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Abstract: In this paper we describe and clarify the definitions and the usage of the simple and logarithmic returns for financial assets like
stocks or portfolios. It can be proven that the distributions of the simple and logarithmic returns are really close to each other. Because of
this fact we investigate the question whether the calculated financial risk depends on the use of simple or log returns. To show the effect of the
return-type on the calculations, we consider and compare the riskiness order of stocks and portfolios. For our purposes, in the empirical study
we use seven Hungarian daily stock prices and for the risk calculation we focus on the following risk measures: standard deviation, semivari-
ance, Value at Risk and Expected Shortfall. The results clearly show that the riskiness order can depend on the use of the return type (i.e.
log or simple return). Generally, often — due to missing data or the nature of the analysis — one has to use approximations. We also examine
the effect of these approximations on the riskiness order of stocks and of portfolios. We found differences in the riskiness order using exact
or approximated values. Therefore, we believe, if this is possible, exact values instead of approximated ones should be used for calculations.
Additionally, it is important that one uses the same type of return within one study and one has to be aware of the possible instabilities when
comparing return results.

Keywords: simple return, logarithmic return, riskiness order, stock, portfolio (JEL. Code: C18)

INTRODUCTION

In the financial area of today an important question is: how
one defines and measures the risk of financial assets such as
stocks and portfolios. Furthermore, it is not enough only to
measure risks they also need to be compared to help us to
take decisions on different financial questions. Because of
these comparability reasons one uses instead of the prices
the returns of an asset.

In this paper we will be dealing with the simple and the
logarithmic returns. It is self-evident and natural that these
two returns are different from each other. For example Hud-
son considers this relationship by comparing means and con-
cludes that the mean of the logarithmic returns is less than
the mean of the simple return (computed on the same set of
returns) (Hudson, 2010). We will discuss the possible cor-
relations and differences between the two returns from an
other point of view. For our purposes it is important to un-
derstand how the choice of the return-type effects the riski-
ness order of the considered set of assets. For example, do
we consider a stock respectively a portfolio equally risky
(compare to the others) using simple or logarithmic returns
to calculate the risk. To answer this question we will do an
empirical study.
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The objective of this paper is to describe and to clarify the
definitions and the usage of the simple and logarithmic re-
turns. In the first part of the theoretical background we will
state the definitions of the one- and multi-period simple and
log return and we will describe the relationship between
them. These definitions will be extended to portfolios in
the second part of the theoretical background. The second
part of the study is the empirical part. First, we would like
to confirm in practice - via using Hungarian stock data —
mathematical formulas, equations and results presented in
the theoretical part. Second, we will answer to our main
question, i.e. whether using simple or logarithmic return
could have an effect on our decision.

RETURNS, THE THEORETICAL
BACKGROUND

In this theoretical part of the paper we summarize the im-
portant definitions, expressions connected with simple and
logarithmic returns and we clarify and establish relations
between the two notions. Definitions of the following chap-
ter are based on Tsay (Tsay, 2005) and Calafiore (Calafiore,
2014).
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Asset Return

First, we will define the simple and logarithmic return of an
asset. In addition we will show the most important equations
and expressions connected with the topic.

a. Simple Return

The Oxford dictionary defines the return as a profit on an
investment over a period of time, expressed as a proportion
of the original investment. In the next paragraphs we express
returns in a more mathematical framework.

In the case of asset returns let us consider a time horizon
[0,T] . Furthermore £ be the price of an asset at time () and
PT the price of an asset at time 7. If there is no cash flow in
this [0.7] time interval, we speak of the one-period simple
net return and we introduce the notation Ry [1]. So the one-
period simple net return of an asset can be defined by

PPP

Ronlll==2"=%

The corresponding one-period simple gross return of an as-
set is given in terms of the simple return:

P
GrR[*Z,T] [1]=1+ R[O - [1]=-L

—1. (1)

(2)

Later on if we speak of the simple return we think of the
one-period simple net return.

For the multi-period case, let us divide the interval [0,7]
into ,, pair wise disjoint subintervals: let % =0 be the ("
time point, Z, =T be the last time point and let #, be the time
points in-between, such that Z._, <%, i=1,...,n. According to
our definition we can calculate on these subintervals the one-
period simple gross return:

P
S — N _ Z‘i 3 ”
GrR[ ] [1] =1+ R[t,-fl il [1] =3 and thus the “return
liny
on the whole [0,7] interval must be the product of the gross
returns of the subintervals. This return is called the n-period
simple gross return:

v
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(3)

We would like to add that since %, = 0 and 7, =T’ the n-period
simple gross return equals the one-period simple gross re-
turn:

~

o

G ] == T2 = G 1],

(4)

S
(=1

Analogously to the one-period case, we define the n-period simple
net return by using the n-period gross return and subtracting one:
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’ =P;—G”R[or][ n).

P
Rjyn[n]=2-1. (5)

With Equation ( 3 ') and ( 5 ) at hand one can rewrite the n-
period simple gross returns by:

P

GrR[or[ ]_P _1+R[S ][ ]_HPti :

fo =l Ty

(6)

b. Logarithmic Return/Continuously Compounded
Return

To understand the logarithmic return, simply the log return,
let us divide the interval [0,7] into # equidistant intervals.
In this paragraph we use the same notation as it was intro-
duced for the multi-period simple return. Assume now, that
on every [ R ] subinterval the return R is the same, more-
over that it is the 7 th part of some one-period return on

R[*O,T] [1]

n

[O,T], denoted by Rﬁ,;] [1], ie. rR:= . In this case,

Equation ( 3 ) can be written as follows:
R[]
n [0.7]
1+R) =|1+———
1))=(+) [ . ](7)

Since 7, and 7, are the Oth and the last time points respec-
tively, Equation ( 7 ) can be written as follows:

GrRS 1 [n] = H(1+R[f y

1 n-I|
N _ I I f, _
GI"R _PO PT =— ( 8 )

£ Py

and therefore using Equation ( 7 ) and Equation ( 8 ) it holds
that

T s R[*O,T] [1]
P, n

(9)

Let us make the length of the [#,_,.7, ] subintervals smaller and
smaller. This means that the number of equidistant subinter-
vals of [0,7] must grow, »n— e . Hence we have to compute
limits:

R 1Y
lim 22 = lim 1+—[°’“H ,
n—oo F)O n—oo n

(10)

and therefore it follows by the definition of the exponential
function that

(11)

E _ eRfo,r][l].

P,

0
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Since we are interested in returns, we apply the logarithm:

P *
In (?ZJ =Ry [1].

The return in Equation ( 12 ) is called the one-period loga-
rithmic return of an asset. So, we define the one-period log
return as the logarithm of the one-period simple gross return
and we use the notation R[ﬁ;] [1]:

RE[1]= m(%) In1+ &S, [1])

(12)

(13)

Similarly to the simple return’s case, one defines the n-
period logarithmic return:
P P, "
L —
Rior[n]= ln(P PR ] ZIn( ]—g :

We can see that in this case the n-period log return is the sum of
the » one-period log returns. And this is one of the reasons why
one uses the log return rather than the simple return: adding
numbers close to zero is not a problem, but multiplying numbers
close to zero can cause arithmetic overflow. In addition it is
easier to derive the time series properties of sums than of prod-
ucts (Danielsson, 2011). Analogously to the simple return’s case
since 7, and 7, are the Oth and the last time points respectively:

R[f),r] [1] = R[f),r] [”’]

We would like to add, that more generally on every interval one
can calculate the return. In this study we will use daily asset
prices and thus daily returns. So, the considered time interval
will always be one day. Therefore, the one-period simple and
logarithmic return can be written as follows:

P

(14)

(15)

R’ =R} 1,][1]—});1 -1 (16)
and

L
R/ =R, ,[1] :ln(P”] : (17)

Later in this study we will use Equation ( 16 ) and Equation ( 17 )
for the calculations and we will speak of the return at time point
¢ . Note that one can easily see the relation between the simple
and log return:

RS =e" —1 (18)
and
R =In(1+R}). (19)
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It can be deduced - using an approximation of the loga-
rithm that In (1 + X) = X, if X 1is near to zero - that if the
simple return is near to zero it is in addition very compa-
rable to the log return (proof follows just by substitution of
Xx with the simple return):

P) P
RE[1]=tn| <2y o
[0 P P

Portfolio Return

JNLifRS [1]=0. (20)

In this section we will focus on how to calculate the simple
and the logarithmic return of a portfolio. We use the fol-
lowing notation:
n : the number of assets in the portfolio
: refers to the assets in the portfolio, i =1,.

S the amount of money invested in the portfoho at time 7
S : the amount of money invested in asset / at time 7
Pi, the price of asset i at time ¢
W, i relative weights of the asset i in portfolio at time 7

;- number of asset i in portfolio
Let us consider a portfolio which consists of n assets. Using
the notation above it is natural that the amount of money
invested in asset / at time ¢ can be expressed by

S, =kP,=w,S,

it

(21)

and the amount of money invested in the portfolio at time
! is given by

S, = iSr,i = ikiel
i=1 i=1

With equation ( 21 ) and ( 22 ) in hand we can express the
relative weights at time 7 :

S kP

t,i i t,i

W, == (23)

¢ zlllll

These relative weights change in time according to the as-
set prices. In this study later on, if we speak of weights we
always think of these relative weights. Note, that the rela-
tive weights sum up to one:

n
DW=
i=l1

(22)

(24)

a. Simple Return of a Portfolio

In this section we will show how to calculate the simple re-
turn of a portfolio (denoted by R ). Similarly to the simple
return of an asset we can define the simple return of a port-
folio at time I the gain (or loss) in value of the portfolio
relative to the starting value, mathematically (Bacon, 2011):

R’ = S 1.
St—l

(25)
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Using the fact that the weights sum up to one and the

1,0

. s . .
equation R = —1, where R;; is the simple return of

t=Li

asset / at time ¢ , Equation ( 22 ) can be rewritten as

S, = ikll)[.i = ikipl—l,i (l + R/i‘) = EW‘,S/-L, (1 + R:S,; ) = iS[-lwf-u (1 + Rrv,)( 26 )
i=1 i=1 i=1 i=1

and thus we can express the simple return of a portfolio at
time / by

N
Wt lzR

RtS — St

t-1

(27)

We can see that the portfolio simple return is the sum of the
weighted simple returns of the constituents of the considered
portfolio.

b. Logarithmic Return/Continuously Compounded
Return of a Portfolio

The logarithmic return of a portfolio (denoted by RtL ) at
time 7 can be defined analogously to the logarithmic return
of an asset:

5 (28)

R =In

t-1

Moreover using the relation between logarithmic and
simple return (see Equation ( 13 ) and Equation ( 27 ) the
logarithmic return of a portfolio can be calculated in the

following way:
R = ln(SS’ )z 1n(1+2w, 1IR,SI) = ln(ZW, . eR’L"J (29)
-1 = i=1
where R/, is the log return of asset j at time 7 .
Unfortunately the log return of a portfolio does not have a
similar convenient property as it was developed in Equation
(27 ) for the case of the simple return, so it cannot be writ-
ten as the sum of the weighted log returns of the constituents
of the considered portfolio. Similarly to the return of an as-
set — by using the In(1+x)=~x approximation - one can
show, that if the simple returns of a portfolio are close to

zero then the simple returns and the log returns of a portfolio
are similar to each other:

R'=W(1+R’)=R’,

(30)
Using the assumptions that the simple returns are close to

zero, and the definition of the exponential function one can
nevertheless deduce the following linear approximation:
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S C S R/Lv‘ ' S L < L
R'=R'= ;[Zg(j!)_l]w'l" = ;((1+RN)—1)WFU = ;R,Jw,,l (31)
L 3
So in this case 1% = ZR, W1 (32)

EMPIRICAL STUDIES

The data

For the empirical calculation we will work with Hungarian
daily stock prices between 01.07.2005 and 29.06.2015. The
data was downloaded from the Budapest Stock Exchange
homepage (www.bet.hu). We focus on seven stocks, name-
ly FHB, MOL, MTELEKOM, OTP, Pannergy, Raba and
Richter and analyze them in the mentioned time interval.
The missing values were filled by the previous day data. To
perform the analysis we use the mathematical software R.
We plot the stock prices in (Figurel), which shows that pric-
es cannot be used for comparisons.

Figurel: Stock prices (gray: FHB, black: MOL, red: MTELEKOM,
green: OTP, purple: Pannergy, light blue: Raba, magenta: Richter)
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Comparing simple and logarithmic returns

We could see in the asset and in the portfolio case that if the
simple returns are close to zero then the simple and log re-
turns are close to each other. In the first part of this empiri-
cal study we will check this theoretical fact in practice. The
first price data is from 01. 07. 2005 and we consider them as
price data at time f = 1. The last ones are from 29. 06. 2015
and we consider them as price data at time 2607. Note, that
the “first” returns can be calculated on the interval
[t=1r=2] and they are denoted by R; ; and R; ; respec-
tively, for all the seven stocks (i =1,...,n).
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Table 1: Basic statistics of simple returns: minimum, first quartile, median, mean, third quartile, — maximum
FHB MOL MTELEKOM oTP Pannergy Raba Richter

Min. -0,178975 -0,149750 -0,118151 -0,149854 -0,802770 -0,149809 -0,900179
1st qu. -0,011340 -0,011768 -0,009009 -0,013054 -0,007828 -0,008961 -0,009508
Median 0 0 0 0 0 0 0

Mean 0,000040 0,000183 -0,000170 0,000272 -0,000118 0,000435 -0,000062
3rd qu. 0,009742 0,011833 0,008635 0,013605 0,006466 0,008554 0,009654
Max. 0,232339 0,150583 0,123894 0,232639 0,149826 0,280193 0,094983

Source: own calculation

a. Stock returns

First we calculated the daily simple and logarithmic re-
turns of all the individual stocks using Equation ( 16 ) and
Equation ( 17 ). In order to show the results more clear we
introduced two outliers in the case of the Richter and Pann-
ergy stocks (check the minimum values). The basic statistics
are summarized in Table 1 and Table 2. From these summa-
ries we can clearly see that in both cases the returns are close
to zero: the medians are zero and the interquartile ranges
are relatively small. Later on in this study we will use this
modified data. Comparing Table 1 and Table 2 one can say
that the distributions of the simple and logarithmic returns
are really close to each other.

b. Portfolio returns

Let us consider a portfolio: We assume that we own a port-
folio consisting of one from all the seven stocks, i.e.
k,=1,i=1,...,7 (see notation in the theoretical part). First we
calculate the simple and the log returns of the portfolio using
Equation ( 27 ) and Equation ( 28 ) respectively. The values
are summarized in box plots, see (Figure 2). As we men-
tioned in the theoretical part, the log return and the simple
return should be similar if the simple returns are close to
zero (see Equation ( 30 )). In (Figure 2) we can clearly see
that in the case of our data the simple and the log returns are
close to zero except one outlier in both cases. This means
that the simple and a log return values are very close to each
other. This conclusion could be confirmed by taking a look
at (Figure 3), where the simple return of the portfolio was
plotted against the log return of the same portfolio. Except
one outlier all the values are lying on the 45° line.

Figure 2. Box plots of portfolio simple (left) and portfolio logarithmic
return (right) values
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Figure 3. Comparing portfolio simple and logarithmic returns
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Comparing riskiness order

From the fact, that the distributions of the stock simple and
logarithmic returns are really close to each other (see sec-
tion ‘Comparing simple and logarithmic returns’) we may
conclude that it does not depend on whether we use simple
or log returns for the financial calculations. We will check
this assumption using different risk measures and using the
ordering method described in the introduction.

We calculate four from the most often and widely used risk
measures: the standard deviation, the semivariance, the Val-
ue at Risk and the Expected Shortfall. Detailed descriptions
of this risk measures one can find for example Bugar (Bugir,
2006) and Embrechts (Embrechts, 2005).

In the next step we state how to calculate these risk measures
in the case of a realization of a random variable.

Let r = (rl,...,rn), where rl is the 1 th return (i=1,...,n)

and 7 the average of these returns (v = lZri).

i=1

a. Standard Deviation

(33)
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Table 2: Basic statistics of logarithmic returns: minimum, first quartile, median, mean, third quartile, maximum

FHB MOL MTELEKOM OoTP Pannergy Raba Richter
Min. -0,197201 -0,162225 -0,123734 -0,162347 -1,623385 -0,162294 -2,305382
1* qu. -0,011404 -0,011837 -0,009050 -0,013140 -0,007859 -0,009001 -0,009553
Median 0 0 0 0 0 0 0
Mean -0,000245 0,000075 -0,00314 -0,000089 -0,000620 0,000206 -0,000767
3 qu. 0,009695 0,011764 0,008597 0,013513 0,006445 0,008518 0,009608
Max. 0,208914 0,140269 0116799 0,209157 0,139610 0,247011 0,090739

Source: own calculation

b. Semivariance

)z Z‘in=1 (min{ri _?,0})2

SV (r (34)
n

c. Value at Risk - VaR (at o level)

VaR,(r)=-F; . (a), (35)

. 1
where Fr, (x):= 0 ZI{X‘SX} is the empirical distribu-

tion i=1

function and 1 [x;5x} is the indicator function of the set
{x;<x}. "

d. Expected Shortfall - ES (at o level)

(36)

where k =[nd] = max{ m|m< na, meN} and 7, is the i th
element in the increasing order of the returns 7;:

K< <<

The only risk measure which satisfies the expected proper-

ties (monotonicity, subadditivity, positive homogeneity, cash
invariance/translation invariance) is the Expected Shortfall.
Further discussion on this topic for example (Acerbi, 2002)
and (Artzner, 1999).

a. Stocks

First we consider the stock returns and we calculate the stan-
dard deviation, the semivariance, the VaR and the ES val-
ues. They are shown in (Figure 4). The purple bars indicate
the values calculated using simple returns and the blue bars
indicate the values calculated using log returns. We can see
that in the case of the semivariance and VaR (at both
o =0,05 and & =0,01 levels) the order does not depend on
the type of return. If we use the semivariance as a risk mea-
sure the riskiest stock is the Richter, followed by Pannergy,
OTP, FHB, MOL, Raba and MTELEKOM. In the case of
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VaR, the riskiest stock is the OTP, followed by the stocks
MOL, FHB, Richter, Raba, Pannergy and MTELEKOM. At
0 =0,01 level the order is the following: OTP, FHB, MOL,
Raba, Pannergy, MTELEKOM, Richter.

In the case of standard deviation and ES the contrary was
observed: the order does depend on the type of return. Using
the simple return for risk calculation the OTP stock has the
highest standard deviation value. The OTP is followed by
Richter, Pannergy, FHB, MOL, Raba and MTELEKOM. If
we use the log return for risk calculation, then the aforemen-
tioned order changes: the riskiest is the Richter, followed
by Pannergy, OTP, FHB, MOL, Raba, MTELEKOM. For
example, the OTP stock what was the riskiest using simple
returns, in the case of the log return is only on the 3rd place.
Let us consider now the ES. At the level of 5%, using simple
returns for the calculations we got the following order: OTP,
FHB, MOL, Pannergy, Richter, Raba, MTELEKOM; while
using log returns the order changes as follows: OTP, Richter,
Pannergy, FHB, MOL, Raba, MTELEKOM. We can see,
that for example the Richter stock is the second riskiest stock
in the case of using log returns, but it is just on the 5th place
in the case of simple returns. At the level of 1% the riskiness
order also different concerning simple or log returns. In the
case of simple returns the riskiest asset is the OTP, followed
by Pannergy, Richter, FHB, Raba, MOL and MTELEKOM.
In the case of logarithmic returns the riskiest asset is the
Richter, followed by Pannergy, OTP, FHB, Raba, MOL and
MTELEKOM.

This calculation shows, that despite the fact that the simple
and log returns are comparable, our assumption, that the
result does not depend on whether we use simple or log re-
turn seems to be not correct. We could show, that the only
coherent risk measure, the Expected Shorfall, gives different
riskiness orders for the same stocks depending on whether it
was calculated using simple or log returns. And this can lead
to different decisions.

b. Portfolios

In the case of portfolios, we consider seven portfolios, each
of these portfolios consist of six distinguishing stocks (we
just leave away one of the seven stocks) and we calculate the
risk of all these portfolios in order to generate a “riskiness
order”. To calculate the risk we consider the two most often
used risk measures: the Value at Risk (see Equation ( 35 ))

ISSN 1789-7874




Note On Simple And Logarithmic Return

133

Figure 4. Standard Deviation, Semivariance, VaR and ES values calculated using simple (purple bars) and logarithmic (blue bars) returns
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Source: own calculation

and the Expected Shortfall (see Equation ( 36 )) at r= 0,05
and ¢ =0,01 levels. The results are shown in Table 3. The
numbers in the table show the riskiness order of the portfolio
calculated by using VaR and ES in case of simple returns
respective log returns at two different alpha levels. One can
observe, that VaR is stable on both levels, meaning the order
does not depend on the choice of return. In the case of the
ES at ¢ =0,01 level - similarly to the VaR - the two orders
are the same. To the contrary for o=0,05 level: the first
and the second portfolio switched positions. And our deci-
sion can be influenced by this different riskiness order.

We can clearly see from the results, that not only the type of
the return, or the chosen risk measure but also the level of
alpha (given the risk measure) has a decisive effect on the
order, and hence on the decision. For example at &= 0,05
level the ES measures Portfolio7 is one of the riskiest port-
folio. But, in contrast, at & =0,01 level, Portfolio7 is the
least risky portfolio from these seven portfolios.

APSTRACT Vol. 11. Number 1-2. 2017. pages 127-136.

Pannergy

Raba

Richter

Table 3. Riskiness order of portfolios using simple and logarithmic

returns
VaR ES
alpha 0,05 0,01 0,05 0,01
return |simple | log |[simple| log |simple| log |simple| log
Portfo- | ¢ 6 4 4 6 6 5 5
liol
Portfo-1 2 2 2 2 1 1 1
lio2
Portfo-| 5 3 3 5 5 4 4
lio3
Portfo- |, 7 7 7 3 3 2 2
lio4
Portfo-1 4 6 6 7 7 6 6
lio5
Portfo- | 3 5 5 4 4 3 3
lio6
Portfo-1 1 1 1 1 2 7 7
lio7
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Using approximations

In literature one can regularly see that the relative weights
are substituted by 1/ n, where n is the number of assets in
the portfolio. One reason for this could be that one wants
that the weights are constant in time, because the relative
weights are changing in time since they are calculated from
the prices (see Equation ( 23 )). Another argument for using
approximation is that in practice sometimes one does not
know the asset prices (for example, a simulation result gives
only returns). In the absence of the prices one cannot calcu-
late the relative weights and in the absence of the relative
weights it is not possible to calculate the portfolio return.

In this last part of our study we would like to show - using
our ordering method - the effect of an approximation on the
riskiness order. We will consider again the portfolios which
were constructed in section ‘Comparing riskiness order,
Portfolios’. To calculate the simple return of a portfolio we
will use equation ( 27 ), and we will approximate the weights

with 1/n: w, zl, i=1,...,n and such that we consider an
n

equally weighted portfolio. This approximation turns to ex-
act equation if we consider a portfolio which consists of
same number of all the assets (k, =k, i# j,i,j=1,...,n)
and the asset prices are the same. So, we will use the follow-
ing approximation for the portfolio simple return:

~ 1 &
RrS = _zRfi'
n-ig

In the case of log returns we will consider two different ap-
proximations. For the first one we use Equation ( 28 ) and
the same assumption as before: we assume that the weights

(37)

are 1/n (w, = l,i =1,...,n). Therefore:
n
. 1< o
L R[J
Ry =In ; e (38)

i=1

For the second approximation we will use Equation ( 31 ),
which is already an approximation and as a furtlfer assump-
tion we consider the weights equalto 1/n (w,=—,i=1,...,n
), similarly to the previous ones. n

So, the second approximation for the portfolio log return can
be expressed in the following way:

N
RtL = _ZRth
nio

In (Figure 5) we can see how far away the approximated
values are from the exact values. The first plot shows the
approximated values calculated using Equation ( 37 ), the
middle one shows the approximated values evaluated using
Equations ( 38 ) and the third plot shows the approximated
values calculated using Equation ( 39 ). In all the three cases

(39)
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there is one outlier. Up to this the point clouds are still dis-
tributed along the 45° line. We may conclude from this, that
using these approximations we can get similar result than
using not approximated, exact return values. We would like
to answer the following questions. First we will check
whether the riskiness order changes if we use approximated
simple or approximated logarithmic returns. Second, we
will compare these orders in the case of approximated and
exact simple and logarithmic returns. To calculate the risk
we will use again the VaR and the ES risk measures at two
different @ =0,05 and &= 0,01 levels.

Figure 5. Approximations of portfolio simple and logarithmic returns
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The results are shown in (Figure 6). P1, P2,..., P7 indicate
the seven different portfolios. The purple bars stand for the
risk calculated using the approximated simple return data
(see Equation ( 37 )), the orange and blue ones for the risk
calculated using the approximated log return data (see Equa-
tion ( 38 ) and Equation ( 39 ) respectively). In the left col-
umn of the figure we can see the Value at Risk values and in
the right column we can see the ES values. Similarly to the
previous cases the VaR seems to be more stable, since the
order does not depend on whether we use simple or log re-
turn. At a=0,05 level the riskiest portfolio is P5 followed
by P7, P3, P6, P1, P2 and P4. And at @=0,01 level we
calculated the following order: P7, P3, P5, P2, P6, P1, and
P4. These orders are the same using approximated simple or
one of the log return data. If we take a look at the ES values
we can see that here the order of the portfolios changes de-
pending on the type of used approximation method. At
a=0,05 level we got the same order as in the case of the
approximated simple return and the first approximation of
the log return (see Equation ( 38 )), namely: P5, P3, P7,P6,
P1, P2, P4. But this is different from the order which we get
if we use the second approximation of the log return (see
Equation ( 39 )), that is: P3, P5, P6, P1, P2, P7, P4. These
results are also shown in the last three columns of Table 4
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and Table 5, where R* and R® denote the simple and loga-
rithmic returns respectively, while R® denotes the approxi-
mated simple returns, and RlL (see Equation ( 38 )) and RZL
(see Equation ( 39 )) the approximated log return.

Figure 6. VaR and ES values for seven portfolios using approximated
data
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Finally let us examine whether the type of data used has an
effect on the order, i.e. whether approximated or exact data.
In Table 4 we can see the results using risk measure VaR and
in Table 5 we can see the results using risk measure ES. The
result clearly shows a totally different riskiness order on all
the cases. For example at 5% level the VaR ranked Porfolio2
on the second place using not approximated data and it is
on the sixth place when measured with approximated data.
It is similar in the case of ES: Portfolio2 is in the second or
first place (depending on the type of the return) using not
approximated data but in contrast the portfolio is on the fifth
or sixth place using approximated data. Or Portfolio5 is on
one hand the less riskiest portfolio if we calculate ES at al-
pha=0,05 level from the exact simple or logarithmic return,
but on the other hand it is the riskiest portfolio if we cal-
culate the ES at alpha=0,05 level from approximated data.
Similar results have been found on the level of alpha=0,01.
For example in the case of VaR Portfolio5 is on the sixth
place if the value calculated from not approximated data and
on the third place if the ES is calculated from approximated
returns. The ES is less stable. Depending on the type of
return or whether we use approximation the order can vary
strongly, see for example Portfolio4 or Portfolio5.

Table 4. Order of the portfolios using the risk measure VaR on the level
of alpha=5% and alpha= 1%.

VaR
alpha 0,05 0,01
f}; (1)33 s s |3 |3 |3 |3[3]2]2]:2
fl()) ‘1’:;4 2 I O A N I T I O I A I A
fz la a6 ]e] 3|33
fl()) el s s e e als s |5
flf) ‘1’27 vl 222t |t 1]

Source: own calculation

Table 5. Order of the portfolios using the risk measure ES on the level
of alpha=5% and alpha= 1%.

ES

alpha 0,05 0,01
return | pS L|ps |pL|pL|ps L|ps |pl|pL

R* |[R* |R* |R" |RY |R° |R" |R° |R|R!
Por g gl s | s |a|s|s|2]|2]2
foliol
Port-
folio2 2 1 6 6 5 1 1 5 4 4
Port-
folio3 5 5 2 2 1 4 4 1 1 1
Port-
foliod 3 3 7 7 7 2 2 7 7 5
Port-
folios 7 7 1 1 2 6 6 4 3 6
Por |\ by a4 33|33 ]|s5]3
folio6
Port-
folio? 1 2 3 3 6 7 7 6 6 7

VaR

alpha

return | RS | R | RS le I}ZL R® |R" | R® RlL R2L

Port-
el e s|s|s|alale|6|s
Por- ol b 6l 66| 22| 4] 4]a4
folio2
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SUMMARY AND CONCLUSION

In this study our goal was to clarify the notion of simple
and logarithmic return and to show the differences and the
connections between them. In the theoretical part we stated
the definitions of the one- and the multi-period simple and
logarithmic returns.

Equations - presented in the stock case - show, that the
logarithmic return has an advantage against the simple re-
turn, namely that the multi-period logarithmic return can be
calculated as a sum of the one-period logarithmic returns,
while the multi-period simple return is the product of the
one-period simple returns, which can lead to computational
problems for values close to zero.

In the case of a portfolio it is important to highlight, that
the portfolio weights depend on the price of stocks in the
portfolio. So they change in time. In the case of an equally
weighted portfolio one has to balance regularly the portfolio.
It is also important to note, that the simple return of a portfo-
lio is the sum of the weighted simple returns of the constitu-
ents of the considered portfolio. In contrast, the logarithmic
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return of a portfolio can only be approximated by the sum
of the weighted logarithmic returns of the constituents of the
considered portfolio.

In addition we could see, that if the simple return values are
close to zero, then the distribution of the simple and logarith-
mic returns are very near to each other. This raises the ques-
tion whether the used return-type (i.e. simple or log return)
has an effect on the calculations and thus on the results. In
the empirical part of our study we wanted to answer this
question. We were interested in whether the used return-
type in the calculations results in a different riskiness order.
First we compared the order in the case of the stocks. We
found that while in the case of semivariance and VaR the
order does not depend on the type of return, in the case of
standard deviation and ES it does. After the stocks we con-
sidered portfolios. Six different portfolios were compared
and ordered according to their risks. The result of our cal-
culation shows, that the VaR does not depend on the use
return-type, but in the case of the ES we got different orders
in the two cases.

Furthermore, we investigated what is the effect on this order
if we use approximated return values - for example we con-
sidered equal weights, which is common in practice - instead
of the exact values. We have found in every case different
riskiness orders, sometimes even serious differences. There-
fore, we believe, if this is possible, exact values instead of
approximated ones should be used for calculations.

In summary, even though the two return-type values are
very similar, it is not necessary that the riskiness orders are
the same. It is important that one uses the same type of re-
turn within one study and one has to be aware of the possible
instabilities when comparing return results.

APSTRACT Vol. 11. Number 1-2. 2017. pages 127-136.

REFERENCES

Acerbi, C., and Tasche, D. Expected shortfall: a natural coherent
alternative to value at risk. Economic note, 2002, 31, 2, 379-388.

Acerbi, C., and Tasche, D. On the coherence of expected shortfall.
Journal of Banking & Finance 2002, 26, 7, 1487-1503.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. Coherent
measures of risk. Mathematical finance 1999, 9, 3, 203-228.

Bacon, C.R. (2011): Practical portfolio performance measurement
and attribution , volume 568. John Wiley and Sons.

Bugar, Gy és Uzsoki, M. Befektetések kockazatdnak mérése.
Statisztikai Szemle 2006, 84, 9.

Calafiore, G. C., and El Ghaoui, L. Optimization models. Cam-
bridge university press,

2014.

Danielsson, J. (2011): Financial risk forecasting: the theory and
practice of forecasting market risk with implementation in R and
MatLab, volume 588. John Wiley & Sons.

Embrechts, P., Frey, R., and McNeil, A. Quantitative risk manage-
ment. Princeton Series in Finance, Princeton 10, 2005.

Hudson, R; Gregoriou, A. Calculating and comparing security re-
turns is harder than you think: A comparison between logarithmic
and simple returns. International Review of Financial Analysis,
Elsevier, 2010, 38(C), pages:151-162.

Oxford Dictionary, https://en.oxforddictionaries.com/definition/
rate_of return

Tsay, R. S. (2005): Analysis of financial time series, vol. 543. John
Wiley & Sons.

ISSN 1789-7874




