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Abstract. In this article, we describe an implementation of a space-filling location-

selection algorithm. The objective is to select a subset from a list of locations

so that the spatial coverage of the locations by the selected subset is optimized

according to a geometric criterion. Such an algorithm designed for geographical

site selection is useful for determining a grid of points that “covers” a data matrix

as needed in various nonparametric estimation procedures.

Keywords: st0353, spacefill, spatial sampling, space-filling design, site selection,

nonparametric regression, multivariate knot selection, point swapping

1 Introduction

Spatial statistics often address geographical sampling from a set of locations for net-
works construction (Cox, Cox, and Ensor 1997), for example, for installing air quality
monitoring (Nychka and Saltzman 1998) or for evaluating exposure to environmental
chemicals (Kim et al. 2010). The issue involves evaluating a discrete list of potential
locations and determining a small, “optimal” subset of places—a “design”—at which
to position, say, measurement instruments or sensors. One strategy to address such a
problem—the geometric approach—aims to find a design that minimizes the aggregate
distance between the locations and the sensors.

As discussed in Ruppert, Wand, and Carroll (2003) and Gelfand, Banerjee, and Fin-
ley (2012), location selection is also relevant in estimation of statistical models such as
multivariate nonparametric or semiparametric regression models. By analogy, instead
of locating measurement instruments, one seeks to identify a small number of “loca-
tions” from a large dataset at which to estimate a statistical model to reduce com-
putational cost. For example, kernel density estimates or locally weighted regression
models (Cleveland 1979; Fan and Gijbels 1996) are typically calculated on a grid of
points spanning the data range rather than over the whole input data points (and in-
terpolation is used where needed). The location of knots in spline regression models is
somewhat related; a small number of knots are selected instead of knots being placed
at many (or all) potential distinct data points. Determining such a grid is relatively
easy in one-dimensional models—for example, it is customary to locate knots at selected
percentiles of the data. Choosing an appropriate multidimensional grid while preserv-
ing computational tractability is more complicated because merely taking combinations
of unidimensional grids quickly inflates the number of evaluation points. In this con-
text, Ruppert, Wand, and Carroll (2003) recommend applying a geometric space-filling
design to identify grid points or knot locations.

c© 2014 StataCorp LP st0353



In this article, we describe an implementation of an algorithm for space-filling spatial-
design construction. The algorithm developed in Royle and Nychka (1998) selects a set
of “design points” from a discrete set of “candidate points” such that the coverage of the
candidate points by the design points is optimized according to a geometric coverage
criterion.1 The algorithm involves iterative “point swapping” between the candidate
points and the design points until no swapping can further improve the coverage of the
candidate points by the design points. The coverage criteria is geometric, but it is not
restricted to spatial, two-dimensional data. The procedure can be used in miscellaneous
settings when optimal subsampling of multivariate data is needed. Constraints are easily
imposed by excluding or including particular locations in the design. A nearest-neighbor
approximation makes the algorithm fast even for large samples.

We describe Royle and Nychka’s (1998) algorithm in section 2 and its implementation
in Stata in section 3. We illustrate several uses of the spacefill command in section 4.
We show how it can be applied for generating a multidimensional grid of fixed size that
optimally “covers” a dataset.

2 Geometric coverage criterion and the point-swapping

algorithm

2.1 Geometric coverage criterion

The space-filling design selection considered here is based on optimization with respect
to the geometric coverage of a set of data points. We refer to data points as “loca-
tions”, although they are not restricted to geographic locations identified by spatial
coordinates—in principle, any unidimensional or multidimensional coordinates can be
used to “locate” points (see examples in section 4).

Following Royle and Nychka’s (1998) notation, we let C denote a set of N candidate
locations (the “candidate set”). We let Dn be a subset of n locations selected from C.
Dn is a “design” of size n, and the locations selected in Dn are “design points”. The
geometric metric for the distance between any given location x and the design Dn is

dp(x, Dn) =





∑

y∈Dn

||x− y||p





1

p

(1)

with p < 0. dp(x, Dn) measures how well the design Dn “covers” the location x. When
p −→ −∞, dp(x, Dn) tends to the shortest Euclidean distance between x and a point
in Dn (Johnson, Moore, and Ylvisaker 1990). dp(x, Dn) is zero if x is at a location in
Dn.

1. An R implementation of Royle and Nychka’s (1998) algorithm is available in Furrer, Nychka, and
Sain (2013).



A design D∗
n is considered to optimally cover the set of locations C for parameters

p and q if it minimizes

Cp,q(C,Dn) =

{

∑

x∈C

dp(x, Dn)
q

}
1

q

(2)

over all possible designs Dn from C. The optimal design minimizes the q power mean of
the “coverages” of all locations outside of the design (the candidate points). Increasing
q gives greater importance to the distance of the design to poorly covered locations.

Figure 1 can help readers visualize the criterion. From a set of 38 European cities, we
selected a potential design of five locations: Madrid, Brussels, Berlin, Riga, and Sofia.
The coverage of, say, London by this design is given by plugging the Euclidean distances
from London to the five selected cities into (1). With a large negative p, this coverage
will be determined by the distance to the closest city, namely, Brussels. Repeating such
calculations for all 33 cities from outside the design and aggregating the coverages using
(2) gives the overall geometric “distances” of European cities to the design composed
of Madrid, Brussels, Berlin, Riga, and Sofia. The optimal design is the combination of
any five cities that minimizes this criterion. The design composed of Madrid, Brussels,
Berlin, Riga, and Sofia is in fact the optimal design for p = −5 and q = 1.

Figure 1. Coverage criterion illustration: Coverage of a five-city design (Madrid, Brus-
sels, Berlin, Riga, and Sofia) with distances to London as example



2.2 A point-swapping algorithm

In most applications, identification of the optimal design by calculating the coverage
criterion for all possible subsets of size n from N is computationally prohibitive. Royle
and Nychka (1998) propose a simple point-swapping algorithm to determine D∗

n. Start-
ing from a random initial design D0

n, the algorithm iteratively attempts to swap a point
from the design with the point from the candidate set that leads to the greatest im-
provement in coverage. If this tentative swap improves coverage of the candidate set
by the design, the latter is updated. Otherwise, the swap is ignored. The process is
repeated until no swap between a design point and a candidate point can improve cov-
erage. Users can significantly improve speed by restricting potential swaps for a point
in the design to its k nearest neighbors in the candidate set [according to (1)]. See
Royle and Nychka (1998) for details.

The point-swapping algorithm makes it straightforward to impose constraints on the
inclusion or exclusion of specific locations; such points are considered in calculations of
the geometric criterion but excluded from any potential swap. Nonrandom initial design
points can also be used.

Although the algorithm always converges to a solution, it is not guaranteed to con-
verge to the globally optimal D∗

n for any initial design when potential swaps are limited
to nearest neighbors. Therefore, Royle and Nychka (1998) recommend repeating esti-
mation for multiple initial design sets and selecting the design with the best coverage
across repetitions (see section 4).

3 The spacefill command

The spacefill command performs space-filling location selection using Royle and Ny-
chka’s (1998) point-swapping algorithm. It operates on N observations from variables
identifying the coordinates of the data points and returns the subset of n < N observa-
tions that optimally covers the data.

spacefill options allow forced inclusion or exclusion of particular observations,
user-specified initial design, and automatic standardization of location coordinates.
When weights are specified, spacefill performs weighted calculation of the aggre-
gate coverage measure [see (2)]. In section 4, we show that combining weights and
restrictions on candidate locations makes it easy to create an “optimal” regular grid
over a dataset.



3.1 Syntax

spacefill varlist
[

if
] [

in
] [

weight
] [

, ndesign(#) design0(varlist)

fixed(varname) exclude(varname) p(#) q(#) nnfrac(#) nnpoints(#)

nruns(#) standardize standardize2 standardize3 sphericize ranks

generate(newvar) genmarker(newvar) noverbose
]

aweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.

varlist and the if or in qualifier identify the data from which the optimal subset is
selected.

3.2 Options

ndesign(#) specifies n, the size of the design. The default is ndesign(4).

design0(varlist) identifies a set of initial designs identified by observations with nonzero
varlist . If multiple variables are passed, one optimization is performed for each initial
design, and the selected design is the one with best coverage.

fixed(varname) identifies observations that are included in all designs when varname

is nonzero.

exclude(varname) identifies observations excluded from all designs when varname is
nonzero.

p(#) specifies a scalar value for the distance parameter for calculating the distance of
each location to the design; for example, p = −1 gives harmonic mean distance, and
p = −∞ gives the minimum distance. The default is p(-5), as recommended in
Royle and Nychka (1998).

q(#) specifies a scalar value for the parameter q. The default is q(1) (the arithmetic
mean).

nnfrac(#) specifies the fraction of data to consider as nearest neighbors in the point-
swapping iterations. Limiting checks to nearest neighbors improves speed but does
not guarantee convergence to the best design; therefore, setting nruns(#) is recom-
mended. The default is nnfrac(0.50).

nnpoints(#) specifies the number of nearest neighbors considered in the point-swapping
iterations. Limiting checks to nearest neighbors improves speed. nnfrac(#) and
nnpoints(#) are mutually exclusive.

nruns(#) sets the number of independent runs performed on alternative random initial
designs. The selected design is the one with best coverage across the runs. The
default is nruns(5).



standardize standardizes all variables in varlist to zero mean and unit standard devi-
ation (SD) before calculating distances between observations.

standardize2 standardizes all variables in varlist to zero mean and SD before calculating
distances between observations, with an estimator of the SD as 0.7413 times the
interquartile range.

standardize3 standardizes all variables in varlist to zero median and SD before calcu-
lating distances between observations, with an estimator of the SD as 0.7413 times
the interquartile range.

sphericize transforms all variables in varlist into zero mean, SD, and zero covariance
using a Cholesky decomposition of the variance–covariance matrix before calculating
distances between observations.

ranks transforms all variables in varlist into their (fractional) ranks and uses distances
between these observation ranks in each dimension to evaluate distances between
observations.

generate(newvar) specifies the names for new variables containing the locations of the
best design points. If one variable is specified, it is used as a stubname; otherwise,
the number of new variable names must match the number of variables in varlist .

genmarker(newvar) specifies the name of a new binary variable equal to one for obser-
vations selected in the best design and zero otherwise.

noverbose suppresses output display.

Options standardize2, standardize3, and ranks require installation of the user-
written package moremata, which is available on the Statistical Software Components
archive (Jann 2005).

4 Examples

We provide two illustrations for the application of spacefill. The first example uses
ozone2.txt, which is available in the R fields package (Furrer, Nychka, and Sain 2013),
and provides examples of standard site selection. The second example uses survey data
from the Panel Socio-Économique Liewen zu Lëtzebuerg/European Union-Statistics on
Income and Living Conditions (PSELL3/EU-SILC) and illustrates the use of spacefill
for nonparametric regression analysis with multidimensional, nonspatial data.

4.1 Basic usage

ozone2.txt contains air quality information in 147 locations in the US Midwest in the
Summer 1987 (Furrer, Nychka, and Sain 2013). Locations are identified by their relative
latitude (lat) and longitude (lon).



We start by selecting an optimal design of size 10 from the 147 locations, using
default values p = −5 and q = 1, candidate swaps limited to the nearest half of the
locations, and 5 runs with random starting designs.

. insheet using ozone2.txt
(3 vars, 147 obs)

. spacefill lon lat, ndesign(10)
Run 1 .... (Cpq = 100.34)
Run 2 .... (Cpq = 96.92)
Run 3 ...... (Cpq = 94.19)
Run 4 .... (Cpq = 95.00)
Run 5 .. (Cpq = 95.19)

. return list

scalars:
r(q) = 1
r(p) = -5

r(nn) = 69
r(Cpq) = 94.19164847896585

r(nexcluded) = 0
r(nfixed) = 0
r(ndesign) = 10

r(N) = 147

macros:
r(varlist) : "lon lat"

matrices:
r(Best_Design) : 10 x 2

. matrix list r(Best_Design)

r(Best_Design)[10,2]
lon lat

r1 -87.752998 41.855
r2 -90.160004 38.612
r3 -85.841003 39.935001
r4 -87.57 38.021
r5 -91.662003 41.992001
r6 -84.476997 39.106998
r7 -85.578003 38.137001
r8 -85.671997 42.985001
r9 -83.403 42.388

r10 -88.283997 43.333

Notice that the first run leads to a somewhat higher aggregate distance to the design
points (Cpq=100.34) than the other runs. This stresses the importance of multiple
starting designs. Figure 1 shows the selected locations in the best design (achieved at
run 3, where Cpq=94.19).



Figure 2. Scatterplot and histogram of longitude and latitude for all 147 locations (gray
histograms and gray hollow circles) and 10 best design points (thick histograms and
solid dots) with p = −5 and q = 1 (default)

Users can improve speed by restricting potential swaps to a smaller number of nearest
neighbors. Limiting a search to 25 nearest neighbors (against 69—the default half of the
locations—in the first example), our second example below runs in 4 seconds against
11 seconds for our initial example, without much loss in the coverage of the resulting
design (Cpq=96.59). On the other hand, running spacefill with the full candidates
as potential swaps runs in over 30 seconds for an optimal design with Cpq=91.96.

. spacefill lon lat, ndesign(10) nnpoints(25) genmarker(set1)
Run 1 ..... (Cpq = 117.02)
Run 2 .... (Cpq = 109.93)
Run 3 .. (Cpq = 110.99)
Run 4 .. (Cpq = 101.05)
Run 5 ..... (Cpq = 96.59)

. spacefill lon lat, ndesign(10) nnfrac(1)
Run 1 ... (Cpq = 91.96)
Run 2 .... (Cpq = 91.96)
Run 3 .. (Cpq = 91.96)
Run 4 ... (Cpq = 92.32)
Run 5 ... (Cpq = 91.96)

We now illustrate the use of the genmarker(), fixed(), and exclude() options. In
the previous call, genmarker(set1) generated a dummy variable equal to 1 for the 10



points selected into the best design and 0 otherwise. We now specify exclude(set1)

to derive a new design with 10 different locations and then use fixed(set2) to force
this new design into a design of size 15.

. spacefill lon lat, ndesign(10) nnpoints(25) exclude(set1) genmarker(set2)
> noverbose
10 points excluded from designs (set1>0)

. spacefill lon lat, ndesign(15) nnpoints(25) fixed(set2) genmarker(set3)
> noverbose
10 fixed design points (set2>0)

. list set1 set2 set3 if set1+set2+set3>0

set1 set2 set3

4. 1 0 0
10. 0 1 1
25. 1 0 0
40. 1 0 0
48. 0 1 1

55. 1 0 0
58. 0 1 1
60. 1 0 0
61. 0 1 1
63. 0 0 1

67. 0 0 1
74. 1 0 0
77. 0 0 1
80. 0 1 1
82. 0 1 1

89. 0 0 1
91. 0 1 1
97. 1 0 0

107. 0 1 1
109. 1 0 0

121. 0 1 1
125. 0 0 1
135. 0 1 1
140. 1 0 0
143. 1 0 0

The key parameters q and p of the coverage criterion can also be flexibly specified.
Figure 2 illustrates 3 designs selected with default parameters p = −5 and q = 1 (dots),
with p = −1 and q = 1 (squares), and with p = −1 and q = 5 (crosses). With p = −5,
the distance of a location to the design is mainly determined by the distance to the
closest point of the design; p = −1 accounts for the distance to all points in the design,
leading to more central location selections. Setting q = 5 penalizes large distances
between design and nondesign points, leading to location selections more spread out
toward external points. Note our use of user-specified random starting designs with
option design0() to ensure comparison is made on common initial values.



. generate byte init1 = 1 in 1/10
(137 missing values generated)

. generate byte init2 = 1 in 11/20
(137 missing values generated)

. generate byte init3 = 1 in 21/30
(137 missing values generated)

. generate byte init4 = 1 in 31/40
(137 missing values generated)

. generate byte init5 = 1 in 41/50
(137 missing values generated)

. local options nnfrac(0.3) nruns(10) design0(init1 init2 init3 init4 init5)
> noverbose

. spacefill lat lon, `options´ generate(Des)

. spacefill lat lon, `options´ generate(Des_BIS) p(-1) q(1)

. spacefill lat lon, `options´ generate(Des_TER) p(-1) q(5)

. spacefill lat lon, `options´ generate(Des_QUAT) p(-5) q(5)

Figure 3. Scatterplot of longitude and latitude for all 147 locations (gray hollow circles)
and best design points with default p = −5 and q = 1 (dots), with p = −1 and q = 1
(squares), and with p = −1 and q = 5 (crosses)



4.2 Design selection from external locations: Lattice subsets

By combining the exclude() option and weights, one can use spacefill to find an op-
timal design from an external set of locations; that is, one can use it to select a subset
of points from a set A that optimally covers points from a set B. This is particularly
useful to identify a subset of points from a lattice (the set A) that best covers the data
(the set B). To set this up, we start by generating the lattice—a dataset with many
candidate grid points—using range (see [D] range) and fillin (see [D] fillin). We ap-
pend this generated dataset to the locations data. We then identify actual observations
from the sample by sample==0 and the generated candidate locations on the lattice by
sample==1.

We can now run spacefill to select a smaller subset of grid points from the full
lattice that optimally covers the actual locations. To do so, we run spacefill on the
whole set of data points with i) exclude(sample) to select points from the grid only
and ii) with [iw=sample] so that the aggregate distance is computed only between the
design points on the grid and the actual locations. A set of 25 optimally chosen grid
points from a candidate grid of 176 (11 × 16) points is shown in figure 3. Below we
illustrate how this can be used to speed up calculations of computationally intensive
nonparametric regression models.

. clear

. set obs 16
obs was 0, now 16

. range lon -95 -80 16

. range lat 36 46 11
(5 missing values generated)

. fillin lon lat

. gen byte sample = 0

. save gridlatlon.dta , replace
file gridlatlon.dta saved

. clear

. insheet using ozone2.txt
(3 vars, 147 obs)

. keep lat lon

. gen byte sample = 1

. append using gridlatlon

. spacefill lon lat [iw=sample], exclude(sample) ndesign(25) nnpoints(100)
> genmarker(subgrid1)
147 points excluded from designs (sample>0)
Run 1 .. (Cpq = 63.93)
Run 2 .... (Cpq = 63.92)
Run 3 .... (Cpq = 63.71)
Run 4 ... (Cpq = 63.07)
Run 5 ... (Cpq = 63.02)



Figure 4. Actual 147 locations (hollowed gray circles), 176 candidate grid points (lattice;
crosses), and 25 optimally selected grid points (solid dots)

4.3 Handling nonspatial data: Nonparametric regression example

We now illustrate the use of spacefill with multidimensional and nonspatial data
taken from the PSELL3/EU-SILC collected in 2007.2 We extracted information on the
height, weight, and wage of a random subsample of 500 working women.

We first use spacefill to select a subset of 50 women with characteristics on these 3
variables that best “cover” the sample. Given the different metric of the three variables,
we specify the standardize option to compute the geometric distance criterion after
standardizing the three variables to have zero mean and unit SD in the sample.3

Figures 5 and 6 show bivariate scatterplots and histograms of the selected 50 design
points. Two features are worth noting. First, the quality of the coverage is not affected
by the skewness of the data (especially in the wage dimension). The space-filling algo-

2. PSELL3/EU-SILC is a longitudinal survey on income and living conditions representative of the
population residing in Luxembourg. Data are collected annually in a sample of more than 3,500
private households.

3. Alternative standardization could have been adopted with options standardize2, standardize3,
sphericize, or ranks.



rithm is indeed applicable to broad data configurations. Second, the difference in the
histograms for the sample and for the design points is a reminder that selecting a space-
filling design is distinct from drawing a “representative subset” of the data. The points
that best cover the data in a geometric sense must not necessarily reflect their frequency
distribution: few design points may contribute to cover many data points in areas of
high concentration, while design points spread out in areas of low data concentration
will contribute to cover a smaller number of data points.

. summarize height weight wage

Variable Obs Mean Std. Dev. Min Max

height 500 165.21 6.8886 150 192
weight 500 65.368 12.80502 43 127

wage 500 2720.688 1920.047 300 10000

. spacefill height weight wage, ndesign(50) nnfrac(0.05) generate(BH BW BWa)
> standardize
Run 1 .... (Cpq = 196.98)
Run 2 ..... (Cpq = 195.15)
Run 3 .... (Cpq = 196.13)
Run 4 ........ (Cpq = 196.79)
Run 5 .... (Cpq = 194.55)

Figure 5. Scatterplot and histogram of height and weight for all data (gray histograms
and hollowed markers) and best design points (thick histograms and markers) for the
standardized values of the height, weight, and wage



Figure 6. Scatterplot and histogram of height and wage for all data (gray histograms
and hollowed markers) and best design points (thick histograms and markers) for the
standardized values of the height, weight, and wage

We now use these data to run a locally weighted polynomial regression of wage
on height and weight. Our objective is to assess nonparametrically the relationship
between wage and body size. For the sake of illustration, we want to estimate expected
wage nonparametrically at multiple grid points from a lattice where each point is a
pair of height–weight values. One reason for this is that fitting the model at all height–
weight pairs in our data would be computationally expensive (and inefficient if there are
nearly identical height–weight pairs in the data). We seek a cheaper alternative with
fewer evaluation points. (This is similar to using lpoly with the at() option instead
of lowess in the unidimensional setting.) Also we use evaluation points on a lattice
instead of “at sample values” because we are considering fitting the model for different
subsamples, and we want to have model estimates on a common grid of evaluation points
for all subsamples. (If need be, bivariate interpolation will be used to recover estimates
at sample values; see [G-2] graph twoway contourline for the interpolation formula.)
This setting is relatively standard in nonparametric regression analysis, especially when
dealing with large samples or computationally heavy estimators (for example, cross-
validation-based bandwidth selection).



We start with a 20×20 rectangular lattice covering heights from 150 to 192 centime-
ters and weights from 43 to 127 kilograms. While this lattice spans the values observed
in our sample, it also includes many empirically irrelevant height–weight pairs. Estima-
tion on the full grid is therefore unnecessary, and we use spacefill as described above
to select a subset of points on the lattice that covers our data.

Figure 7 shows resulting estimates based on a space-filling design of size 50, as well
as estimates based on a random subset of 100 lattice points, on 100 Halton draws from
the lattice, on the full lattice, and on all sample points. Brightness of the contours
corresponds to local regression estimates of expected wage from black (for monthly
wage below EUR 1000) to white (for monthly wage above EUR 5000). In each panel,
local regression was effectively calculated only at the marked grid points (and so it was
conducted faster on the space-filling design), while the overall coloring of the map was
based on the thin-plate-spline interpolation built in twoway contour.



Figure 7. Contour plot of expected wage of 500 Luxembourg women by height and
weight from monthly wage less than EUR 1000 (black) to more than EUR 5000 (white).
Calculations based on local regression estimation. White lines identify body-mass in-
dices of 18.5, 25, and 30, which delineate underweight, overweight, and obesity, respec-
tively.



The contour plots display variations in areas of low data density (top left and bot-
tom right), reflecting both the imprecision and variability of the local linear regression
estimates in these zones and the variations introduced by the interpolation of values
away from the bulk of the data. In areas of higher data density—for height below 180
centimeters and weight below 100 kilograms—estimates on the 50-points space-filling
subset differ little from those of the full sample or from the full lattice.4
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