to
obtain annual real and nominal expenditure and price indices (obtained from strictly
matched series) based on a constant-price base year 1984-85.

5. Results

We initially fitted AIDADS in the first differences with an error correction
term (i.e., we fitted (3.2.1)); however, we present the results here in the sequence:

• fit in the levels without error correction18 (Table 5.1 and Figure 5.1)

• fit in the levels with error correction (Table 5.2 and Figures 5.2 and 5.3)

• fit in the differences with error correction (Table 5.3 and Figures 5.4
and 5.5)

Had the results from our first estimation been fully satisfactory, it is unlikely that we
would have carried out the others.

5.1 Estimation in the levels

Turning to Table 5.1, we notice that corner solutions were obtained for the
ai value for Rent, the [31 values for Alcohol and tobacco, and for Clothing and
footwear, and effectively also for the yi values for commodities other than Food and
Clothing and footwear. 19 Quite contrary to the findings of Theil and Clements
(1987) and Adams, Chung and Powell (1988), these estimates show a virtually
constant marginal budget share for Food over the sample.20 They suggest that
Food's share at subsistence income levels would be about 70 per cent (viz., p (p'y)
0.7) with Clothing and footwear taking the remaining 30 per cent), declining to

about seven percent (i.e., 100 p 1) at indefinitely high levels of affluence. Over the
thirty-five year sample, the actual variation was from about 25 to about 15 per cent.
The asymptotic budget share for Clothing and footwear as real expenditure grows
without limit (133) , at zero, clearly is not sensible. Notice though that the decline
over the sample from about 14 to about 6 percent of the budget is tracked relatively
well (Figure 5.1).

18 I.e., equation (3.2.2) with p constrained to unity.
19 We have constrained the yis to non-negative values, even though the AIDADS system (like

LES) is interpretable outside this range. This ensures regularity for M> piy, albeit it at the
cost of some flexibility.

20 Since Adams, Chung and Powell use an almost identical data base, the difference is due to
model specification and/or estimation method, not data.
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Inspection of Figure 5.1 highlights some specification problems with the
model. Not unexpectedly, durables perform very poorly, with the massive changes
in liquidity, in inflationary expectations, and in relative prices of the Whitlam years
showing up very clearly. This is one problem which we will not be able to correct
within the confines of our static model.

Overall, the most outstanding features of Table 5.1 are the high (and
increasing) marginal budget share for Rent, and the pathological serial properties of
the residuals (as shown in the Durbin-Watson statistics).

Does adding an error correction term along the lines of equation (3.2.2) help?
The levels fit with error correction is documented in Table 5.2 and Figure 5.2.
From the latter it will be seen that in descriptive terms the fit is excellent. The
very low estimated value of p, namely 0.053, suggests a unit root problem.
Nevertheless, the t statistic on p (namely, 3.3) indicates significant difference from
zero. In any event, both the realized and the equilibrium values of the budget shares
by construction lie within the unit interval, and hence both are I(0). The proximity
of (1- p) to unity may be caused by structural breaks in the data due to (a) the re-
basing of series noted in Table 4.2 and (b) the real wage explosion of 1973-7421.

In Table 5.2 we once again find a high marginal share for Rent which
increases over the sample from 20 to 25 per cent of the budget. The final ceiling is
estimated as 28.2 per cent with very high apparent precision. Relative to Table 1,
several parameters change by substantial margins, but these changes are not
sufficiently large to destroy the overall qualitative pattern. This surmise may be
verified by comparing Figures 5.1 and 5.3, which show the equilibrium values of
budget shares corresponding to the parameter values in Tables 5.1 and 5.2. The
serial properties of the residuals (as shown in the Durbin-Watson statistics) are no
longer severely pathological, though there is still evidence of positive serial
correlation. Cross substitution elasticities are shown for the Table 5.1 parameter
estimates in Table 5.4, and for the Table 5.2 estimates in Table 5.5.

5.2 Estimation in the differences

Because we anticipated positive serial correlation, and because in any event
the implicit nature of the u function drove all of the analytics into differential form,
it was natural for us to start by estimating the model in the first differences. The
results are shown in Table 5.3 and in Figures 5.4 and 5.5.

The results in the differences yield an estimate of the error correction
coefficient p which at 0.048 is not too far away from the Table 5.1 estimate of 0.053.
It is not clear that on average the serial properties of the residuals are better than
those obtained in Table 5.2. The fit to the differences of the shares shown in
Figure 5.4 indicates that the raw data are both noisy and spiky: the fit seems to
pick up the trends, however. The larger spikes (i.e., outlying second differences)
seem to be related to breaks in the basic data series. The parameter estimates,
however, differ considerably from those of Tables 5.1 and 5.2.

Tables 5.1-5.8 and Figures 5.1-5.5follocv. Text resumes on page 34.

21 We are grateful to Eric Ghysels for suggesting the significance of the structural breaks.
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Table 5.1
Maximum Likelihood Estimates of AIDADS fitted in the Levels, Without Error Correction:

Annual Australian Data, 1954-55 through 1988-89

1
Item(a)(1°) Food

ai .085
t ratio 4.63

Pi .077

t ratio 0.44

686.28

t ratio 28.9

Marginal budget shares Wit:

in 1954-55 .078
In 1988-89 .077

Durbin-Watson 0.44
statistic

Commodity i

2
Alcohol
&

Tobacco

3
Clothing
&

Footwear

4
Durables

5
Rent

6
Other

.230 .109 .156 .000 .419
27.8 14.4 22.1 0.00 31.2

.000 .000 .048 .294 .581

0.00 0.00 0.33 21x103 3.27
0.53 252.87 .015 .013 .049

0.68 20.4 0.12 0.11 0.21

.070 .033 .081 .205 .532

.019 .009 .057 .269 .568

0.15 0.41 0.38 0.27 0.29

utility level in 1954-55, u1 = -0.348: utility level in 1988-89, UT = +0.637.

t value for u1 = -5.70.

Table 5.2
Maximum Likelihood Estimates of AIDADS fitted in the Levels, With Error Correction:

Annual Australian Data, 1954-55 through 1988-89

Item(a)(b)

Commodity i
1 2 3 4

Food Alcohol Clothing Durables
& &

Tobacco Footwear

ai
t ratio

Pi
t ratio

0.130 0.096

5.96 5.94
0.005 0.085

0.21 4.82

Yi 660.60 194.75 59.65 0.00
t ratio 375 204 113 1.02

Marginal budget shares Wit:

in 1954-55 0.080 0.044 0.042 0.088 0.199 0.546
in 1988-89 0.076 0.015 0.017 0.086 0.254 0.551

Durbin-Watson
1.56 0.87 1.43 1.15 1.57 1.40

statistic

0.091 0.149

4.92 5.98
0.075 0.000

4.11 0.00

5
Rent

6
Other

0.003 0.531

0.85 17.19
0.282 0.553

109.5 18.42

63.60 0.00
116 1.20

utility level in 1954-55, u1 = -0.264; utility level in 1988-89, UT = +0.624.
t value for ui = -7.65.
error correction coefficient -(1-p) = -0.947; t value for -(1-p) = -59.4.

(a) The units for the yis are 1984-85 Australian dollars worth of the named commodity per
head.

(b) The ais and Pis are constrained to be non-negative and to sum to one. The yis are
constrained to be non-negative.
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Table 5.3
Maximum Likelihood Estimates of AIDADS fitted in the First Differences,

Annual Australian Data, 1954-55 through 1988-89

Item(a)(b)

Commodity i

1
Food

2
Alcohol
&

Tobacco

3
Clothing
&

Footwear

4
Durables

5
Rent

6
Other

ai .599 .310 .051 .000 .001 .038

t ratio 6.53 5.24 0.07 0.10 0.07 0.93

.039 .002 .048 .096 .198 .617

t ratio 0.49 0.02 2.70 1263 127 21.9

'Ii 31.76 0.73 4.20 0.00 494.09 0.21
t ratio 16.7 2.52 6.04 0.03 65.7 1.35

Marginal budget shares wit:

in 1954-55 0.085 0.027 0.049 0.088 0.182 0.569
in 1988-89 0.047 0.006 0.048 0.095 0.196 0.609

Durbin-Watson
statistic

1.87 1.23 1.58 1.17 .65 1.50

utility level in 1955-56, u1 = 0.645: utility level in 1987-88, UT = 1.403; t value for u1 = 3.77.

error correction coefficient p: 0.048; t value for p = 4.90.

(a) The units for the yis are 1984-85 Australian dollars worth of the named commodity
per head.

(b) The ais and fiis are constrained to be non-negative and to sum to one. The yis are
constrained to be non-negative.

Table 5.4
Estimated Substitution Elasticities for A1DADS at Beginning and End
of Sample (from the Levels Estimation without Error Correction)*

i=J
1 2 3 4 5 6

Food Alcohol Clothing Durables Rent Other
& &

tobacco Footwear

au i
beginning

au i
end

1 see last
2 cols

0.524 0.277 0.524 0.524 0.524 -0.82 -2.83

2 0.318 see last
2 cols

0.593 1.124 1.124 1.124 -8.88 -13.00

3 0.117 0.508 see last 2
cols

0.593 0.593 0.593 -2.72 -7.95

4 0.318 1.383 0.508 see last
2 cols

1.125 1.125 -11.01 -11.99

5 0.318 1.383 0.508 1.385 see last
2 cols

1.125 -10.00 -4.73

6 0.318 1.383 0.508 1.385 1.385 see last
2 cols

-1.46 -1.02

*The lower triangle shows values estimated for 1954-55; the upper triangle values
estimated for 1988-89.
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Table 5.5
Estimated Substitution Elasticities for AIDADS at Beginning and End

of Sample (from the Levels Estimation with Error Correction)*

i=J
1 2 3 4 5 6

Food Alcohol Clothing Durables Rent Other
& &

tobacco Footwear

aii
beginning

aii
end

1 see last
2 cols

0.338 0.465 0.542 0.516 0.542 -0.89 -2.94

2 0.198 see last
2 cols

0.643 0.749 0.713 0.749 -5.16 -9.05

3 0.250 0.599 see last
2 cols

0.971 0.925 0.971 -9.23 -16.31

4 0.334 0.801 1.011 see last
2 cols

1.078 1.032 -13.49 -17.65

5 0.308 0.738 0.932 1.245 see last
2 cols

1.078 -8.09 -4.65

6 0.334 0.801 1.011 1.351 1.215 see last
2 cols

-1.15 -0.94

* The lower triangle shows values estimated for 1954-55; the upper triangle
values estimated for 1988-89.

Table 5.6
Estimated Substitution Elasticities for AIDADS at Beginning and End

of Sample (from the First Differences Estimation)*

i=J
1 2 3 4

Food Alcohol Clothing Durables
& &

tobacco Footwear

5
Rent

6
Other

aii
beginning

a11

end

1 see last
2 cols

1.043 1.033 1.045 0.732 1.045 -3.29 -5.79

2

3

1.031

1.004

see last
, 2 cols

1.059 1.071

1.061

0.751

0.744

1.071

1.061

-8.88

-19.59

-16.02

-20.421.045 see last
2 cols

4 1.033 1.075 1.047 see last
2 cols

0.752 1.073 -16.00 -12.83

5 0.688 0.716 0.697 0.718 see last
2 cots

0.752 -3.19 -2.78

6 1.033 1.075 1.047 1.071 0.718 see last
2 co/s

-1.50 -1.06

* The lower triangle shows values estimated for 1954-55; the upper triangle
values estimated for 1988-89.
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Table 5.7
Estimated Engel and Own and Cross-Price

Elasticities for the Mid 1950s

Price which changes, j

.' 1 2 3 4 5 6 Engel
;15 Elasticityo Food Alcohol Clothing Durables Rent Other

0 & & Cl
o Tobacco Footwearu

1

a

b

c

-0.290

-0.307

-0.822

0.001

-0.013

0.065

-0.024

-0.005

0.029

0.001

0.001

0.038

0.001

-0.001

0.056

0.003

0.007

0.254

0.308

0.317

0.379

2

a

b

c

-0.103

-0.056
0,170

-0.934

-0.587

-0.918

-0.026

0.013

0.036

0.054

0.026

0.047

0.059

0.032

0.081

0.234

0.152

0.312

0.717

0.420

0.271

3

a

b
c

-0.038

-0.079

-0.006

0.024

0.004

0.002

-0.377

-0.734

-0.972

0.020

0.030

0.001

0.021

0.037

0.007

0.086

0.180

-0.060

0.263

0.561

1.029

4

a

b

c

-0.177

-0.246

-0.106

0.037

-0.053

-0.043

-0.063

-0.022

-0.022

-0.969

-0.997

-1.025

0.033

-0.006

-0.143

0.133

0.018

-0.166

1.007

1.306

1.506

5

a

b
c

-0.516

-0.428

-0.070

-0.092

-0.132

-0.029

-0.230

-0.080

-0.014

-0.076

-0.051

-0.017

-1.083

-1.007

-0.761

-0.331

-0.301

-0.110

2.329

1.998

1.002

6

a

b

c

-0.307

-0.261

-0.097

-0.013

-0.059

-0.039

-0.127

-0.027

-0.020

-0.011

-0.001

-0.023

-0.011

-0.012

-0.136

-1.046

-1.006

-1.151

1.515

1.366

1.466

a Based on parameter estimates shown in Table 5.1.
• Based on parameter estimates shown in Table 5.2.
• Based on parameter estimates shown in Table 5.3.
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Table 5.8
Estimated Engel and Own and Cross-Price

Elasticities for the Late 1980s

Price which changes,

0
0

1
Food

2
Alcohol
&

Tobacco

3
Clothing
&

Footwear

4
Durables

5
Rent

6
Other

Engel
Elasticity

ci

a -0.506 0.001 -0.015 0.001 0.003 0.007 0.509

1 b -0.517 -0.011 -0.003 0.002 0.000 0.013 0.515
c -0.875 0.042 0.033 0.052 0.086 0.337 0.326

a 0.039 -0.939 0.021 0.065 0.146 0.399 0.269

2 b 0.021 -0.642 0.021 0.042 0.085 0.257 0.215
c 0.135 -0.942 0.044 0.070 0.138 0.454 0.102

a 0.020 0.032 -0.517 0.034 0.077 0.211 0.142

3 b 0.017 0.020 -0.834 0.049 0.099 0.300 0.348
c -0.002 0.001 -0.989 0.001 -0.065 0.006 1.048

a -0.035 0.026 -0.010 -0.972 0.064 0.174 0.752
4 b -0.083 -0.024 -0.006 -0.997 -0.003 0.017 1.096

c -0.039 -0.014 -0.012 -1.018 -0.120 -0.115 1.318

a -0.160 -0.032 -0.063 -0.035 -1.077 -0.211 1.578
5 b -0.145 -0.053 -0.028 -0.032 -1.030 -0.195 1.483

c -0.027 -0.010 -0.008 -0.012 -0.785 -0.080 0.923

a -0.105 -0.007 -0.040 -0.007 -0.016 -1.043 1.217
6 b -0.090 -0.027 -0.009 -0.001 -0.011 -1.006 1.144

c -0.036 -0.013 -0.011 -0.016 -0.116 -1.106 1.299

a Based on parameter estimates shown in Table 5.1.
Based on parameter estimates shown in Table 5.2.
Based on parameter estimates shown in Table 5.3.
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The error correction term plays only a minor role in the fit of the first
differences: moreover it is only in this term that the levels variable appears (see
equation 3.2.1)). In spite of this, the implied fit for the levels obtained from
estimation in the differences, while not good for three of the commodities, is not
hopeless - see Figure 5.5. As expected, the noisier errors lead to wider sampling
uncertainty about parameter values (compare the t ratios in Tables 5.2 and 5.3).
There is relatively serious disagreement about the logistic parameters ai and Pi
between Tables 5.2 and 5.3. Clearly the fit in the differences is at a disadvantage in
drawing inferences about these asymptotes of the marginal budget shares.
Interestingly, the substantial variation found in Food's marginal budget share by
other difference-based estimation methods is echoed in Table 5.3.

5.3 Price, substitution and Engel elasticities

The substitution elasticities in AIDADS are variables calculated from (2.2.4):
estimated values at the beginning and end of the sample are shown in Tables 5.4 to
5.6. The estimates from the levels fit (Tables 5.4 and 5.5) are in reasonable
agreement: the fit in the differences (Table 5.6) yields much larger substitution
elasticities between Food and the other items. With the exception of Rent (and also
Durables, according to the fit in the differences) substitutability among commodities
registers a moderate increase over the sample (see the last two columns of Tables
5.4 - 5.6).

Own and cross price elasticities of demand, and Engel elasticities for the mid-
1950s and the late 1980s are give in Tables 5.7 and 5.8 respectively. For the Engel
elasticities, the two most striking differences between the fits are for Clothing and
footwear and for Rent. In the mid 1950s the Engel elasticity for Clothing and
footwear based on levels fit without error correction (0.26) was approximately half
that based on the levels fit with error correction (0.56) and this in turn was
approximately half the elasticity based on the first differences fit (1.00). This
pattern was substantially repeated in the late 1980s. For the two levels estimates
this difference was mainly due to differences in the estimates of marginal budget
shares, while for the first differences estimation the difference was mainly
accounted for by the divergence between the estimated and the actual budget shares
with unchanging marginal budget share. For Rent in the mid 1950s the Engel
elasticity is around 2 according to the levels fits but around unity according to the fit
of the first differences. This was primarily due to the poor fit of the first differences
estimated budget share for Rent at the start of the sample period.

Unlike the linear expenditure system, in which the relative size of income and
substitution effects causes cross price elasticities to be negative, the stronger
income effects in AIDADS lead to several positive cross price elasticities (gross
substitutability rather gross complementarity).

6. Concluding Remarks

Our results demonstrate that AIDADS can be estimated with a 486 personal
computer using GAUSS386. Given the extreme nonlinearities involved (especially
via the variable u, which lacks a closed-form representation), this is encouraging.
We should also note, however, that searches of the likelihood surface are by no
means automatic, and require a large professional input. The tendency for what at
first looks like a promising search to suddenly crash probably indicates that the
likelihood surface has sharp ridges and deep valleys. It follows that the search
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algorithm needs very fine tuning. This cannot really be done without writing
subroutines for analytic (rather than just numerical) evaluation of derivatives. The
additional effort involved in this step has so far been beyond us.

Implicit direct additivity, we have seen, allows very much richer Engel
.behaviour than is possible in the linear expenditure system. Relative to AIDS and
other specifications which follow Working (1943), AIDADS offers applied GE
modellers the security that shares will not wander outside the unit interval when
the model experiences very large shocks. The implicit functional form of the direct
utility function presents no difficulties for the users of GEMPACK (see, e.g., Pearson
(1991)) since the computational algorithm used for solving the model works from a
representation in the differentials, and rules for updating. These components have
been provided in this paper, as well as estimated parameters for broad commodity
groups.
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