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Abstract. We present a new Stata command, bmte (bias-minimizing treatment
effects), that implements two new estimators proposed in Millimet and Tchernis
(2013, Journal of Applied Econometrics 28: 982–1017) and designed to estimate
the effect of treatment when selection on unobserved variables exists and appro-
priate exclusion restrictions are unavailable. In addition, the bmte command esti-
mates treatment effects from several alternative estimators that also do not rely
on exclusion restrictions for identification of the causal effects of the treatment,
including the following: 1) Heckman’s two-step estimator (1976, Annals of Eco-

nomic and Social Measurement 5: 475–492; 1979, Econometrica 47: 153–161); 2) a
control function approach outlined in Heckman, LaLonde, and Smith (1999, Hand-

book of Labor Economics 3: 1865–2097) and Navarro (2008, The New Palgrave

Dictionary of Economics [Palgrave Macmillan]); and 3) a more recent estimator
proposed by Klein and Vella (2009, Journal of Applied Econometrics 24: 735–762)
that exploits heteroskedasticity for identification. By implementing two new esti-
mators alongside preexisting estimators, the bmte command provides a picture of
the average causal effects of the treatment across a variety of assumptions. We
present an example application of the command following Millimet and Tchernis
(2013, Journal of Applied Econometrics 28: 982–1017).
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1 Introduction

The causal effect of binary treatment on outcomes is a central component of empirical
research in economics and many other disciplines. When individuals self-select into
treatment and when prospective randomization of the treatment and control groups is
not feasible, researchers must adopt alternative empirical methods intended to control
for the inherent self-selection. If individuals self-select on the basis of observed variables
(selection on observed variables), a variety of appropriate methodologies are available
to estimate the causal effects of the treatment. If instead individuals self-select on the
basis of unobserved variables (selection on unobserved variables), estimating treatment
effects is more difficult.

When one is confronted with selection on unobserved variables, the most common
empirical approach is to rely on an instrumental variable (IV); however, if credible instru-
ments are unavailable, a few approaches now exist that attempt to estimate the effects of
the treatment without an exclusion restriction. This article introduces a new Stata com-
mand, bmte, that implements two recent estimators proposed in Millimet and Tchernis
(2013) and designed to estimate treatment effects when selection on unobserved vari-
ables exists and appropriate exclusion restrictions are unavailable:

i. The minimum-biased (MB) estimator: This estimator searches for the observations
with minimized bias in the treatment-effects estimate of interest. This is accom-
plished by trimming the estimation sample to include only observations with a
propensity score within a certain interval as specified by the user. When the
conditional independence assumption (CIA) holds (that is, independence between
treatment assignment and potential outcomes, conditional on observed variables),
the MB estimator is unbiased. Otherwise, the MB estimator tends to minimize
the bias among estimators that rely on the CIA. Furthermore, the MB estima-
tor changes the parameter being estimated because of the restricted estimation
sample.

ii. The bias-corrected (BC) estimator: This estimator relies on the two-step estimator
of Heckman’s bivariate normal (BVN) selection model to estimate the bias among
estimators that inappropriately apply the CIA (Heckman 1976, 1979). However,
unlike the BVN estimator, the BC estimator does not require specification of the
functional form for the outcome of interest in the final step. Moreover, unlike the
MB estimator, the BC estimator does not change the parameter being estimated.

In addition, the bmte command summarizes results of several alternative estimators
across a range of assumptions, including standard ordinary least-squares (OLS) and
inverse-probability-weighted (IPW) treatment-effects estimates. The bmte command
also presents the results of additional estimates applicable when the CIA fails and valid
exclusion restrictions are unavailable, including the following: 1) Heckman’s BVN esti-
mator; 2) a control function (CF) approach outlined in Heckman, LaLonde, and Smith
(1999) and Navarro (2008); and 3) a more recent estimator proposed by Klein and Vella
(2009) that exploits heteroskedasticity for identification. By implementing two new es-



timators alongside preexisting estimators, the bmte command provides a picture of the
average causal effects of the treatment across a variety of assumptions and when valid
exclusion restrictions are unavailable.

2 Framework and methodology

Here we provide a brief background on the potential-outcomes model and the estima-
tors implemented by the bmte command. For additional discussion, see Millimet and
Tchernis (2013). We consider the standard potential-outcomes framework, denoting by
Yi(T ) the potential outcome of individual i under binary treatment T ∈ T = (0, 1). The
causal effect of the treatment (T = 1) relative to the control (T = 0) is defined as the
difference between the corresponding potential outcomes, τi = Yi(1)− Yi(0).

In the evaluation literature, several population parameters are of potential interest.
The most commonly used parameters include the average treatment effect (ATE), the
ATE on the treated (ATT), and the ATE on the untreated (ATU), defined as

τATE = E(τi) = E{Yi(1)− Yi(0)}

τATT = E(τi|T = 1) = E{Yi(1)− Yi(0)|T = 1}

τATU = E(τi|T = 0) = E{Yi(1)− Yi(0)|T = 0}

These parameters may also vary with a vector of covariates, X, in which case the
parameters have an analogous representation conditional on a particular value of X.1

For nonrandom treatment assignment, selection into treatment may follow one of two
general paths: 1) selection on observed variables, also referred to as unconfoundedness
or the CIA (Rubin 1974; Heckman and Robb 1985); and 2) selection on unobserved
variables. Under the CIA, selection into treatment is random conditional on covariates,
X, and the average effect of the treatment can be obtained by comparing outcomes
of individuals in the two treatment states with identical values of the covariates. This
approach often uses propensity-score methods to reduce the dimensionality problem
arising when X is a high-dimensional vector (Rosenbaum and Rubin 1983), with the
propensity score denoted by P (Xi) = Pr(Ti = 1|Xi).

If the CIA fails to hold, then the estimated treatment effects relying on the CIA are
biased. Following Heckman and Navarro-Lozano (2004) and Black and Smith (2004),
we denote the potential outcomes as Y (0) = g0(X) + ε0 and Y (1) = g1(X) + ε1, where
g0(X) and g1(X) are the deterministic portions of the outcome variable in the control
and treatment groups, respectively, and where (ε0, ε1) are the corresponding error terms.
We also denote the latent treatment variable by T ∗ = h(X)−u, where h(X) represents
the deterministic portion of T ∗, and u denotes the error term. The observed treatment,
T , is therefore equal to 1 if T ∗ > 0 and 0 otherwise. Finally, we denote by δ the
difference in the residuals of the potential outcomes, δ = ε0 − ε1.

1. More formally, the coefficient measures the treatment effect, adjusting for a simultaneous linear
change in the covariates, X, rather than being conditional on a specific value of X. We thank an
anonymous referee for highlighting this point.



Assuming δ and u are jointly normally distributed, the bias can be derived as

BATE{P (X)} = − [ρ0uσ0 + {1− P (X)}ρδuσδ]
φ{h(X)}

Φ{h(X)}[1− Φ{h(X)}]
(1)

where ρδu is the correlation between δ and u, ρ0u is the correlation between ε0 and u,
σ0 is the standard deviation of ε0, σδ is the standard deviation of δ, and φ and Φ are the
normal probability density function and cumulative distribution function, respectively.

When the CIA fails, consistent estimation of the treatment effect of interest requires
an alternative technique robust to selection on unobservables. This is difficult because
obtaining a consistent point estimate of a measure of the treatment effect typically
requires an exclusion restriction, which is unavailable in many situations. The proposed
bmte command presents a series of treatment-effects estimators designed to estimate
the average effects of treatment when appropriate exclusion restrictions are unavailable,
exploiting the functional form of the bias in (1). Below we briefly present five of the
estimators implemented by the bmte command.

2.1 The MB estimator

This technique relates generally to the normalized IPW estimator of Hirano and Imbens
(2001), given by

τ̂IPW,ATE =

∑N

i=1

YiTi

P̂ (Xi)
∑N

i=1

Ti

P̂ (Xi)

−

∑N

i=1

Yi(1− Ti)

1− P̂ (Xi)
∑N

i=1

(1− Ti)

1− P̂ (Xi)

(2)

where P̂ (Xi) is an estimate of the propensity score obtained using a probit model.

Under the CIA, the IPW estimator in (2) provides an unbiased estimate of τATE.
When this assumption fails, the bias for the ATE follows the closed functional form in
(1), with similar expressions for the ATT and ATU. The MB estimator aims to minimize
the bias by estimating (2) using only observations with a propensity score close to
the bias-minimizing propensity score, denoted by P ∗. Using P ∗ effectively limits the
observations included in the estimation of the IPW treatment effects to minimize the
inherent bias when the CIA fails. We denote by Ω the set of observations ultimately
included in the estimation. In general, however, P ∗ and Ω are unknown. Therefore, the
MB estimator estimates P ∗ and Ω to minimize the bias in (1) by using Heckman’s BVN

selection model, the details of which are provided in Millimet and Tchernis (2013).

The MB estimator of the ATE is formally given by

τ̂MB,ATE(P
∗) =

∑
i∈Ω

YiTi

P̂ (Xi)
∑

i∈Ω

Ti

P̂ (Xi)

−

∑
i∈Ω

Yi(1− Ti)

1− P̂ (Xi)
∑

i∈Ω

(1− Ti)

1− P̂ (Xi)

(3)



where Ω = {i|P̂ (Xi) ∈ C(P ∗)}, and C(P ) denotes a neighborhood around P . Fol-
lowing Millimet and Tchernis (2013), the MB estimator defines C(P ∗) as C(P ∗) =

{P̂ (Xi)|P̂ (Xi) ∈ (P , P )}, where P = max(0.02, P ∗ − αθ), P = min(0.98, P ∗ + αθ),
and αθ > 0 is the smallest value such that at least θ percent of both the treatment and
control groups are contained in Ω. Specific values of θ are specified within the bmte

command, with smaller values reducing the bias at the expense of higher variance. The
MB estimator trims observations with propensity scores above and below specific values,
regardless of the value of θ. These threshold values can be specified within the bmte

command options. Obtaining Ω does not require the use of Heckman’s BVN selection
model when the focus is on the ATT or ATU, because P ∗ is known to be one-half in these
cases (Black and Smith 2004).

If the user is sensitive to potential deviations from the normality assumptions under-
lying Heckman’s BVN model, the MB estimator and other estimators can be extended
appropriately (Millimet and Tchernis 2013). Such adjustments are included as part
of the bmte command, denoted by the Edgeworth-expansion versions of the relevant
estimators.

2.2 The BC approach

Estimation of the error correlation structure using Heckman’s BVN model immediately
introduces the possibility of a BC version of each estimator. Specifically, estimates of

the bias of the MB estimator of the ATE, denoted by ̂BATE(P ∗), can be derived from
the two-stage BVN model. The estimated bias can then be applied as an adjustment to
the standard IPW treatment-effects estimate.

The MB bias-corrected (MB-BC) estimator for the ATE is then given by

τ̂MB−BC,ATE(P
∗) = τ̂MB,ATE(P

∗)− ̂BATE(P ∗) (4)

where the corresponding estimators for the ATT and ATU follow. With heterogeneous
treatment effects, the MB-BC estimator changes the parameter being estimated. To
identify the correct parameter of interest, the bmte command first estimates the MB-

BC estimator in (4) conditional on the propensity score, P (X), and then estimates the
(unconditional) ATE by taking the expectation of this over the distribution of X in the
population (or subpopulation of the treated). The resulting BC estimator is given by

τ̂BC,ATE = τ̂IPW,ATE −
∑

i

̂
BATE{P̂ (Xi)} (5)

where again the corresponding estimators for the ATT and ATU follow.



2.3 BVN selection

Briefly, Heckman’s BVN selection model adopts a two-stage approach: 1) estimate the
probability of treatment, Φ(Xiγ̂), using a standard probit model with binary treatment
as the dependent variable; and 2) estimate via OLS the following second-stage outcome
equation,

Yi = Xiβ0 +XiTi(β1 − β0) + βλ0(1− Ti)

{
φ (Xiγ̂)

1− Φ(Xiγ̂)

}
(6)

+ βλ1Ti

{
−φ(Xiγ̂)

Φ (Xiγ̂)

}
+ ηi

where φ(·)/Φ(·) is the inverse Mills ratio, and η is an independent and identically dis-
tributed error term with constant variance and zero conditional mean. With this ap-
proach, the estimated ATE is given by

τ̂BVN,ATE = X
(
β̂1 − β̂0

)
(7)

Similar expressions are available for the ATT and ATU.2

2.4 CF approach

Heckman’s BVN selection model is a special case of the CF approach. The idea is to devise
a function where the treatment assignment is no longer correlated with the error term
in the outcome equation once it is included, as outlined nicely in Heckman, LaLonde,
and Smith (1999) and Navarro (2008). Specifically, consider the outcome equation

Yi(t) = αt + gt(Xi) + E(εt|Xi, Ti = t) + ηit, t = 0, 1

Approximating E(εt|X,T = t) with a polynomial in P (X) yields

Yi(t) = (αt + πt0) + gt(Xi) +
S∑

s=1

πtsP (Xi)
s + ηit, t = 0, 1

where S is the order of the polynomial. The following equation is then estimable via
OLS:

Yi = (α0 + π00)(1− Ti) + (α1 + π10)Ti +Xiβ0 +XiTi(β1 − β0) (8)

+
S∑

s=1

π0s(1− Ti)P (Xi)
s +

S∑

s=1

π1sTiP (X)s + ηi

2. Depending on one’s dataset and specific application, it may not be meaningful to evaluate all
covariates at their means. Therefore, when interpreting the treatment-effects estimates, the user
should check that the data support the use of X. We are grateful to an anonymous referee for
clarifying this important point.



As is clear from (8), αt and πt0 are not separately identified; however, because the
selection problem disappears in the tails of the propensity score, it follows that the CF

becomes zero and that the intercepts from the potential-outcome equations are identified
using observations in the extreme end of the support of P (X). After one estimates the
intercept terms, the ATE and ATT are given by

τ̂CF,ATE = (α̂1 − α̂0) +X
(
β̂1 − β̂0

)
and (9)

τ̂CF,ATT = (α̂1 − α̂0) +X1

(
β̂1 − β̂0

)
+ ̂E(ε1 − ε0|Ti = 1) (10)

where

̂E(ε0|Ti = 1) = −

{
S∑

s=1

π̂0sP (X)s0

}{
1− P (X)

P (X)

}
and

̂E(ε1|Ti = 1) = −
S∑

s=1

π̂1s +
S∑

s=1

π̂1sP (X)s1

and where P (X) is the overall mean propensity score, and P (X)t, t = 0, 1, is the mean
propensity score in group t.

2.5 Klein and Vella (2009) estimator

Unlike the CF approach, which relies on observations at the extremes of the support
of P (X), the Klein and Vella (2009) (KV) estimator attempts to identify the treatment
effect by using more information from the middle of the support. Our implementation
of the KV estimator relies on a similar functional form assumption to the BVN estimator
in the absence of heteroskedasticity but effectively induces a valid exclusion restriction
in the presence of heteroskedasticity. Specifically, denote the latent treatment by T ∗ =
Xγ − u∗, where u∗ = S(X)u, S(X) is an unknown positive function, and u ∼ N(0, 1).
Here S(X) is intended to allow for a general form of heteroskedasticity in the treatment
effects.

In this case, the probability of receiving the treatment conditional on X is given by

Pr(T = 1|X) = Φ

{
X

S(X)
γ

}
(11)

Assuming S(X) = exp(Xκ), the parameters of (11) are estimable by maximum likeli-
hood, with the log-likelihood function given by3

lnL =
∑

i

[
lnΦ

{
Xγ

exp(Xκ)

}]Ti
(
ln

[
1− Φ

{
Xγ

exp(Xκ)

}])1−Ti

(12)

3. Our functional form assumption, S(X) = exp(Xκ), is a simplification made to compare the KV
estimator and the other estimators available with the bmte command. For more details on the KV
estimator and alternative functional forms for S(X), see Klein and Vella (2009).



where the element of κ corresponding to the intercept is normalized to zero for iden-
tification. The maximum likelihood estimates are then used to obtain the predicted

probability of treatment, P̂ (X), which may be used as an instrument for T in (6),
excluding the selection correction terms.

3 The bmte command

3.1 Syntax

The bmte command implements the above MB, BC, BVN, CF, and KV estimators as well
as the traditional OLS and IPW estimators. The syntax for the bmte command is

bmte depvar indepvars
[
if

] [
in

]
, group(varname)

[
ee hetero theta(#)

psvars(indepvars) kv(indepvars) cf(#) pmin(#) pmax(#) psate(#)

psatt(#) psatu(#) psateee(#) psattee(#) psatuee(#) saving(filename)

replace bs reps(#) fixp
]

3.2 Specification

The bmte command requires the user to specify an outcome variable, depvar, at least
one independent variable, and a treatment assignment variable, group(). Additional
independent variables are optional. The command also uses Stata commands hetprob
and ivreg2 (Baum, Schaffer, and Stillman 2003, 2004, 2005). The remaining options
of the bmte command are detailed below.

3.3 Options

group(varname) specifies the treatment assignment variable. group() is required.

ee indicates that the Edgeworth-expansion versions of the MB, BVN, and BC estimators
be included in addition to the original versions of each respective estimator. The
Edgeworth expansion is robust to deviations from normality in Heckman’s BVN

selection model.

hetero allows for heterogeneous treatment effects, with ATE, ATT, and ATU estimates
presented at the mean level of each independent variable.

theta(#) denotes the minimum percentage such that both the treatment and control
groups have propensity scores in the interval (P , P ) from (3). Multiple values of
theta() are allowed (for example, theta(5 25), for 5% and 25%). Each value will
form a different estimated treatment effect using the MB and MB-BC estimators.



psvars(indepvars) denotes the list of regressors used in the estimation of the propensity
score. If unspecified, the list of regressors is assumed to be the same as the original
covariate list.

kv(indepvars) denotes the list of independent variables used to model the variance in
the hetprob command. Like the psvars() option, the list of kv() regressors is
assumed to be the same as the original covariate list if not explicitly specified.

cf(#) specifies the order of the polynomial used in the CF estimator. The default is
cf(3).

pmin(#) and pmax(#) specify the minimum and maximum propensity scores, respec-
tively, included in the MB estimator. Observations with propensity scores outside
this range will be automatically excluded from the MB estimates. The defaults are
pmin(0.02) and pmax(0.98).

psate(#)–psatuee(#) specify the fixed propensity-score values (specific to each treat-
ment effect of interest) to be used as the bias-minimizing propensity scores in lieu
of estimating the values within the program itself.

saving(filename) indicates where to save the output.

replace indicates that the output in saving() should replace any preexisting file in
the same location.

bs and reps(#) specify that 95% confidence intervals be calculated by bootstrap using
the percentile method and the number of replications in reps(#). The default is
reps(100).

fixp is an option for the bootstrap command that, when specified, estimates the bias-
minimizing propensity score {P ∗(X)} and applies this estimate across all bootstrap
replications rather than reestimating at each replication.

4 Example

Following Millimet and Tchernis (2013), we provide an application of the bmte com-
mand to the study of the U.S. school breakfast program (SBP). Specifically, we seek
causal estimates of the ATEs of SBP on child health. The data are from the Early
Childhood Longitudinal Study—Kindergarten Class of 1998–1999 and are available for
download from the Journal of Applied Econometrics Data Archive.4 We provide esti-
mates of the effect of SBP on growth rate in body mass index from first grade to the
spring of third grade.

4. http://qed.econ.queensu.ca/jae/datasets/millimet001/.



We first define global variable lists XVARS and HVARS and limit our analysis to third
grade students only. XVARS are the covariates used in the OLS estimation as well as
in the calculation of the propensity score. HVARS are the covariates used in the KV

estimator (that is, the variables that enter into the heteroskedasticity portion of the
hetprob command).

. infile using millimettchernissbpdictionary.dct

(output omitted )

. global XVARS gender age white black hispanic city suburb
> neast mwest south wicearly wicearlymiss momafb momafbmiss
> momft mompt momnw momeda momedb momedc momedd momede ses
> sesmiss bweight bweightmiss hfoodb hfoodbmiss books
> booksmiss momafb2 ses2 bweight2 books2 age2 z1-z22

. global HVARS ses age south city

We then estimate the effect of SBP participation in the first grade (break1) on body
mass index growth (clbmi) by using the bmte command. In our application, we specify a
θ of 5% and 25%, and we estimate bootstrap confidence intervals using 250 replications.
We also specify the ee option, asking that the results include the Edgeworth-expansion
versions of the relevant estimators. The resulting Stata output is as follows:

. bmte clbmi $XVARS if grade==3, g(break1) t(5 25) ee psv($XVARS) bs reps(250)
> kv($HVARS)

Theta ATE ATT ATU

OLS 0.007 0.007 0.007
0.003, 0.011] [ 0.003, 0.011] [ 0.003, 0.011]

IPW 0.009 0.006 0.011
0.005, 0.014] [ 0.002, 0.012] [ 0.005, 0.012]

MB

0.05 0.015 -0.000 -0.000
-0.008, 0.022] [ -0.011, 0.014] [ -0.011, 0.014]

0.25 0.005 0.005 0.004
-0.002, 0.011] [ -0.001, 0.011] [ -0.003, 0.009]

MB-EE

0.05 0.014 0.009 0.020
0.005, 0.033] [ 0.003, 0.023] [ 0.002, 0.036]

0.25 0.013 0.005 0.013
0.005, 0.020] [ -0.001, 0.012] [ 0.004, 0.022]

CF 0.048 0.077 0.035
-0.043, 0.120] [ -0.021, 0.159] [ -0.050, 0.107]

F = 5.677
p = 0.000



KV-IV -0.008 -0.008 -0.008
-0.037, 0.022] [ -0.037, 0.022] [ -0.037, 0.022]

F = 133.462
p = 0.000
LR = 27.393
p = 0.000

BVN -0.017 -0.003 -0.021
-0.046, 0.012] [ -0.021, 0.015] [ -0.059, 0.015]

BVN-EE 0.230 0.134 0.310
0.052, 0.330] [ 0.033, 0.187] [ 0.070, 0.187]

MB-BC

0.05 -0.007 -0.019 -0.026
-0.050, 0.018] [ -0.055, 0.020] [ -0.053, 0.002]

0.25 -0.017 -0.014 -0.022
-0.048, 0.011] [ -0.049, 0.022] [ -0.047, 0.002]

MB-BC-EE

0.05 0.070 0.212 0.268
-0.039, 0.220] [ 0.024, 0.304] [ 0.009, 0.393]

0.25 0.069 0.208 0.261
-0.048, 0.215] [ 0.020, 0.299] [ 0.000, 0.388]

P* 0.672 0.500 0.500
0.167, 0.963] [ 0.500, 0.500] [ 0.500, 0.500]

P*-EE 0.033 0.787 0.141
0.020, 0.943] [ 0.728, 0.956] [ 0.020, 0.399]

BC-IPW -0.018 -0.014 -0.004
-0.048, 0.012] [ -0.048, 0.022] [ -0.059, 0.022]

BC-IPW-EE 0.229 0.313 1.063
0.050, 0.331] [ 0.070, 0.439] [ 0.269, 0.439]

Here we focus on the general structure and theme of the output. For a thorough
discussion and interpretation of the results, see Millimet and Tchernis (2013). As indi-
cated by the section headings, the output presents results for the ATE, ATT, and ATU

using basic OLS and IPW treatment-effects estimates as well as each of the MB (3), MB-

BC (4), BC (5), BVN (7), CF [(9) and (10)], and KV [(11), (12), and (6)] estimators.
Below each estimate is the respective 95% confidence interval.

As discussed in Millimet and Tchernis (2013), separate MB and MB-BC estimates
are presented for each value of θ specified in the bmte command (in this case, 5% and
25%). The results for the CF estimator also include a joint test of significance of all
covariates in the OLS step of the CF estimator (8). Similarly, the KV results include
a test for weak instruments (the Cragg–Donald Wald F statistic and p-value) as well
as a likelihood-ratio test for heteroskedasticity based on the results of hetprob. Also
included in the bmte output is the estimated bias-minimizing propensity score.



We wish to reemphasize two points regarding the appropriate interpretation of re-
sults. First, the MB estimators will generally alter the interpretation of the parameter
being estimated. Thus they may estimate a parameter considered to be uninteresting.
Therefore, researchers should pay attention to the value of P ∗ as well as the attributes
of observations with propensity scores close to this value. Second, none of the estimators
considered here match the performance of a traditional IV estimator, although IV may
also change the interpretation of the parameter being estimated.

5 Remarks

Despite advances in the program evaluation literature, treatment-effects estimators re-
main severely limited when the CIA fails and when valid exclusion restrictions are un-
available. Following the methodology presented in Millimet and Tchernis (2013), we
propose and describe a new Stata command (bmte) that provides a range of treatment-
effects estimates intended to estimate the average effects of the treatment when the CIA

fails and appropriate exclusion restrictions are unavailable.

Importantly, the bmte command provides results that are useful across a range of
alternative assumptions. For example, if the CIA holds, the IPW estimator provided
by the bmte command yields an unbiased estimate of the causal effects of treatment.
The MB estimator then offers a robustness check, given its comparable performance
when the model is correctly specified or overspecified and its improved performance if
the model is underspecified. If, however, the CIA does not hold, the bmte command
provides results that are appropriate under strong functional form assumptions, either
with homoskedastic (BVN or CF) or heteroskedastic (KV) errors, or under less restrictive
functional form assumptions (BC). As illustrated in our example application to the U.S.
SBP, the breadth of estimators implemented with the bmte command provides a broad
picture of the average causal effects of the treatment across a variety of assumptions.
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