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Adaptive Markov chain Monte Carlo sampling

and estimation in Mata

Matthew J. Baker
Hunter College and the Graduate Center, CUNY

New York, NY

matthew.baker@hunter.cuny.edu

Abstract. I describe algorithms for drawing from distributions using adap-
tive Markov chain Monte Carlo (MCMC) methods; I introduce a Mata func-
tion for performing adaptive MCMC, amcmc(); and I present a suite of functions,
amcmc *(), that allows an alternative implementation of adaptive MCMC. amcmc()
and amcmc *() can be used with models set up to work with Mata’s moptimize( )
(see [M-5] moptimize( )) or optimize( ) (see [M-5] optimize( )) or with stand-
alone functions. To show how the routines can be used in estimation problems, I
give two examples of what Chernozhukov and Hong (2003, Journal of Econometrics

115: 293–346) refer to as quasi-Bayesian or Laplace-type estimators—simulation-
based estimators using MCMC sampling. In the first example, I illustrate basic
ideas and show how a simple linear model can be fit by simulation. In the next
example, I describe simulation-based estimation of a censored quantile regression
model following Powell (1986, Journal of Econometrics 32: 143–155); the discus-
sion describes the workings of the command mcmccqreg. I also present an example
of how the routines can be used to draw from distributions without a normalizing
constant and used in Bayesian estimation of a mixed logit model. This discussion
introduces the command bayesmixedlogit.

Keywords: st0354, amcmc(), amcmc *(), bayesmixedlogit, mcmccqreg, Mata,
Markov chain Monte Carlo, drawing from distributions, Bayesian estimation,
mixed logit

1 Introduction

Markov chain Monte Carlo (MCMC) methods are a popular and widely used means
of drawing from probability distributions that are not easily inverted, that have dif-
ficult normalizing constants, or for which a closed form cannot be found. While of-
ten considered a collection of methods with primary usefulness in Bayesian analysis
and estimation, MCMC methods can be applied to a variety of estimation problems.
Chernozhukov and Hong (2003), for example, show that MCMC methods can be applied
to many problems of traditional statistical inference and used to fit a wide class of
models—essentially, any statistical model with a pseudoquadratic objective function.
This class of models encompasses many common econometric models that have tra-
ditionally been fit by maximum likelihood or generalized methods of moments. This
article describes some Mata functions for drawing from distributions by using different
types of “adaptive MCMC” algorithms. The Mata implementation of the algorithms is
intended to allow straightforward application to estimation problems.

c© 2014 StataCorp LP st0354



While it is well known that MCMC methods are useful for drawing from difficult
densities, one might ask: why use MCMC methods in estimation? Sometimes, maximiz-
ing an objective function may be difficult or slow, perhaps because of discontinuities or
nonconcave regions of the objective function, a large parameter space, or difficulty in
programming analytic gradients or Hessians. When bootstrapping of standard errors
is required, estimation problems are exacerbated because of the need to refit a model
many times. MCMC methods may provide a more feasible means of estimation in these
cases: estimation based on sampling directly from the joint parameter distribution does
not require optimization and still provides the desired result of estimation—a descrip-
tion of the joint distribution of parameters. MCMC methods are a popular means of
implementing Bayesian estimators because they allow one to avoid hard-to-calculate
normalizing constants that often appear in posterior distributions. Unlike extrema-
based estimation, Bayesian estimators do not rely on asymptotic results and thus are
useful in small-sample estimation problems or when the asymptotic distribution of pa-
rameters is difficult to characterize.

In this article, I describe a Mata function, amcmc(), that implements adaptive or non-
adaptive MCMC algorithms. I also describe a suite of routines, amcmc *(), that allows
implementation via a series of structured functions, as one might use Mata functions
such as moptimize( ) (see [M-5] moptimize( )) or deriv( ) (see [M-5] deriv( )). The
algorithms implemented by the Mata routines more or less follow Andrieu and Thoms
(2008), who present an accessible overview of the theory and practice of adaptive MCMC.

In section 2, I provide an intuitive overview of adaptive MCMC algorithms, while
in section 3, I describe how the algorithms are implemented in Mata by amcmc() or
by creating a structured object via the suite of functions amcmc *(). In section 4, I
describe four applications. I show how the routines might be used in a straightforward
parameter estimation problem, and I describe how methods can be applied to a more
difficult problem: censored quantile regression. In this discussion, I also introduce
the mcmccqreg command. I then show how routines can be used to sample from a
distribution that is hard to invert and lacks a normalizing constant. In a final example
in section 4, I apply the methods to Bayesian estimation of a mixed logit model following
Train (2009) and introduce the bayesmixedlogit command. In section 5, I sketch a
basic Mata implementation of an adaptive MCMC algorithm, which I hope will give users
a template for developing adaptive MCMC algorithms in more specialized applications.
In section 6, I conclude and offer some sources for additional reading.

2 An overview of adaptive MCMC algorithms

At the heart of adaptive MCMC sampling is the Metropolis–Hastings (MH) algorithm.
An MH algorithm is built around a target distribution that one wishes to sample from,
π(X), and a proposal distribution, q(Y,X).1 If one is mainly interested in applying
MCMC in estimation, one may think of π(X) as a conditional likelihood function, and
X can be thought of as a 1 × n row vector of parameters. A basic MH algorithm is
described in table 1.

1. For ease of comparison, I follow the notation of Andrieu and Thoms (2008) wherever possible.



Table 1. An MH algorithm. The proposal distribution is denoted by q(Y,X), while the
target distribution is π(X). α(X,Y ) denotes the draw acceptance probability.

Basic MH algorithm

1: Initialize start value X = X0 and draws T .
2: Set t = 0 and repeat steps 3–6 while t ≤ T :

3: Draw a candidate Yt from q(Yt, Xt).

4: Compute α(Yt, Xt) = min
{

π(Yt)
π(Xt)

q(Yt,Xt)
q(Xt,Yt)

, 1
}

.

5: Set Xt+1 = Yt with prob. α(Yt, Xt),
Xt+1 = Xt otherwise.

6: Increment t.
Output: The sequence (Xt)

T
t=1.

The MH algorithm sketched in table 1 has the property that candidate draws Yt

that increase the value of the target distribution, π(X), are always accepted, whereas
candidate draws that produce lower values of the target distribution are accepted with
only probability α. Under general conditions, the draws X1, X2, . . . , XT converge to
draws from the target distribution, π(X); see Chib and Greenberg (1995) for proofs.
One can see the convenience the algorithm provides in drawing from densities of the form
π(X) = π′(X)/K, where K is some perhaps difficult-to-calculate normalizing constant.
Computation of K is unnecessary, because it cancels out of the ratio π(X)/π(Y ). The
proposal distribution, q(Y,X), is where the “Markov chain” part of “Markov chain
Monte Carlo” comes in. It is what distinguishes MCMC algorithms from more general
acceptance-rejection Monte Carlo sampling: candidate draws depend upon previous
draws in this function.

MCMC algorithms are simple and flexible, and they are therefore applicable to a wide
variety of problems. However, they can be challenging to implement, mainly because it
can be hard to find an appropriate proposal distribution, q(Y,X). If q(Y,X) is chosen
poorly, coverage of the target distribution, π(X), may be poor. This is where adaptive
MCMC methods are used because they help “tune” the proposal distribution. As an
adaptive MCMC algorithm proceeds, information about acceptance rates of previous
draws is collected and embodied in some set of tuning parameters θ. Slow convergence
or nonconvergence of an algorithm like that in table 1 is often caused by acceptance of
too few or too many candidate draws: if the algorithm accepts too few candidate draws,
candidates are too far away from regions of the support of the distribution where π(X)
is large; if too many candidates are accepted, candidates occupy an area of the support
of the distribution clustered closely around a large value of π(X). Accordingly, if the
acceptance rate is too low, the tuning mechanism contracts the search range; if the
acceptance rate is too high, it expands the search range. As a practical matter, one
augments the proposal distribution with the tuning parameters θ so that the proposal
distribution is something like q(Y,X) = q(Y,X, θ). A description of such an algorithm
appears in table 2.



The algorithm in table 2 also relies on a simplification of the basic MCMC algorithm
presented in table 1, which results when a symmetric proposal distribution is used so that
q(Y,X, θ) = q(X,Y, θ). With a symmetric proposal distribution—the (multivariate)
normal distribution being a prominent example—the proposal distribution drops out
of the calculation of the acceptance probability in step 4 of the algorithm; this results
in the simplified acceptance probability α(Y,Xt) = min[{π(Y )}/{π(Xt)}, 1]. All the
Mata routines discussed in this article use a multivariate normal density for a proposal
distribution.

Table 2. Overview of an adaptive MH algorithm with tuning and a symmetric proposal
distribution

Adaptive MH algorithm (with symmetric q)

1: Initialize start value X = X0, draws T , and tuning parameters θ0.
2: Set t = 0 and repeat steps 3–7 while t ≤ T :

3: Draw a candidate Yt from q(Yt, Xt, θt).

4: Compute α(Yt, Xt) = min
{

π(Yt)
π(Xt)

, 1
}

.

5: Set Xt+1 = Yt with prob. α(Yt, Xt),
Xt+1 = Xt otherwise.

6: Update θt+1 = f(θt, X0, X1, X2, . . . , Xt).
7: Increment t.

Output: The sequence (Xt)
T
t=1.

There is an important theoretical problem with an adaptive MCMC algorithm like
that in table 2. Tuning the proposal distribution results in “loss of π as an invariant
distribution of the process (Xt)” (Andrieu and Thoms 2008, 345) if it is not done care-
fully. Tuning the proposal distribution alters the long-run behavior of the algorithm so
that it no longer produces the sought-after draws from the target distribution, π(X).
A solution to this problem is to tune the proposal distribution for some burn-in period
and then stop tuning so that the proposal distribution is stationary. Another solution is
to set up the algorithm so that tuning eventually recedes from the algorithm. The lat-
ter approach is referred to as vanishing or diminishing adaptation (Andrieu and Thoms
2008; Rosenthal 2011). With vanishing adaptation, if the algorithm runs for a sufficient
number of iterations, the proposal distribution stabilizes while also (hopefully) being
tuned to provide good coverage of the target distribution. The Mata functions presented
in this article are built to work with vanishing adaptation, but they can also be set up
so that no adaptation of the proposal distribution occurs.

2.1 Adaptive MCMC with vanishing adaptation

Before discussing implementation of vanishing adaptation, I must discuss how frequently
candidate draws should be accepted by an MCMC algorithm. Ideally, the acceptance rate
should be such that good coverage of the target distribution is achieved with the smallest



possible number of draws. Rosenthal (2011) provides an accessible treatment on opti-
mal acceptance rates in adaptive MCMC algorithms and a summary of the main ideas
and results. At the risk of oversimplifying, I provide some guidelines. For univariate
distributions, the optimal acceptance rate is about 0.44, and as the dimension of π(X)
increases to infinity, the optimal acceptance rate converges to 0.234. Rosenthal (2011)
points out that moderate departure from these rates is unlikely to greatly damage algo-
rithm performance and that often for distributions with even relatively small dimension
(that is, d ≥ 5), the optimal acceptance rate is close to the asymptotic bound of 0.234.
In table 3, I describe an algorithm that is tuned toward a targeted acceptance rate α∗

(presumably in or close to the range [0.234, 0.44]).

Table 3. Overview of an adaptive MH algorithm with a multivariate normal proposal
distribution and a specific tuning mechanism.

Adaptive MCMC algorithm with normal proposal and vanishing adaptation

1: Set starting values X0, µ0, Σ0, λ0, α
∗, δ (δ > 0), and draws T .

2: Set t = 0 and repeat steps 3–10 while t ≤ T :
3: Draw a candidate Yt ∼ MVN(Xt, λtΣt).

4: Compute α(Yt, Xt) = min
{

π(Yt)
π(Xt)

, 1
}

.

5: Set Xt+1 = Yt with prob. α(Yt, Xt),
Xt+1 = Xt otherwise.

6: Compute weighting parameter γt =
1

(1+t)δ
.

7: Update λt+1 = exp {γt (α(Yt, Xt)− α∗)}λt.
8: Update µt+1 = µt + γt(Xt+1 − µt).

9: Update Σt+1 = Σt + γt
{

(Xt+1 − µt) (Xt+1 − µt)
′
− Σt

}

.
10: Increment t.

Output: The sequence (Xt)
T
t=1.

Table 3 is a fairly complete description of how an adaptive MCMC algorithm might
be implemented and how the Mata functions presented in section 3 actually operate.
In step 1, the algorithm starts with the initial value X0; an initial variance–covariance
matrix for proposals, Σ0; an initial value of a scaling parameter, λ0; and a targeted
acceptance rate, α∗. The algorithm also requires a value for what can be considered an
averaging or damping parameter, δ, which controls how quickly the impact of the tuning
mechanism decays through the parameter γt = 1/(1+t)δ, calculated in step 6. For large
values of δ, adaptation ceases quickly as γ rapidly approaches zero; for values of δ close to
zero, adaptation occurs more slowly, and the algorithm uses more information about past
draws in tuning proposals. The Mata routines presented below allow the user to specify
such a δ parameter when implementing the algorithm.2 In steps 8 and 9, the algorithm
updates the mean and covariance matrix of the proposal distribution according to the
weighting parameter γt, and because γt eventually decays to zero, updating ceases, and

2. One might prefer this value to be as close to its upper bound as possible to reduce the impact of
tuning quickly; the tradeoff is that the proposal distribution may not be as well adapted.



the algorithm eventually carries on with stable proposal distribution characterized by
λt+1 = λt, µt+1 = µt, and Σt+1 = Σt.

If a researcher wished to write his or her own adaptive MCMC routine, the speci-
fication of the weighting scheme embodied in γ and δ on table 3 could be extended.
Andrieu and Thoms (2008) describe some other possibilities for adaptation, including
stochastic schemes or weighting functions that adapt as the algorithm continues. As
described by Andrieu and Thoms (2008, 356), virtually anything goes with the tuning
process, provided that the sequence γt satisfies the following properties:

∞
∑

t

γt = ∞,

∞
∑

t

γ1+ρ
t < ∞; ρ > 0

These conditions are satisfied by the weighting parameter used in the adaptive al-
gorithm in table 3 so long as δ ∈ (0, 1): the reason is that under these circumstances,
∑∞

t γt diverges, but a sufficiently large value of ρ that forces the series {1/(1 + t)δ}1+ρ

to converge can always be found.

A last detail to address is how to initialize the value of the scaling parameter λ at the
start of the algorithm. According to Andrieu and Thoms (2008, 359), theory suggests
that a good place to start with the scaling parameter is λ ≈ 2.382/d, where d is the
dimension of the target distribution. The Mata routines presented below all use this
value as a starting point, with one exception.

There are many variations on the basic theme of the algorithm presented in table 3.
One possibility is one-at-a-time, sequential sampling of values from the distribution,
which produces a “Metropolis-within-Gibbs” type sampler. Another possibility is to
work halfway between the “global” sampling algorithm of table 3 and the sequential
sampling, creating what might be labeled a block adaptive MCMC sampler.3 In my
experience, Metropolis-within-Gibbs samplers or block samplers are often useful in situ-
ations in which variables are scaled very differently or in situations where the researcher
might not have good intuition about starting values.

Related to determining how to execute the algorithm is the issue of how to choose
T , the length of the run. One would like to choose T large enough so that the conver-
gence criteria mentioned above are satisfied and enough draws are produced for reliable
statistical inference. How does one know that the algorithm has achieved these goals?
This is a surprisingly complex question that really does not have a good answer. While
one can often detect problems with the algorithm, there is no way to guarantee that
the algorithm has converged. Gelman and Shirley (2011) describe different techniques
for assessing performance and convergence of the run, but they also emphasize the
complementary roles of visual inspection of results, understanding the application, and
understanding the subject matter. These issues are discussed at greater length in the
conclusion.

3. I follow the convention of referring to a sequential sampler as a “Metropolis-within-Gibbs” sampler,
even though many find this terminology misleading; see Geyer (2011, 28–29). What I call a “block”
sampler, some might call a “block-Gibbs” sampler.



3 Adaptive MCMC in Mata

3.1 A Mata function

Syntax

The first Mata implementation of the algorithms described in section 2 is through the
Mata function amcmc(),4 which uses different types of adaptive MCMC samplers based
upon user-provided information. In addition to describing details of sampling (spec-
ification of draws, weighting parameters, and acceptance rates), the user can specify
whether sampling is to proceed all at once (“globally”), in blocks, or sequentially. The
user can also set up amcmc() to work with a “stand-alone” distribution or with an
objective function previously set up to work with moptimize() or optimize(). The
syntax is as follows:

real matrix amcmc(string rowvector alginfo,

pointer (real scalar function) scalar lnf, real rowvector xinit,

real matrix Vinit, real scalar draws, real scalar burn,

real scalar delta, real scalar aopt, transmorphic arate,

transmorphic vals, transmorphic lambda,

real matrix blocks | transmorphic M, string scalar noisy)

Description

If the dimension of the target probability distribution (or the parameter vector) is char-
acterized as a 1× c row vector, amcmc() returns a matrix of draws from the distribution
organized in c columns and r = draws− burn rows, so each row of the returned matrix
can be considered a draw from the target distribution lnf. Additional information about
the draws is collected in three arguments overwritten by amcmc(): arate, vals, and lam,
which contain actual acceptance rates, the log value of the target distribution at each
draw, and λ, the proposal scaling parameters. If a Metropolis-within-Gibbs sampler or
a block sampler is used, lam, as well as arate, is returned as a row vector equal in length
to the dimension of the distribution or the number of blocks.

Information about how to draw from the target distribution and how the distribution
has been programmed is passed to the command as a sequence of strings in the (string)
row vector alginfo. This row vector can contain information about whether sampling is
to be sequential (mwg), in blocks (block), or global (global). If the user is interested in
applying amcmc() to a model statement constructed with moptimize() or optimize(),
information on this and the type of evaluator function used with the model should also
be contained in alginfo. Target distribution information can be standalone, moptimize,
or optimize. Information on evaluator type can also be of any sort (that is, d0, v0,

4. Stata 12 is required for usage of amcmc().



etc.).5 A final option that can be passed along as part of alginfo is the key fast, which
will execute the adaptive MCMC algorithm more quickly but less exactly. I give some
examples of what alginfo might look like in the remarks about syntax.

The second argument of amcmc(), lnf, is a pointer to the target distribution, which
must be written in log form. xinit and Vinit are conformable initial values for the
routine and an initial variance–covariance matrix for the proposal distribution. The
scalar draws and burn tell the routine how many draws to make from the distribution
and how many of these draws are to be discarded as an initial burn-in period. delta
is a string scalar that describes how adaptation is to occur, while aopt is the desired
acceptance rate; see section 2.1.

The real matrix blocks contains information on how amcmc() should proceed if the
user wishes to draw from the function in blocks. If the user does not wish to draw in
blocks, the user simply passes a missing value for this argument. If the user provides an
argument here, but does not specify block as part of alginfo, sampling will not occur
in blocks.

If the user is drawing from a function constructed with a prespecified model com-
mand written to work with either moptimize() or optimize(), this model statement is
passed to amcmc() via the optional M argument. As described below, this argument can
also have other uses; for example, it can pass up to 10 additional explanatory variables
to amcmc().

The final option is noisy, and if the user specifies noisy="noisy", amcmc() will
produce feedback on drawing as the algorithm executes. A dot is produced every time
the evaluation function lnf is called (not every time a “draw” is completed, because the
latter is taken by amcmc() to mean a complete run through the routine). Thus, if a
block sampler or a Metropolis-within-Gibbs style sampler is used, a draw is deemed to
have occurred when all the blocks or variables have been drawn once. The value of the
target distribution is reported every 50 evaluations.

Remarks

It is helpful to have a few examples of how information about the draws to be conducted
can be passed to the amcmc() function through the first argument, alginfo. This is
described in table 4.

Table 4. Options for using amcmc(), passed in the argument alginfo

Sampling information mwg, global, block
Model definition moptimize, optimize, standalone
Evaluator type d*, q*, e*, g*, v*
Other information fast

5. The routine will not work with evaluators of the lnf type.



The user can select any item from each of the rows on table 4 and pass it to amcmc()
as part of alginfo. For example, if the user is trying to draw from a function that was
written as a type d2 evaluator to work with moptimize and the user wished to use a
global sampler, he or she might specify

alginfo="moptimize","d2","global"

Order does not matter, so the user could also specify

alginfo="d0","moptimize","global"

If the user had a stand-alone function and wished to do Metropolis-within-Gibbs
style sampling from this function, he or she would specify

alginfo="standalone","mwg"

or even just alginfo="mwg" because if no model statement is submitted, amcmc() will
assume that the function is stand alone. The final option that the user might specify
is the "fast" option, which tacks on the string fast to alginfo. This option is helpful
when the user wishes to sample globally or in blocks but has a problem with large
dimension. Because the global and block samplers use Cholesky decomposition of the
proposal covariance matrix, large problems may be time consuming. The "fast" option
circumvents the potential slowdown by working with just the diagonal elements of the
proposal covariance matrix, so one can avoid Cholesky decomposition. One should,
however, be cautious in using this option and should probably apply it only when the
user can be reasonably certain that distribution variables are independent.6

The row vector xinit contains an initial value for the draws, while Vinit is an initial
variance–covariance matrix that may be a conformable identity matrix. If, however,
Vinit is a row vector, amcmc() will interpret this as the diagonal of a variance matrix
with zero off-diagonal entries.

While the user-specified scalar delta controls how rapidly adaptation vanishes, the
user may also specify delta equal to missing (delta = .). amcmc() will then assume that
the user does not want any adaptation to occur but instead wishes to draw from the
invariant proposal distribution with mean xinit and covariance matrix Vinit. In this
case, the user must supply values of lambda to describe to the algorithm how to scale
draws from the proposal distribution. Constructing the code this way allows users to
run the adaptive algorithm for a while, and once it has converged, it allows users to
switch to an algorithm using an invariant proposal distribution. If a global sampler is
used, only one value of lambda is required; otherwise, lambda must be conformable with
the sampler. So, if the option mwg is used, the dimension of lambda must match the
dimension of the target distribution; if the option block is used, lambda must contain
as many entries as the number of blocks.

Whether one wishes to do Metropolis-within-Gibbs sampling, block sampling, or
global sampling, the routine requires the same set of input information (although the

6. I included this option hoping that users might try it and see for what problems, if any, it does and
does not work well.



overwritten values lam and arate differ slightly) with one exception. When one samples
in block form, amcmc() requires a matrix to be provided in block, in which the number
of rows is equal to the number of sampling groups, and the values to be drawn together
have 1s in the appropriate positions and 0s elsewhere. So, for example, if one wished to
draw from a five-dimensional distribution and wished to draw values for the first three
arguments together, and then arguments four and five together, one would set up a
matrix B as follows:

B =

(

1 1 1 0 0
0 0 0 1 1

)

One can also pass an identity matrix as a block matrix:

B =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













One might suspect that this would result in the same sort of algorithm obtained by
specifying alginfo="mwg", but this is not the case. After each draw, the block algorithm
updates the entire mean proposal vector and covariance matrix, so information on each
draw is used to prepare for the next.7 While not the intended use of the block-sampling
algorithm, if one leaves a column of all 0s in the matrix B, the corresponding value of
the parameter will never be drawn. This is a quick, albeit not particularly efficient, way
of constraining parameters at particular values during the drawing process.

The argumentM of amcmc() can contain a previously assembled model statement, or
it can be used to pass additional arguments of a function to the routine.8 For example,
if the user has written a function to be sampled from that has three arguments, such
as lnf(x,Y,Z), the user would specify the standalone option in the variable alginfo,
assemble the additional arguments into a pointer, and then pass this information to
amcmc(). In this instance, M might be constructed in Mata as follows:

M=J(2,1,NULL)

M[1,1]=&Y

M[2,1]=&Z

M can then be passed to amcmc(), which will use Y and Z (in order) to evaluate
lnf(x,Y,Z). As shown in the examples, this usage of pointers can be handy when
amcmc() is used as part of a larger algorithm: one can continually change Y and Z

without actually having to explicitly declare that Y and Z have changed as the algorithm
executes.

7. Using amcmc() in this way is akin to what Andrieu and Thoms (2008, 360) describe as an adaptive
MCMC algorithm with “componentwise adaptive scaling”.

8. But not both; we assume that any arguments have already been built into the model statement if
a previously constructed model is used.



3.2 Adaptive MCMC via a structure

Syntax

Another alternative that has advantages in certain situations, particularly when one
wishes to do adaptive MCMC as one step in a larger sampling problem, is to set up an
adaptive MCMC sampling problem by using the set of functions amcmc *(). The user
first opens a problem using the amcmc init() function and then fills in the details of
the drawing procedure. The user can use the following functions to set up an adaptive
MCMC problem, with the arguments corresponding to those described in section 3.1:

A = amcmc init()

amcmc lnf(A, pointer (real scalar function) scalar f)

amcmc args(A, pointer matrix Z)

amcmc xinit(A, real rowvector xinit)

amcmc Vinit(A, real matrix Vinit)

amcmc aopt(A, real scalar aopt)

amcmc blocks(A, real matrix blocks)

amcmc model(A, transmorphic M)

amcmc noisy(A, string scalar noisy)

amcmc alginfo(A, string rowvector alginfo)

amcmc damper(A, real scalar delta)

amcmc lambda(A, real rowvector lambda)

amcmc draws(A, real scalar draws)

amcmc burn(A, real scalar burn)

Once a problem has been specified, a run can be initiated via the function

amcmc draw(A)

Results can be accessed via a series of functions of the form

amcmc results *(A)

where * in the above function can be any of the following: vals, arate, passes,
totaldraws, acceptances, propmean, propvar, or report. Additionally, users can
recover their initial specifications by using * = draws, aopt, alginfo, noisy, blocks,
damper, xinit, Vinit, or lambda. An additional function amcmc results lastdraw()

produces the value of only the last draw. Two other functions that are useful when one
is executing an adaptive MCMC draw as part of a larger algorithm are



amcmc append(A, string scalar append)

amcmc reeval(A, string scalar reeval)

The function amcmc append() allows the user to indicate that results should be overwrit-
ten by specifying append="overwrite". In this case, the results of only the most recent
draws are kept. This can be useful when doing an analysis where nuisance parameters of
a model are being drawn, and storing all the previous draws would tax the memory and
impact the speed of the algorithm’s operation. The function amcmc reeval() allows
the user to indicate whether the target distribution should be reevaluated at the last
draw before a proposed value is tried by specifying reeval="reeval". When the draw
is part of a larger algorithm, some of the arguments of the target distribution might
change as the larger algorithm proceeds. In these cases, the target distribution needs
to be reevaluated at the new argument values and the last previous draw to function
correctly. If the user sets reeval to anything else, it is assumed that nothing has changed
and that the value of the target distribution has not changed between draws.

Remarks

Some of the information accessible with amcmc results *() provides hints as to why
a user might prefer to use a problem statement to attack an adaptive MCMC problem
instead of the Mata function amcmc(). Using a problem statement is particularly useful
because one can easily stop, restart, and append a run within Mata’s structure envi-
ronment. In this way, a user can perform adaptive MCMC as part of a larger algorithm;
the structure makes it easy to retain information about past adaptation and runs as the
algorithm proceeds and also makes it easy to modify arguments of the algorithm. In
the model statement syntax, information about the number of times a given problem
has been initiated is retrievable via the function amcmc results passes(A), while the
acceptance history of an entire run is accessible via amcmc results acceptances(A).

Given the initialization of an adaptive MCMC problem A, one can run amcmc draw()

sequentially and results will be appended to previous results. Accordingly, the burn
period is active only the first time the function is executed. Thereafter, it is assumed
that the user wishes to retain all drawn values. As mentioned above, the user can
choose whether to retain all the information about previous draws with the function
amcmc append(). When a user specifies append="overwrite" to save the draws of only
the last run, the routine still includes all information about adaptation contained in the
entire drawing history.

When a user initializes an adaptive MCMC problem via amcmc init(), some defaults
are set unless overwritten by the user. The number of draws is set to 1, the burn period
is set to 0, the target distribution is assumed to be stand alone, the acceptance rate is
set to 0.234, and results are appended to previous results if multiple passes are made.
It is also assumed that the function does not need to be reevaluated at the last value
before drawing a new proposal.



Further description can be found in the help files, accessible by typing help mata

amcmc() or help mf amcmc at Stata’s command prompt.

4 Examples

4.1 Parameter estimation

For my first example, I apply adaptive MCMC to a simple estimation problem. Suppose
that I have already programmed a likelihood function to use with moptimize() in Mata,
but I wish to try another means of estimating parameters—perhaps because I have
found that maximization of the likelihood function is taking too long or presents other
difficulties or because I am worried about small-sample properties of the estimators.
I decide to try to fit the model by drawing directly from the conditional distribution
of parameters. The ideas derive from Bayes’s rule and the usual principles of Bayesian
estimation, but they can be applied to virtually any maximum likelihood problem.9 Via
Bayes’s rule, the distribution of parameters conditional on the data can be written as

p(β|X) =
p(X|β)p(β)

p(X)
=

p(X|β)p(β)
∫

p(X|β)p(β)dβ
(1)

If one has no prior information about parameter values, one can take p(β)—the prior dis-
tribution of parameters—to be (improper) uniform over the support of the parameters.
As this renders p(β) constant, one then obtains the posterior parameter distribution as

p(β|X) ∝ p(X|β) (2)

So, according to (2), one might interpret a likelihood function as the distribution of
parameters conditional on data up to a constant of proportionality. The conditional
mean of parameter values is then

E(β|X) =

∫

βp(β|X)dβ (3)

One can estimate E(β|X) by simulating the right-hand side of (3) via S draws from the
conditional distribution p(β|X),

E(β|X) ≈=
1

S

S
∑

s=1

β(s)

These simulations can also be used to characterize higher-order moments of the param-
eter distribution. I shall follow the nomenclature adopted by Chernozhukov and Hong
(2003) and refer to obtained estimators as Laplace-type estimators (LTEs) or quasi-
Bayesian estimators (QBEs).

Returning to the example, I will posit a simple linear model with log-likelihood
function,

lnL ∝
(y −Xβ)′(y −Xβ)

2σ2
−

n

2
lnσ2

9. They can also be applied to a wider variety of problems; see Chernozhukov and Hong (2003).



For comparison, in the following code, I take this simple model and fit it to some data by
using a type d0 evaluator and Mata’s moptimize() function. One subtlety of the code is
that the variance is coded in exponentiated form. This is done so that when amcmc() is
applied to the problem, the objective function is consistent with the multivariate normal
proposal distribution, which requires that parameters have support (−∞,∞).10 The
following code develops the model statement and fits the model via maximum likelihood:

. sysuse auto
(1978 Automobile Data)

. mata:
mata (type end to exit)

: function lregeval(M,todo,b,crit,s,H)
> {
> real colvector p1, p2
> real colvector y1
> p1=moptimize_util_xb(M,b,1)
> p2=moptimize_util_xb(M,b,2)
> y1=moptimize_util_depvar(M,1)
> crit=-(y1:-p1)´*(y1:-p1)/(2*exp(p2))-
> rows(y1)/2*p2
> }
note: argument todo unused
note: argument s unused
note: argument H unused

: M=moptimize_init()

: moptimize_init_evaluator(M,&lregeval())

: moptimize_init_evaluatortype(M,"d0")

: moptimize_init_depvar(M,1,"mpg")

: moptimize_init_eq_indepvars(M,1,"price weight displacement")

: moptimize_init_eq_indepvars(M,2,"")

: moptimize(M)
initial: f(p) = -18004
alternative: f(p) = -10466.142
rescale: f(p) = -298.60453
rescale eq: f(p) = -189.39334
Iteration 0: f(p) = -189.39334 (not concave)
Iteration 1: f(p) = -172.06827 (not concave)
Iteration 2: f(p) = -162.08563 (not concave)
Iteration 3: f(p) = -156.61996 (not concave)
Iteration 4: f(p) = -143.55991
Iteration 5: f(p) = -129.10949
Iteration 6: f(p) = -127.05705
Iteration 7: f(p) = -127.05447
Iteration 8: f(p) = -127.05447

10. A less efficient way to deal with parameters with restricted supports is to program the distribution
so that it returns a missing value whenever a draw lands outside the appropriate range.



: moptimize_result_display(M)

Number of obs = 74

mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
price -.0000966 .0001591 -0.61 0.544 -.0004085 .0002153

weight -.0063909 .0011759 -5.43 0.000 -.0086956 -.0040862
displacement .0054824 .0096492 0.57 0.570 -.0134296 .0243945

_cons 40.10848 1.974222 20.32 0.000 36.23907 43.97788

eq2
_cons 2.433905 .164399 14.80 0.000 2.111688 2.756121

: end

I now estimate model parameters via simulation by treating the likelihood function
like the parameters’ conditional distribution. I start with a Metropolis-within-Gibbs
sequential sampler to obtain 10,000 draws for each parameter value, discarding the first
20 draws as a burn-in period. I start with this sampler because it is usually a relatively
safe choice when there is little information on starting points, which I am pretending are
unavailable. I set the initial values used by the sampler to 0 and use an identity matrix
as an initial covariance matrix for proposals. I choose a value of delta = 2/3, which
allows a fairly conservative amount of adaptation to occur and a desired acceptance rate
of 0.4.11

. set seed 8675309

. mata:
mata (type end to exit)

: alginfo="moptimize","d0","mwg"

: b_mwg=amcmc(alginfo,&lregeval(),J(1,5,0),I(5),10000,50,2/3,.4,
> arate=.,vals=.,lambda=.,.,M)

: st_matrix("b_mwg",mean(b_mwg))

: st_matrix("V_mwg",variance(b_mwg))

: end

. local names eq1:price eq1:weight eq1:displacement eq1:_cons eq2:_cons

. matrix colnames b_mwg=`names´

. matrix colnames V_mwg=`names´

. matrix rownames V_mwg=`names´

. ereturn post b_mwg V_mwg

11. Regarding what might seem a relatively short burn-in period, I set this period to be short enough
to show the convergence behavior of the algorithm.



. ereturn display

Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
price -.0001322 .0001714 -0.77 0.440 -.0004681 .0002036

weight -.0057418 .0018016 -3.19 0.001 -.009273 -.0022107
displacement .00218 .0125846 0.17 0.862 -.0224854 .0268454

_cons 39.00328 3.095009 12.60 0.000 32.93717 45.06939

eq2
_cons 2.518081 .2071915 12.15 0.000 2.111993 2.924169

Although the algorithm was not allowed a very long burn-in time, the simulation-based
parameter estimates are close to those obtained by maximum likelihood.12 How fre-
quently were draws of each parameter accepted, and how close is the algorithm working
around the maximum value of the function? This information is returned as the over-
written arguments arate and vals.

. mata:
mata (type end to exit)

: arate´
1

1 .3806030151
2 .3807035176
3 .3870351759
4 .4020100503
5 .3951758794

: max(vals),mean(vals)
1 2

1 -127.1097198 -130.2193494

: end

The sampler finds and operates close to the maximum value of the log likelihood (which
was −127.05), and the acceptance rates of the draws are very close to the desired
acceptance rate of 0.4. To understand what the distribution of the parameters looks
like, I pass the information about parameter draws to Stata and form visual pictures
of results. The code below accomplishes this and creates two panels of graphs: one
that shows the distribution of parameters (figure 1) and one that shows how parameter
draws and the value of the function evolved as the algorithm moved (figure 2).

12. One possible issue here is whether it is appropriate to summarize the results in usual Stata format
like this. One can assume that this is acceptable here because the parameters are collectively
normally distributed. Whether this is true in more general problems requires careful thought.



. preserve

. clear

. local varnames price weight displacement constant std_dev

. getmata (`varnames´)=b_mwg

. getmata vals=vals

. generate t=_n

. local graphs

. local tgraphs

. foreach var of local varnames {
2. quietly {
3. histogram `var´, saving(`var´, replace) nodraw
4. twoway line `var´ t, saving(t`var´, replace) nodraw
5. }
6. local graphs "`graphs´ `var´.gph"
7. local tgraphs "`tgraphs´ t`var´.gph"
8. }

. histogram vals, saving(vals,replace) nodraw
(bin=39, start=-183.40158, width=1.4433811)
(file vals.gph saved)

. twoway line vals t, saving(vals_t,replace) nodraw
(file vals_t.gph saved)

. graph combine `graphs´ vals.gph

. graph export vals_mwg.eps, replace
(file vals_mwg.eps written in EPS format)

. graph combine `tgraphs´ vals_t.gph

. graph export valst_mwg.eps, replace
(file valst_mwg.eps written in EPS format)

. restore

Figure 1 is composed of histograms for each parameter, with the last panel being the
histogram of the log likelihood. Parameters seem to be approximately normally dis-
tributed (with a few blips), excepting the first few draws, and they are also centered
around parameter values obtained via maximum likelihood.
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Figure 1. The distribution of the parameters after an MCMC run

Figure 2 shows how the drawn values for parameters and the value of the objective
function evolved as the algorithm proceeded.
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Figure 2. A look at the estimates

From figure 2, one can see that after a few iterations, the algorithm settles down
to drawing from an appropriate range. The draws are also autocorrelated, and this
autocorrelation is a general property of any MCMC algorithm, adaptive or not. Thus,



when one applies MCMC algorithms in practice, it is sometimes beneficial to thin out
the draws by keeping, say, only every 5th or 10th draw or to jumble draws.

To illustrate the use of a global sampler and some of the problems one might en-
counter in an MCMC-based analysis, I now apply a global sampler to the problem so that
all parameter values are drawn simultaneously. The following code shows the results of
a run of 12,000 draws with a burn-in period of 2,000:

. set seed 8675309

. mata:
mata (type end to exit)

: alginfo="global","d0","moptimize"

: b_glo=amcmc(alginfo,&lregeval(),J(1,5,0),I(5),12000,2000,2/3,.4,
> arate=.,vals=.,lambda=.,.,M)

: st_matrix("b_glo",mean(b_glo))

: st_matrix("V_glo",variance(b_glo))

: end

. local names eq1:price eq1:weight eq1:displacement eq1:_cons eq2:_cons

. matrix colnames b_glo=`names´

. matrix colnames V_glo=`names´

. matrix rownames V_glo=`names´

. ereturn post b_glo V_glo

. ereturn display

Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
price -.0004614 .0019104 -0.24 0.809 -.0042057 .0032829

weight .013056 .0232029 0.56 0.574 -.0324209 .0585328
displacement -.1798405 .3163187 -0.57 0.570 -.7998138 .4401328

_cons 15.16227 20.84814 0.73 0.467 -25.69933 56.02387

eq2
_cons 4.017751 1.880026 2.14 0.033 .3329679 7.702533

One can see from these results that the algorithm has not quickly found an appropriate
range of values for parameter values. Figures 3 and 4 indicate why—the algorithm
spends considerable time stuck away from the maximal function value.
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Figure 3. Distribution of parameters after a global MCMC run that is slow to converge
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Figure 4. Characteristics of draws after a global MCMC run

The problem observed in figures 3 and 4 is that the algorithm was not allowed to burn
in for a long enough time for the global MCMC algorithm to work correctly. While
the parameter values eventually settled down closer to their “true” values, it took the
algorithm upward of 6,000 draws to find the right range. In fact, it looks as though the
algorithm settled into a stable range for draws 2,000–6,000 or so but then once again
experienced a jump to the correct stable range, a phenomenon known as “pseudoconver-



gence” (Geyer 2011). This behavior is also responsible for the multimodal appearance
of the histograms on figure 3.

While my intent is to illustrate how the Mata function amcmc() works, my example
also illustrates what can happen when one fails to specify appropriate adjustment pa-
rameters and does not allow an adaptive MCMC algorithm to run long enough in a given
estimation problem. One may unknowingly get bad results, as the case would be if
the global algorithm had been allowed to run for only 5,000 iterations. This sometimes
happens if poor starting values are mixed with parameters that have very different mag-
nitudes, for example, the constant in the initial model relative to the other parameters.
From inspecting figure 3, one can see that the constant did not find its correct range
until just after 6,000 draws, and this is likely what caused the problem.

This discussion motivates using amcmc() in steps, where a slower but relatively
robust sampler (a Metropolis-within-Gibbs sampler, in this case) is used to orient pa-
rameters close to their correct range before a global sampler is used, as shown in the
following code:

. mata:
mata (type end to exit)

: alginfo="mwg","d0","moptimize"

: b_start=amcmc(alginfo,&lregeval(),J(1,5,0),I(5),5*1000,5*100,2/3,.4,
> arate=.,vals=.,lambda=.,.,M)

: alginfo="global","d0","moptimize"

: b_glo2=amcmc(alginfo,&lregeval(),mean(b_start),
> variance(b_start),11000,1000,2/3,.4,
> arate=.,vals=.,lambda=.,.,M)

: st_matrix("b_glo2",mean(b_glo2))

: st_matrix("V_glo2",variance(b_glo2))

: end

. local names eq1:price eq1:weight eq1:displacement eq1:_cons eq2:_cons

. matrix colnames b_glo2=`names´

. matrix colnames V_glo2=`names´

. matrix rownames V_glo2=`names´

. ereturn post b_glo2 V_glo2

. ereturn display

Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
price -.0001059 .0001584 -0.67 0.504 -.0004164 .0002046

weight -.0063727 .0012014 -5.30 0.000 -.0087275 -.0040179
displacement .0056462 .0099215 0.57 0.569 -.0137997 .025092

_cons 40.10216 1.912111 20.97 0.000 36.35449 43.84982

eq2
_cons 2.480892 .1665249 14.90 0.000 2.15451 2.807275



Thus one can then draw parameters that are scaled differently either alone or in blocks
until the algorithm finds it footing, and then proceed with a global algorithm. I have
motivated the use of a global drawing method because of its clear speed advantages, but
another more subtle reason to use it that might not be obvious when visually inspecting
the graphs is that global draws often exhibit less serial correlation across draws.13 The
conclusion provides sources with additional tips for setting up, analyzing, and presenting
the results of an MCMC run.

Yet another alternative is to once again begin with a Metropolis-within-Gibbs sam-
pler to characterize the distribution of the parameters and, once this is done sufficiently
well, to run the algorithm without adaptation so that one is using an invariant proposal
distribution and a regular MCMC algorithm. After an initial run with the "mwg" option,
I submit the mean and variance of results to the global sampler with no adaptation
parameter, passing a value of missing (.) for delta. Because I am not passing any
information to amcmc() on how to do adaptation in this case, I am required to submit
a value for lambda, so I choose λ = 2.382/n.14 Finally, I also submit a missing value
for aopt. Because no adaptation occurs, aopt is not used by the algorithm.

. mata:
mata (type end to exit)

: alginfo="mwg","d0","moptimize"

: b_start=amcmc(alginfo,&lregeval(),J(1,5,0),I(5),5*1000,5*100,2/3,.4,
> arate=.,vals=.,lambda=.,.,M)

: alginfo="global","d0","moptimize"

: b_glo3=amcmc(alginfo,&lregeval(),mean(b_start),
> variance(b_start),10000,0,.,.,
> arate=.,vals=.,(2.38^2/5),.,M)

: arate´
.2253

: mean(b_glo3)´
1

1 -.0000916295
2 -.0064095109
3 .0054916501
4 40.14276799
5 2.497166774

: end

Apparently, the proposal distribution was successfully tuned in the initial run with the
Metropolis-within-Gibbs sampler. The mean values of the parameters obtained from
the global draw are close to their maximum-likelihood values, and the acceptance rate
is in the healthy range.

13. I thank an anonymous referee for pointing this out.
14. Note that I did not retain and submit the values of lambda from the initial run—this is because the

global sampler requires a scalar value for lambda, while the Metropolis-within-Gibbs run returns a
vector of values overwritten in lambda.



I could have also set up this problem using a structure as follows:

. mata:
mata (type end to exit)

: A=amcmc_init()

: amcmc_alginfo(A,("global","d0","moptimize"))

: amcmc_lnf(A,&lregeval())

: amcmc_xinit(A,J(1,5,0))

: amcmc_Vinit(A,I(5))

: amcmc_model(A,M)

: amcmc_draws(A,4000)

: amcmc_damper(A,2/3)

: amcmc_draw(A)

: end

I can now access results using the previously described amcmc results *(A) set of
functions.

4.2 Censored quantile regression

While the previous example demonstrated the basic principles and how one might apply
adaptive MCMC in problems of parameter estimation, the example did not show how the
methods might work when the usual maximization-based techniques fail. Chernozhukov
and Hong (2003) use as an example censored quantile regression originally developed in
Powell (1984) and extended in Powell (1986), which, as Chernozhukov and Hong (2003,
296) note, provides a way to do “valid inference in Tobin–Amemiya models without dis-
tributional assumptions and with heteroskedasticity of unknown form”. Unfortunately,
the model is hard to handle with the usual methods. The objective function is

Ln(θ) = −

n
∑

i

ρτ{Yi −max (ci, Xiβ)} (4)

where ci in (4) denotes a (left) censoring point that might be specific to the ith ob-
servation, and ρτ (u) = {τ − (1(u < 0)}u. τ ∈ (0, 1) is the quantile of interest. Esti-
mation using derivative-based maximization methods is problematic because the objec-
tive function (4) has flat regions and discontinuities. While one might do well with a
nonderivative-based optimization method such as Nelder–Mead, one is then confronted
with the problem of characterizing the parameters’ distribution and getting standard
errors. For these reasons, one might opt for an LTE or a QBE estimator.



To apply amcmc() to the problem, I first program the objective function as follows:15

. mata:
mata (type end to exit)

: void cqregeval(M,todo,b,crit,g,H) {
> real colvector u,Xb,y,C
> real scalar tau
>
> Xb =moptimize_util_xb(M,b,1)
> y =moptimize_util_depvar(M,1)
> tau =moptimize_util_userinfo(M,1)
> C =moptimize_util_userinfo(M,2)
> u =(y:-rowmax((C,Xb)))
> crit =-colsum(u:*(tau:-(u:<0)))
> }
note: argument todo unused
note: argument g unused
note: argument H unused

: end

The following code sets up a model statement for use with the function moptimize( )

(see [M-5] moptimize( )). One can follow the Mata code with moptimize(M) to verify
that this model and variations on the basic theme, obtained by dropping or adding
additional variables, encounter difficulties.

. webuse laborsub, clear

. gen censorpoint=0

. mata:
mata (type end to exit)

: M=moptimize_init()

: moptimize_init_evaluator(M,&cqregeval())

: moptimize_init_depvar(M,1,"whrs")

: moptimize_init_eq_indepvars(M,1,"kl6 k618 wa")

: tau=.6

: moptimize_init_userinfo(M,1,tau)

: st_view(C=.,.,"censorpoint")

: moptimize_init_userinfo(M,2,C)

: moptimize_init_evaluatortype(M,"d0")

: end

15. One might code the objective function without summing over observations. I sum over observations
so that the objective is compatible with Nelder–Mead in Stata, which requires a type d0 evaluator.



Setting up the problem like this allows the use of amcmc(), where I implement the
strategy of using a Metropolis-within-Gibbs-type algorithm followed by a global sampler.

. mata:
mata (type end to exit)

: alginfo="mwg","d0","moptimize"

: b_start=amcmc(alginfo,&cqregeval(),J(1,4,0),I(4),5000,1000,2/3,.4,
> arate=.,vals=.,lambda=.,.,M)

: alginfo="global","d0","moptimize"

: b_end=amcmc(alginfo,&cqregeval(),mean(b_start),
> variance(b_start),20000,10000,1,.234,arate=.,vals=.,lambda=.,.,M)

: end

Because this application might be of more general interest, I developed the command
mcmccqreg, which is a wrapper for the LTE and QBE estimation of censored quantile
regression. The previous code can be executed by the command.

. set seed 584937

. quietly mcmccqreg whrs kl6 k618 wa, tau(.6) sampler("mwg") draws(5000)
> burn(1000) dampparm(.667) arate(.4) censorvar(censorpoint)

. matrix binit=e(b)

. matrix V=e(V)

. mcmccqreg whrs kl6 k618 wa, tau(.6) sampler("global") draws(20000)
> burn(10000) arate(.234) saving(lsub_draws) replace
> from(binit) fromv(V)

Powell´s mcmc-estimated censored quantile regression
Observations: 250
Mean acceptance rate: 0.359
Total draws: 20000
Burn-in draws: 10000
Draws retained: 10000

whrs Coef. Std. Err. t P>|t| [95% Conf. Interval]

kl6 -1175.389 152.6341 -7.70 0.000 -1474.583 -876.1953
k618 -171.3108 23.75806 -7.21 0.000 -217.8814 -124.7402

wa -29.23027 10.74507 -2.72 0.007 -50.29276 -8.167779
_cons 2638.497 500.8126 5.27 0.000 1656.804 3620.191

Value of objective function:
Mean: -89298.96
Min: -89295.52
Max: -89308.58

Draws saved in: lsub_draws

*Results are presented to conform with Stata covention, but
are summary statistics of draws, not coefficient estimates.

One can see from the way the command is issued how information about the sampler,
the drawing process, and the censoring point (which has default of 0 for all observations)
can be controlled using the mcmccqreg command. The command produces “estimates”
that are summary statistics of the sampling run. mcmccqreg allows one to save results,
and the results of the run are saved in the file lsub draws with the objective function



value after each draw. The user can then easily analyze the draws using Stata’s graphing
and statistical analysis tools. While the workings of the command derive more or less
directly from the description of amcmc(), more information about the command and
some additional examples can be found in the mcmccqreg’s help file.

4.3 Drawing from a distribution

I now show how to use amcmc() to draw from a distribution. Suppose that I have devel-
oped a theory that says three variables are jointly distributed according to a distribution
characterized by

p(x1, x2, x3) ∝ exp
{

−x2
1 − 0.5x2

2 + x1x2 − 0.05(x3 − 100)2
}

As written, p does not integrate to one and seems hard to invert. While Metropolis-
within-Gibbs or global sampling works fine with this example, to illustrate the block
sampler, I will draw from the distribution in blocks, where values for the first two
arguments are drawn together, followed by a draw of the third. Thus the block matrix
to be passed to amcmc() is

B =

(

1 1 0
0 0 1

)

The code that programs the function and draws from the distribution is as follows:

. set seed 262728

. mata:
mata (type end to exit)

: real scalar ln_fun(x)
> {
> return(-x[1]^2-1/2*x[2]^2+x[1]*x[2]-.05*(x[3]-100)^2)
> }

: B=(1,1,0) \ (0,0,1)

: alginfo="standalone","block"

: x_block=amcmc(alginfo,&ln_fun(),J(1,3,0),I(3),4000,200,2/3,.4,
> arate=.,vals=.,lambda=.,B)

: end



The example is set up to draw 4,000 values with a burn-in period of 200. Graphs of the
simulation results are shown in figures 5 and 6.
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Figure 5. Draws and the log value of the distribution
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The graphs give a visual of the marginal distributions for the variables, while the time-
series diagram verifies that our simulation run is getting good coverage and rapid con-
vergence to the target distribution.

A different way to draw from this distribution would be to set up an adaptive MCMC

problem via a structured set of Mata functions.

. mata:
mata (type end to exit)

: A=amcmc_init()

: amcmc_lnf(A,&ln_fun())

: amcmc_alginfo(A,("standalone","block"))

: amcmc_draws(A,4000)

: amcmc_burn(A,200)

: amcmc_damper(A,2/3)

: amcmc_xinit(A,J(1,3,0))

: amcmc_Vinit(A,I(3))

: amcmc_blocks(A,B)

: amcmc_draw(A)

: end

4.4 Bayesian estimation of a mixed logit model

In this section, I describe the nuts and bolts of Bayesian estimation of a mixed logit
model; the implementation is available via the command bayesmixedlogit, which I
have written and made available for download. The wrapper function bayesmixedlogit

adds some features but essentially works as described in this section.

While there is no strong reason to prefer using the amcmc routines as a function or
a structure in the previous examples, the power and flexibility of structured objects in
Mata is indispensable in this example. My exposition of the basic ideas follows Train
(2009) as closely as possible, which also contains a nice overview of the principles. The
example assumes that one has access to traindata.dta, which is used by Hole (2007)
to illustrate estimation of a mixed logit model by maximum simulated likelihood.16

The help file for amcmc—accessible by typing help mata amcmc() or help mf amcmc

at Stata’s command prompt—describes an example that relies on data downloadable
from the Stata website.

The data concern n = 1, 2, 3, . . . , N people, each of whom makes a selection from
among j = 1, 2, 3, . . . , J choices on occasions t = 1, 2, 3, . . . , T . For each choice made,
there are a set of covariates xnjt that explain n’s choices at t. A person’s utility from
the jth choice on occasion t is specified as

Unjt = β′
nxnjt + ǫnjt (5)

16. The data are downloadable from Train’s website at http://eml.berkeley.edu/∼train/ and can also
be found at http://fmwww.bc.edu/repec/bocode/t/traindata.dta.



where in (5), ǫnjt is an independent identically distributed extreme value, and βn are
individual-specific parameters. Variation in these parameters across the population is
captured by assuming parameters normally distributed with mean b and covariance
matrix W. I denote a person’s choice at t as ynt ∈ J . Then the probability of observing
person n’s sequence of choices is

L(yn|β) =
∏

t

eβ
′

nxnyntt

∑J
j=1 e

β′

nxnjt

(6)

Given the distribution of β, I can write the above conditional on the distribution of
parameters, φ(β|b,W), and integrate over the distribution of parameter values to get

L(yn|b,W) =

∫

L(yn|β)φ(β|b,W)dβ

In a Bayesian approach, a prior h(b,W) is assumed, and the joint posterior likelihood
of the parameters is formed using

H(b,W|Y,X) ∝
∏

n

L(yn|b,W)h(b,W) (7)

Because it is difficult to compute the likelihood in (7), simulation-based methods are
usually used in estimation, as in the package mixlogit, developed in Hole (2007).17 An
alternative is a Bayesian approach. As described by Train (2009), estimation becomes
fairly easy (at least conceptually) if one breaks the problem into a sequence of condi-
tional distributions, taking the view that each set of individual-level coefficients βn are
additional parameters to be estimated. The posterior distribution of parameters given
data becomes

H(b,W, βn, n = 1, 2, 3, . . . , N |y,X) ∝
∏

n

L(yn|βn)φ(βn|b,W)h(b,W) (8)

Following the outline given in Train (2009, 301–302), we see that drawing from the
posterior proceeds in three steps. First, b is drawn conditional on βn and W; then W
is drawn conditional on b and βn; and finally, the values of βn are drawn conditional on
b and W. The first two steps are straightforward, assuming that the prior distribution
of b is normal with extremely large variance and that the prior for W is an inverted
Wishart with K degrees of freedom and an identity scale matrix. In this case, the
conditional distribution of b is N(β,WN−1), where β is the mean of the βn’s. The
conditional distribution of W is an inverted Wishart with K + N degrees of freedom
and scale matrix (KI + NS)/(K + N), where S = N−1

∑

n(βn − b)(βn − b)′ is the
sample variance of the βn’s about b.

The distribution of βn given choices, data, and (b,W) has no simple form, but from
(8), we see that the distribution of a particular person’s parameters obeys

K(βn|b,W, yn, Xn) ∝ L(yn|βn)φ(βn|b,W) (9)

17. From the Stata prompt, type search mixlogit.



where the term L(yn|βn) in (9) is given by (6). This is a natural place to apply MCMC

methods, and it is here where I can use the amcmc *() suite of functions.

I now return to the example. traindata.dta contains information on the energy
contract choices of 100 people, where each person faces up to 12 different choice oc-
casions. Suppliers’ contracts are differentiated by price, the type of contract offered,
location to the individual, how well-known the supplier is, and the season in which the
offer was made.

As a point of comparison, I fit the model in Train (2009, 305) using mixlogit (after
download and installation).

. clear all

. set more off

. use http://fmwww.bc.edu/repec/bocode/t/traindata.dta

. set seed 90210

. mixlogit y, rand(price contract local wknown tod seasonal) group(gid) id(pid)

Iteration 0: log likelihood = -1253.1345 (not concave)
Iteration 1: log likelihood = -1163.1407 (not concave)
Iteration 2: log likelihood = -1142.7635
Iteration 3: log likelihood = -1123.6896
Iteration 4: log likelihood = -1122.6326
Iteration 5: log likelihood = -1122.6226
Iteration 6: log likelihood = -1122.6226

Mixed logit model Number of obs = 4780
LR chi2(6) = 467.53

Log likelihood = -1122.6226 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean
price -.8908633 .0616638 -14.45 0.000 -1.011722 -.7700045

contract -.22285 .0390333 -5.71 0.000 -.2993539 -.1463462
local 1.958347 .1827835 10.71 0.000 1.600098 2.316596

wknown 1.560163 .1507413 10.35 0.000 1.264715 1.85561
tod -8.291551 .4995409 -16.60 0.000 -9.270633 -7.312469

seasonal -9.108944 .5581876 -16.32 0.000 -10.20297 -8.014916

SD
price .1541266 .0200631 7.68 0.000 .1148036 .1934495

contract .3839507 .0432156 8.88 0.000 .2992497 .4686516
local 1.457113 .1572685 9.27 0.000 1.148873 1.765354

wknown -.8979788 .1429141 -6.28 0.000 -1.178085 -.6178722
tod 1.313033 .1648894 7.96 0.000 .9898559 1.63621

seasonal 1.324614 .1881265 7.04 0.000 .9558927 1.693335

The sign of the estimated standard deviations is irrelevant: interpret them as
being positive

To implement the Bayesian estimator, I proceed in the steps outlined by Train (2009,
301–302). First, I develop a Mata function that produces a single draw from the condi-
tional distribution of b.



. mata:
mata (type end to exit)

: real matrix drawb_betaW(beta,W) {
> return(mean(beta)+rnormal(1,cols(beta),0,1)*cholesky(W)´)
> }

: end

Next I use the instructions described in Train (2009, 299) to draw from the conditional
distribution of W. The Mata function is

. mata
mata (type end to exit)

: real matrix drawW_bbeta(beta,b)
> {
> v=rnormal(cols(b)+rows(beta),cols(b),0,1)
> S1=variance(beta)
> S=invsym((cols(b)*I(cols(b))+rows(beta)*S1)/(cols(b)+rows(beta)))
> L=cholesky(S)
> R=(L*v´)*(L*v´)´/(cols(b)+rows(beta))
> return(invsym(R))
> }

: end

I now have two of the three steps of the drawing scheme in place. The last task is more
nuanced and involves using structured amcmc problems in conjunction with the flexible
ways in which one can manipulate structures in Mata. The key is to think of drawing
each set of individual-level parameters βn as a separate adaptive MCMC problem. It is
helpful to first get all the data into Mata, get familiar with its structure, and then work
from there.

. mata:
mata (type end to exit)

: st_view(y=.,.,"y")

: st_view(X=.,.,"price contract local wknown tod seasonal")

: st_view(pid=.,.,"pid")

: st_view(gid=.,.,"gid")

: end

The matrix (really, a column vector) y is a sequence of dummy variables marking the
choices of individual n in each choice occasion, while the matrix X collects explanatory
variables for each potential choice. pid and gid are identifiers for individuals and choice
occasions, respectively. I now write a Mata function that computes the log probability
for a particular vector of parameters for a given person, conditional on that person’s
information.



. mata:
mata (type end to exit)

: real scalar lnbetan_bW(betaj,b,W,yj,Xj)
> {
> Uj=rowsum(Xj:*betaj)
> Uj=colshape(Uj,4)
> lnpj=rowsum(Uj:*colshape(yj,4)):-
> ln(rowsum(exp(Uj)))
> var=-1/2*(betaj:-b)*invsym(W)*(betaj:-b)´-
> 1/2*ln(det(W))-cols(betaj)/2*ln(2*pi())
> llj=var+sum(lnpj)
> return(llj)
> }

: end

The function takes in five arguments, the first of which is a parameter vector for the
person (that is, the values to be drawn). The second and third arguments characterize
the mean and covariance matrix of the parameters across the population.18 The fourth
and fifth arguments contain information about an individual’s choices and explanatory
variables.

The first line of code multiplies parameters by explanatory variables to form utility
terms, which are then shaped into a matrix with four columns. Individuals have four
options available on each choice occasion. After reshaping, the utilities from potential
choices on each occasion occupy a row, with separate choice occasions in columns. lnpj
then contains the log probabilities of the choices actually made—the log of utility less
the logged sum of exponentiated utilities. Finally, var computes the log distribution
of parameters about the conditional mean, and llj sums the two components. The
result is the log likelihood of individual n’s parameter values, given choices, data, and
the parameters governing the distribution of individual-level parameters.

I now set up a structured problem for each individual in the dataset. I begin by
setting up a single adaptive MCMC problem and then replicate this problem using J( )

(see [M-5] J( )) to match the number of individual-level parameter sets—the same as
the number of individual-level identifiers in the data (gid)—characterized via Mata’s
panelsetup( ) (see [M-5] panelsetup( )) function.

18. This function is not as fast as it could be, and it is also specific to the dataset. One way to speed the
algorithm is to compute the Cholesky decomposition of W once before individual-level parameters
are drawn. The wrapper bayesmixedlogit exploits this and a few other improvements.



. mata
mata (type end to exit)

: m=panelsetup(pid,1)

: Ap=amcmc_init()

: amcmc_damper(Ap,1)

: amcmc_alginfo(Ap,("standalone","global"))

: amcmc_append(Ap,"overwrite")

: amcmc_lnf(Ap,&lnbetan_bW())

: amcmc_draws(Ap,1)

: amcmc_append(Ap,"overwrite")

: amcmc_reeval(Ap,"reeval")

: A=J(rows(m),1,Ap)

: end

I also apply the amcmc option "overwrite", which means that the results from only
the last round of drawing will be saved. Specifying the "reeval" option means that
each individual’s likelihood will be reevaluated at the new parameter values and the old
values of coefficients before drawing.

I now duplicate the problem by forming a matrix of adaptive MCMC problems—
one for each individual—and then use a loop to fill in individual-level choices and
explanatory variables as arguments. In the end, the “matrix” A is a collection of 100
separate adaptive MCMC problems. Before this, some initial values for b and W are set,
and some initial values for individual-level parameters are drawn. I set up the pointer
matrix Args to hold this information along with the individual-level information.

. mata
mata (type end to exit)

: Args=J(rows(m),4,NULL)

: b=J(1,6,0)

: W=I(6)*6

: beta=b:+sqrt(diagonal(W))´:*rnormal(rows(m),cols(b),0,1)

: for (i=1;i<=rows(m);i++) {
> Args[i,1]=&b
> Args[i,2]=&W
> Args[i,3]=&panelsubmatrix(y,i,m)
> Args[i,4]=&panelsubmatrix(X,i,m)
> amcmc_args(A[i],Args[i,])
> amcmc_xinit(A[i],b)
> amcmc_Vinit(A[i],W)
> }

: end

After creating some placeholders for the draws (bvals and Wvals), we can execute the
drawing algorithm as follows:



. mata
mata (type end to exit)

: its=20000

: burn=10000

: bvals=J(0,cols(beta),.)

: Wvals=J(0,cols(rowshape(W,1)),.)

: for (i=1;i<=its;i++) {
> b=drawb_betaW(beta,W/rows(m))
> W=drawW_bbeta(beta,b)
> bvals=bvals\b
> Wvals=Wvals\rowshape(W,1)
> beta_old=beta
> for (j=1;j<=rows(A);j++) {
> amcmc_draw(A[j])
> beta[j,]=amcmc_results_lastdraw(A[j])
> }
> }

: end

The algorithm consists of an outer loop and an inner loop, within which individual-level
parameters are drawn sequentially. The current value of the beta vector, which holds
individual-level parameters in rows, is overwritten with the last draw produced by using
the amcmc results lastdraw() function.

A subtlety of the code also indicates a reason why it is useful to pass additional
function arguments as pointers: each time a new value of b and W is drawn, a user
does not need to reiterate to each sampling problem that b and W have changed, be-
cause pointers point to positions that hold objects and not to the values of the objects
themselves. Thus, every time a new value of b or W is drawn, the arguments of all 100
problems are automatically changed. By specifying that the target distribution for each
level problem is to be reevaluated, the user tells the routine to recalculate lnbetan bW

at the last drawn value when comparing a new draw to the previous one.

Because the technique might be of greater interest, I have developed a command that
implements the algorithm bayesmixedlogit. For example, the algorithm described by
the previous code could be executed with the following command, which also summarizes
results in a way conformable with usual Stata output:



. set seed 475446

. bayesmixedlogit y, rand(price contract local wknown tod seasonal)
> group(gid) id(pid) draws(20000) burn(10000) samplerrand("global")
> saving(train_draws) replace

Bayesian Mixed Logit Model Observations = 4780
Groups = 100

Acceptance rates: Choices = 1195
Fixed coefs = Total draws = 20000
Random coefs(ave,min,max)= 0.270, 0.235, 0.289 Burn-in draws = 10000

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Random
price -1.168711 .1245738 -9.38 0.000 -1.4129 -.9245209

contract -.3433208 .0682585 -5.03 0.000 -.4771212 -.2095204
local 2.637242 .3436764 7.67 0.000 1.963567 3.310917
wknown 2.138963 .2596608 8.24 0.000 1.629976 2.647951

tod -11.16374 1.049769 -10.63 0.000 -13.2215 -9.105982
seasonal -11.19243 1.030291 -10.86 0.000 -13.212 -9.172849

Cov_Random
var_price .8499292 .2332495 3.64 0.000 .3927132 1.307145

cov_priceco~t .1128769 .0803203 1.41 0.160 -.044567 .2703208
cov_pricelo~l 1.583028 .4519537 3.50 0.000 .6971079 2.468948
cov_pricewk~n .8898662 .3096053 2.87 0.004 .2829775 1.496755
cov_pricetod 6.106009 1.909356 3.20 0.001 2.363286 9.848731

cov_pricese~l 6.044055 1.892895 3.19 0.001 2.333601 9.75451
var_contract .3450904 .0670202 5.15 0.000 .2137174 .4764634

cov_contrac~l .4714882 .2131141 2.21 0.027 .0537416 .8892347
cov_contrac~n .3624791 .1560516 2.32 0.020 .0565865 .6683717
cov_contrac~d .7592097 .6576296 1.15 0.248 -.5298765 2.048296
cov_contrac~l .9147682 .65939 1.39 0.165 -.3777688 2.207305

var_local 7.000292 1.883972 3.72 0.000 3.307328 10.69326
cov_localwk~n 4.022065 1.248119 3.22 0.001 1.575501 6.468629
cov_localtod 12.84674 3.787742 3.39 0.001 5.422006 20.27148

cov_localse~l 13.40598 3.727253 3.60 0.000 6.099812 20.71214
var_wknown 3.364285 1.012474 3.32 0.001 1.379632 5.348938

cov_wknowntod 6.513209 2.60766 2.50 0.013 1.401671 11.62475
cov_wknowns~l 7.109282 2.563623 2.77 0.006 2.084064 12.1345

var_tod 57.62449 16.97876 3.39 0.001 24.3427 90.90628
cov_todseas~l 53.93841 16.35184 3.30 0.001 21.88551 85.99131
var_seasonal 55.05572 16.54599 3.33 0.001 22.62226 87.48918

Draws saved in train_draws

*Results are presented to conform with Stata covention, but
are summary statistics of draws, not coefficient estimates.

The results are similar but not identical to those obtained using mixlogit. Additional
information and examples for bayesmixedlogit can be found in the help file, and some
examples of estimating a mixed logit model using Bayesian methods are provided in
the help file for amcmc(), accessible via the commands help mf amcmc or help mata

amcmc().



5 Description

In this section, I sketch a Mata implementation of what I have been referring to as
a global adaptive MCMC algorithm. The sketched routine omits a few details, mainly
about parsing options, but it is relatively true to form in describing how the algorithms
discussed in the article are actually implemented in Mata and might be used as a
template for developing more specialized algorithms. It assumes that the user wishes to
draw from a stand-alone function without additional arguments. The code is as follows:

. mata:
mata (type end to exit)

: real matrix amcmc_global(f,xinit,Vinit,draws,burn,damper,
> aopt,arate,val,lam)
> {
> real scalar nb,old,pro,i,alpha
> real rowvector xold,xpro,mu
> real matrix Accept,accept,xs,V,Vsq,Vold
>
> nb=cols(xinit) /* Initialization */
> xold=xinit
> lam=2.38^2/nb
> old=(*f)(xold)
> val=old
>
> Accept=0
> xs=xold
> mu=xold
> V=Vinit
> Vold=I(cols(xold))
>
> for (i=1;i<=draws;i++) {
> accept=0
> Vsq=cholesky(V)´ /* Prep V for drawing */
> if (hasmissing(Vsq)) {
> Vsq=cholesky(Vold)´
> V=Vold
> }
>
> xpro=xold+lam*rnormal(1,nb,0,1)*Vsq /* Draw, value calc. */
>
>
> pro=(*f)(xpro)
>
> if (pro==. ) alpha=0 /* calc. of accept. prob */
>
> else if (pro>old) alpha=1
> else alpha=exp(pro-old)
>
> if (runiform(1,1)<alpha) {
> old=pro
> xold=xpro
> accept=1
> }
>
> lam=lam*exp(1/(i+1)^damper*(alpha-aopt)) /*update*/
> xs=xs\xold
> val=val\old
> Accept=Accept\accept



> mu=mu+1/(i+1)^damper*(xold-mu)
> Vold=V
> V=V+1/(i+1)^damper*((xold-mu)´(xold-mu)-V)
> _makesymmetric(V)
> }
>
> val =val[burn+1::draws,]
> arate=mean(Accept[burn+1::draws,])
> return(xs[burn+1::draws,])
> }

: end

The function starts by setting up a variable (nb) to hold the dimension of the distribu-
tion, and xold, which functions as xt in the algorithms discussed in table 3, is set to
the user-supplied initial value. The initial value of λ (called lam) is set as discussed by
Andrieu and Thoms (2008, 359).

Next the log value of the distribution (f) at xold is calculated and called old. The
next few steps proceed as one would expect. However, I find it useful to have a default
covariance matrix waiting—Vold in the code—in case the Cholesky decomposition en-
counters problems. For example, this could happen if the initial variance–covariance
matrix is not positive definite or if there is insufficient variation in the draws, which
sometimes happens in the early stages of a run. Once a usable covariance matrix has
been obtained, xpro (which functions as Yt in the algorithms in tables 1, 2, and 3) is
formed using a conformable vector of standard normal random variates, and the function
is evaluated at xpro.

The acceptance probability alpha is then calculated in a numerically stable way in an
if-else if-else block. If the target function returns a missing value when evaluated,
alpha is set to 0 so that the draw will not be retained. If the proposal produces a higher
value of the target function, alpha is set to one. Otherwise, it is set as described by
the algorithms.19 Finally, a uniform random variable is drawn that determines whether
the draw is to be accepted. Once this is known, all values are updated according to
the scheme described in table 3. Once the for loop concludes, the algorithm overwrites
the acceptance rate, arate, and the function value, val, and returns the results of the
draw.

6 Conclusions

I have given a brief overview of adaptive MCMC methods and how they can be imple-
mented using the Mata routine amcmc() and a suite of functions amcmc *(). While I
have given some ideas about how one might use and display obtained results, my primary
purpose is to present and describe an implementation of adaptive MCMC algorithms.

19. The Mata function exp() does not evaluate to missing for very small values as it does for very large
values.



I have not discussed how one should set up the parameters of the draw, such as
the number of draws to take, whether to use a global sampler, or how aggressively to
tune the proposal distribution. I have also not discussed what users should do once
they have obtained draws from an adaptive MCMC algorithm. The functions leave these
decisions in the hands of users. Creating, describing, and analyzing results obtained via
MCMC is fortunately the subject of extensive literature. Broadly speaking, literature
on MCMC is built around the related issues of assessing convergence of a run and of
assessing the mixing and intensity of a run. A further issue is how one should deal
with autocorrelation between draws. Whatever means are used to analyze results, it
is fortunate that Stata provides a ready-made battery of tools to summarize, modify,
and graph results. However, while it is often easy to spot problems in an MCMC run, it
is impossible to know whether the run has actually provided draws from the intended
distribution.

On the subject of convergence, there is not any universally accepted criterion, but
researchers propose many guidelines. Gelman and Rubin (1992) present several useful
ideas. A general discussion appears in Geyer (2011), and some practical advice appears
in Gelman and Shirley (2011), who advocate discarding the first half of a run as a burn-
in period and performing multiple runs in parallel from different starting points and
comparing results. To be sure that one is actually sampling from the right region of the
density, one can use “heated” distributions in preliminary runs. Effectively, these heated
distributions raise the likelihood function to some fractional power,20 which flattens the
distribution and allows for more rapid and broader exploration of the parameter space.

One can also compare the results of multiple runs and compare the variance within
runs and between runs. A useful technique is to investigate the autocorrelation function
of results and then “thin” the results, retaining only a fraction of the draws so that most
of the autocorrelation is rid from the data. One can use time-series tools to test for
autocorrelation among draws. A possibility discussed by Gelman and Shirley (2011) is
to jumble the results of the simulation. While it might seem obvious, it is worthwhile
to note that solutions to these problems are interdependent. A draw that exhibits a
lot of autocorrelation may require more thinning and a longer run to obtain a suitable
number of draws. A good place to start with these and other aspects of analyzing results
is Brooks et al. (2011).

As may have been clear from the examples presented in section 4, another option
is to run the algorithm for some suitable amount of time and then restart the run
without adaptation by using previous results as starting values so that one is drawing
from an invariant proposal distribution. A simple yet useful starting point in judging
convergence is seeing whether the algorithm produces results with graphs that look like
those in figure 2 but not those in figure 4. A graph that does not contain jumps or
flat spots and looks more or less like white noise is a preliminary indication that the
algorithm is working well. However, pseudo-convergence can still be very difficult to
detect. In addition to containing much practical advice, Geyer (2011) also advises that
one should at least do an overnight run, adding only half in jest that “one should start

20. Or, equivalently, multiply the log likelihood by a fractional power.



a run when the article is submitted and keep running until the referee’s reports arrive.
This cannot delay the article, and may detect pseudo-convergence” (Geyer 2011, 18).
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