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Abstract. In many observational studies, the treatment may not be binary or
categorical but rather continuous, so the focus is on estimating a continuous dose–
response function. In this article, we propose a set of programs that semiparamet-
rically estimate the dose–response function of a continuous treatment under the
unconfoundedness assumption. We focus on kernel methods and penalized spline
models and use generalized propensity-score methods under continuous treatment
regimes for covariate adjustment. Our programs use generalized linear models to
estimate the generalized propensity score, allowing users to choose between alter-
native parametric assumptions. They also allow users to impose a common sup-
port condition and evaluate the balance of the covariates using various approaches.
We illustrate our routines by estimating the effect of the prize amount on subse-
quent labor earnings for Massachusetts lottery winners, using data collected by
Imbens, Rubin, and Sacerdote (2001, American Economic Review, 778–794).

Keywords: st0352, drf, dose–response function, generalized propensity score, ker-
nel estimator, penalized spline estimator, weak unconfoundedness

1 Introduction

The evaluation process in economics, sociology, law, and many other fields generally
relies on applying nonexperimental techniques to estimate average treatment effects.

c© 2014 StataCorp LP st0352
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Propensity-score methods (Rosenbaum and Rubin 1983) are attractive empirical tools
to balance the distribution of covariates between treatment groups and compare the
groups in terms of observed covariates. Under the unconfoundedness assumption, which
requires that potential outcomes are independent of the treatment conditional on the
observed covariates, propensity-score methods allow one to eliminate (or at least re-
duce) the potential bias in treatment-effects estimates in observational studies. Most
applications aim to evaluate causal effects of a binary treatment. There is extensive
literature on identifying and estimating causal effects of binary treatments (for exam-
ple, Imbens and Wooldridge [2009]; Stuart [2010]; Angrist, Imbens, and Rubin [1996]),
and many statistical software packages have built-in or add-on functions for imple-
menting methods to estimate causal effects of programs or policies. For example,
Becker and Ichino (2002) developed a set of programs (pscore.ado) for estimating av-
erage treatment effects on the treated using propensity-score matching by focusing on
four matching estimators: nearest-neighbor, radius, kernel, and stratification match-
ing. More recently, building on the work of Becker and Ichino (2002), Dorn (2012)
proposed a routine that helps improve covariate balance, and so the specification of the
propensity-score model, using data-driven approaches.

In many empirical studies, treatments may take on many values, implying that
participants in the study may receive different treatment levels. In such cases, one
may want to assess the heterogeneity of treatment effects arising from variation in the
amount of treatment exposure, that is, estimate a dose–response function (DRF). Over
the past years, propensity-score methods have been generalized and applied to multival-
ued treatments (for example, Imbens [2000]; Lechner [2001]) and, more recently, to con-
tinuous treatments and arbitrary treatment regimes (for example, Hirano and Imbens
[2004]; Imai and van Dyk [2004]; Flores et al. [2012]; Bia and Mattei [2012]; Kluve et al.
[2012]).

In this article, we build on work by Hirano and Imbens (2004), who introduced the
concept of the generalized propensity score (GPS) and used it to estimate the entire DRF

of a continuous treatment. Hirano and Imbens (2004) used a parametric partial-mean
approach to estimate the DRF. Here we focus on semiparametric techniques. Specifically,
we present a set of programs that allows users to i) estimate the GPS under alternative
parametric assumptions using generalized linear models;1 ii) impose the common sup-
port condition as defined in Flores et al. (2012) and assess the balance of covariates after
adjusting for the estimated GPS; and iii) estimate the DRF using the estimated GPS by
applying either the nonparametric inverse-weighting (IW) kernel estimator developed in
Flores et al. (2012) or a new set of semiparametric estimators based on penalized spline
techniques.

1. Guardabascio and Ventura (2014) proposed the routine gpscore2.ado to estimate the GPS using
generalized linear models.



582 Semiparametric estimators of dose–response functions

We use a dataset collected by Imbens, Rubin, and Sacerdote (2001) to illustrate these
programs and to evaluate the effect of the prize amount on subsequent labor earnings
of winners of the Megabucks lottery in Massachusetts in the mid-1980s. We implement
our programs to semiparametrically estimate the average potential postwinning labor
earnings for each lottery prize amount. The prize is obviously assigned at random,
but unit and item nonresponse lead to a self-selected sample where the prize amount
received is no longer independent of background characteristics.

This article is organized as follows: Section 2 describes the methodological approach
we refer to in the analysis. Section 3 introduces the GPS model and the semiparametric
estimators of the DRF. Sections 3 and 3.2 show, respectively, the syntax and the options
of the drf command. Section 5 illustrates the methods and the program using data
from Imbens, Rubin, and Sacerdote (2001). Section 6 concludes.

2 Estimation strategy

We estimate a continuous DRF that relates each value of the dose (for example, lottery
prize amount) to the outcome variable (for example, postwinning labor earnings) within
the potential-outcome approach to causal inference (Rubin 1974, 1978). Formally, con-
sider a set of N individuals, and denote each of them by subscript i: i = 1, . . . , N .
Under the stable unit treatment value assumption (Rubin 1980, 1990), for each unit
i, there is a set of potential outcomes {Yi(t)}t∈T , where T is a subset of the real line,
T ⊂ R. We are interested in estimating the average DRF, µ(t) = E{Yi(t)}.

For each individual i, we observe a vector of pretreatment covariates, Xi, the received
treatment level, Ti, and the corresponding value of the outcome for this treatment level,
Yi = Yi(Ti).

The central assumption of our approach is that the assignment to treatment levels is
weakly unconfounded given the set of observed variables, that is, Yi(t) ⊥ Ti|Xi for all t ∈
T (Hirano and Imbens 2004). This assumption is described as weak unconfoundedness
because it requires only conditional independence for each potential outcome Yi(t) rather
than joint independence of all potential outcomes.

Under weak unconfoundedness, we can apply the GPS techniques for continuous
treatments introduced by Hirano and Imbens (2004). Let r(t, x) = fT |X(t|x) be the
conditional density of the treatment given the covariates. The GPS is defined as Ri =
r(Ti, Xi). The GPS is a balancing score (Rosenbaum and Rubin 1983; Hirano and Im-
bens 2004); that is, within strata with the same value of r(t, x), the probability that
T = t does not depend on the value of X. The weak unconfoundedness assumption,
combined with the balancing score property, implies that assignment to treatment is
weakly unconfounded given the GPS. Formally,

fT {t|r(t,Xi), Yi(t)} = fT {t|r(t,Xi)}

for every t ∈ T (theorem 1.2.2 in Hirano and Imbens [2004]). Thus any bias associated
with differences in the distribution of covariates across groups with different treatment
levels can be removed using the GPS. Formally, Hirano and Imbens (2004) showed that
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if the assignment to the treatment is weakly unconfounded given pretreatment variables
Xi, then µ(t) = E[β{t, r(t,Xi)}], where β(t, r) = E{Yi(t)|r(t,Xi) = r} = E(Yi|Ti =
t, Ri = r) (theorem 1.3.1 in Hirano and Imbens [2004]).

3 Inference

We use two-step semiparametric estimators of the DRF. The first step is to parametri-
cally model and estimate the GPS, Ri = r(Ti, Xi), and to assess the common support
condition and the balance of the covariates. The second step is to estimate the average
DRF, µ(t), using either the nonparametric IW kernel estimator proposed by Flores et al.
(2012) or a semiparametric spline-based estimator. Here we describe these two steps,
implemented in the routine drf.

3.1 Estimation of the GPS

The first part of the drf program estimates the GPS, allows users to impose an overlap
condition, and tests the balancing property of the GPS.

The GPS is estimated parametrically and alternative distributional assumptions can
be specified. Specifically, we assume that

g(Ti|Xi) ∼ ψ {h(γ,Xi), θ}

where g is a link function, ψ is a probability density function, h is a flexible function
of the covariates depending on an unknown parameter vector γ, and θ is a scale pa-
rameter. In the drf program, we consider the Gaussian, inverse Gaussian, and Gamma
distributions using the identity function, the logarithm, and the power function as link
functions. We also implement a two-parameter beta distribution to address evaluation
problems where the treatment variable takes on values in the interval (0, 1), representing,
for instance, a proportion. We use maximum likelihood methods to fit these models by
using the official Stata command glm (see [R] glm) or the user-written package betafit
(Buis, Cox, and Jenkins 2003).2

An important issue in GPS applications is determining the “common support” or
“overlap region”. The drf program allows users to do this by using the approach
proposed by Flores et al. (2012). Specifically, the sample is first divided into K intervals
according to the distribution of the treatment, cutting at the 100 × (k/K)th, k =
1, . . . ,K − 1 percentiles of the treatment empirical distribution. Let qk, k = 1, . . . ,K,
denote these intervals, and let Qi be the interval unit i belongs to: Ti ∈ Qi. For each
interval qk, let R̂

k
i be the GPS evaluated at the median level of the treatment in that

interval for unit i, which is calculated for all units. The common support region with
respect to qk, denoted by CSk, is obtained by comparing the support of the distribution

2. betafit (version 1.0.0 at the time of this writing) is available from the Statistical Software Com-
ponents archive (or findit betafit) and must be installed separately from drf.
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of R̂k
i for those units with Qi = qk with that of units with Qi 6= qk and is given by the

subsample

CSk =

{
i : R̂k

i ∈
[
max

(
min

j:Qj=qk
R̂k

j , min
j:Qj 6=qk

R̂k
j

)
,min

(
max

j:Qj=qk
R̂k

j , max
j:Qj 6=qk

R̂k
j

)]}

Finally, the sample is restricted to units that are comparable across all the K inter-
vals simultaneously by keeping only individuals who are simultaneously in the common
support region for all k intervals. Therefore, the common-support subsample is given
by CS =

⋂K
k=1 CSk.

As in applications of standard propensity-score methods, in GPS applications, it is
crucial to evaluate how well the estimated GPS balances the covariates. Several methods
can be applied to evaluate the balancing properties of the GPS. The drf command
implements two approaches: an approach based on blocking on the GPS and an approach
that uses a likelihood-ratio (LR) test. The “blocking on the GPS” approach was proposed
by Hirano and Imbens (2004), and it is implemented in the drf routine using two-
sided t tests or Bayes factors (see also Bia and Mattei [2008]). The second approach
was proposed by Flores et al. (2012), who suggested using an LR test to compare an
unrestricted model for Ti that includes all covariates and the GPS (up to a cubic term)
with a restricted model that sets the coefficients of all covariates equal to zero. If the GPS

sufficiently balances the covariates, then the covariates should have little explanatory
power conditional on the GPS.3

3.2 Estimation of the dose–response function

We estimate the DRF by applying spline and kernel techniques. The first technique is
implemented using a partial mean approach (Newey 1994). Specifically, for the penalized
spline methods, we first estimate the conditional expectation of the observed outcome
Yi given the treatment actually received, Ti, and the GPS previously estimated in the
first stage, R̂i, using bivariate penalized spline smoothing based on i) additive spline
bases; ii) tensor products of spline bases; or iii) radial basis functions (for example,
Ruppert, Wand, and Carroll [2003]). Mixed models provide a representation of the
penalized splines that allows smoothing to be done using mixed-model methodologies
and software. In our routine, we use the Stata routine xtmixed, renamed mixed in
Stata 13, to fit penalized spline regressions. The average DRF at t is then estimated by
averaging the estimated regression function over the estimated score function evaluated
at the specific treatment level t; that is, R̂t

i ≡ r̂(t,Xi).

3. An alternative approach, which is not implemented in our program, was proposed by Kluve et al.
(2012). It consists of regressing each covariate on the treatment variable and comparing the signif-
icance of the coefficients for specifications with and without conditioning on the GPS.
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The simplest bivariate penalized spline smoothing relies on additive spline bases,
which can be formally defined in our setting as

E
(
Yi|Ti, R̂i

)
= a0 + atTi + arR̂i +

Kt∑

k=1

utk(Ti − ktk)+ +

Kr∑

k=1

urk

(
R̂i − krk

)
+

(1)

where for any number z, z+ is equal to z if z is positive and is equal to 0 otherwise, and
kt1 < · · · < ktKt and kr1 < · · · < krKr are Kt and Kr distinct knots in the support of T

and the estimated GPS, R̂i, respectively.

The additive models have many attractive features, one being their simplicity. How-
ever, an additive model may not provide a satisfactory fit, so more complex mod-
els including interaction terms are required. To this end, we consider tensor prod-
uct bases, which are obtained by forming all pairwise products of the basis functions
1, Ti, (Ti − kt1), . . . , (Ti − ktKt) and 1, R̂i, (R̂i − kr1), . . . , (R̂i − krKr ). Formally,

E
(
Yi|Ti, R̂i

)
= a0 + atTi + arR̂i + atrTiR̂i

+
Kt∑

k=1

utk
(
Ti − ktk

)
+
+

Kr∑

k=1

urk

(
R̂i − krk

)
+
+

Kt∑

k=1

vtkR̂i

(
Ti − ktk

)
+

+
Kr∑

k=1

vrkTi

(
R̂i − krk

)
+
+

Kt∑

k=1

Kr∑

k′=1

vtrkk′

(
Ti − ktk

)
+

(
R̂i − krk′

)
+

(2)

Estimation problems may arise when the tensor product approach is applied, espe-
cially if the sample size is relatively small. When these problems arise, the drf program
alerts users and suggests they adopt an additive model instead.

As an alternative to tensor product splines, we propose to use the so-called radial
basis functions, which are basis functions of the form C{‖(t, r)′ − (k, k′)′‖} for some
univariate function C. Here we consider the following function

C

{∥∥∥∥
(
t
r

)
−
(
kt

kr

)∥∥∥∥

}
=

∥∥∥∥
(
t
r

)
−
(
kt

kr

)∥∥∥∥
2

log

∥∥∥∥
(
t
r

)
−
(
kt

kr

)∥∥∥∥

where ‖ · ‖ is the Euclidean norm, and we assume that

E
(
Yi|Ti, R̂i

)
= a0 + atTi + arR̂i + atrTiR̂i +

K∑

k=1

ukC

{∥∥∥∥
(

Ti
R̂i

)
−
(
ktk
krk

)∥∥∥∥

}
(3)

where u1, . . . , uk are random variables with mean 0 and variance–covariance matrix

Cov(u) = σ2
u(Ω

−1/2
k )(Ω

−1/2
k )′, with Ωk =

[
C

{∥∥∥∥
(
ktk
krk

)
−
(
ktk′

krk′

)∥∥∥∥

}]

1≤k,k′≤K

.

Given the estimated parameters of the regression functions (1), (2), or (3), the
average potential outcome at treatment level t is estimated by averaging the estimated
regression function over R̂t

i.
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Flores et al. (2012) proposed to estimate the DRF using a nonparametric IW estima-
tor based on kernel methods. In this approach, the estimated scores are used to weight
observations to adjust for covariate differences. Let K(u) be a kernel function with the
usual properties, and let h be a bandwidth satisfying h→ 0 and Nh→ ∞ as N → ∞.
The IW approach is implemented using a local linear regression of Y on T with weighted
kernel function K̃h,X(Ti − t) = Kh(Ti − t)/R̂t

i, where Kh(z) = h−1K(z/h). Formally,
the IW kernel estimator of the average DRF is defined as

µ̂(t) =
D0(t)S2(t)−D1(t)S1(t)

S0(t)S2(t)− S2
1(t)

where Sj(t) =
∑N

i=1 K̃h,X(Ti − t)(Ti − t)j and Dj(t) =
∑N

i=1 K̃h,X(Ti − t)(Ti − t)jYi,
j = 0, 1, 2.

We implement the IW estimator using a normal kernel. By default, the global band-
width is selected using the procedure proposed by Fan and Gijbels (1996), which esti-
mates the unknown terms in the optimal global bandwidth by using a global polynomial
of order p + 3, where p is the order of the local polynomial fitted. However, users can
also choose an alternative global bandwidth.

4 The drf command

4.1 Syntax

drf varlist
[
if
] [

in
] [

weight
]
, outcome(varname) treatment(varname)

cutpoints(varname) index(string) nq gps(#) method(type)
[
gps

family(familyname) link(linkname) vce(vcetype) nolog(#) search

common(#) numoverlap(#) test varlist(varlist) test(type) flag(#)

tpoints(vector) npoints(#) npercentiles(#) det delta(#)

bandwidth(#) nknots(#) knots(#) standardized degree1(#)

degree2(#) nknots1(#) nknots2(#) knots1(#) knots2(#) additive

estopts(string)
]

Note that the argument varlist represents the observed pretreatment variables, which
are used to estimate the GPS. Note that spacefillmust be installed (Bia and Van Kerm
2014).4

4.2 Options

Required

outcome(varname) specifies that varname is the outcome variable.

4. spacefill requires the Mata package moremata (Jann 2005).
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treatment(varname) specifies that varname is the treatment variable.

cutpoints(varname) divides the range or set of the possible treatment values, T ,
into intervals within which the balancing properties of the GPS are checked using a
“blocking on the GPS” approach. varname is a variable indicating to which interval
each observation belongs. This option is required unless flag() is set to 0 (see
below).

index(string) specifies the representative point of the treatment variable at which the
GPS must be evaluated within each treatment interval specified in cutpoints().
string identifies either the mean (string = mean) or a percentile (string = p1, . . . ,
p100). This is used when checking the balancing properties of the GPS using a
“blocking on the GPS” approach. This option is required unless flag() is set to 0

(see below).

nq gps(#) specifies that for each treatment interval defined in cutpoints(), the values
of the GPS evaluated at the representative point index() have to be divided into #
(# ∈ {1, . . . , 100}) intervals, defined by the quantiles of the GPS evaluated at the
representative point index(). This is used when checking the balancing properties
of the GPS using a “blocking on the GPS” approach. This option is required unless
flag() is set to 0 (see below).

method(type) specifies the type of approach to be used to estimate the DRF. The ap-
proaches are bivariate-penalized splines (type = mtspline), bivariate penalized ra-
dial splines (type = radialpspline), or IW kernel (type = iwkernel).5

Global options

gps stores the estimated generalized propensity score in the gpscore variable that is
added to the dataset.6

family(familyname) specifies the distribution used to estimate the GPS. The available
distributional families are Gaussian (normal) (family(gaussian)), inverse Gaussian
(family(igaussian)), Gamma (family(gamma)), and Beta (family(beta)). The
default is family(gaussian). The Gaussian, inverse Gaussian, and Gamma distri-
butional families are fit using glm, and the beta distribution is fit using betafit.

The following four options are for the glm command, so they can be specified only
when the Gaussian, inverse Gaussian, or Gamma distribution is assumed for the treat-
ment variable.

link(linkname) specifies the link function for the Gaussian, inverse Gaussian, and
Gamma distributional families. The available links are link(identity), link(log),
and link(pow), and the default is the canonical link for the family() specified (see
help for glm for further details).

5. The subroutines mtpspline and radialpspline are called, respectively, when estimators with pe-
nalized splines (type = mtspline) and radial penalized splines (type = radialpspline) are used.

6. This option must not be specified when running the bootstrap.
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vce(vcetype) specifies the type of standard error reported for the GPS estimation when
the Gaussian, inverse Gaussian, or Gamma distribution is assumed for the treatment
variable. vcetype may be oim, robust, cluster clustvar, eim, opg, bootstrap,
jackknife, hac, kernel, jackknife1 (see help glm for further details).

nolog(#) is a flag (# = 0, 1) that suppresses the iterations of the algorithm toward
eventual convergence when running the glm command. The default is nolog(0).

search searches for good starting values for the parameters of the generalized linear
model used to estimate the generalized propensity score (see help glm for further
details).

Overlap options

common(#) is a flag (# = 0, 1) that restricts the inference to the subsample satisfying
the common support condition when it is implemented (# = 1). The default is
common(1).

numoverlap(#) specifies that the common support condition is imposed by dividing
the sample into # groups according to # quantiles of the treatment distribution.
By default, the sample is divided into 5 groups, cutting at the 20th, 40th, 60th, and
80th percentiles of the distribution if common(1).

Balancing property assessment options

test varlist(varlist) specifies that the balancing property must be assessed for each
variable in varlist . The default test varlist() consists of all the variables used to
estimate the GPS.

test(type) allows users to specify whether the balancing property is to be assessed
using a “blocking on the GPS” approach employing either standard two-sided t tests
(test(t test)) or Bayes factors (test(Bayes factor)) or using a model-compari-
son approach with an LR test (test(L like)).

The “blocking on the GPS” approach using standard two-sided t tests provides the
values of the test statistics before and after adjusting for the GPS for each pretreat-
ment variable included in test varlist() and for each prefixed treatment interval
specified in cutpoints(). Specifically, let p be the number of control variables
in test varlist(), and let H be the number of treatment intervals specified in
cutpoints(). Then the program calculates and shows p × H values of the test
statistic before and after adjusting for the GPS, where the adjustment is done by
dividing the values of the GPS evaluated at the representative point index() into
the number of intervals specified in nq gps(). (See Hirano and Imbens [2004] for
further details.)

The model-comparison approach uses a LR test to compare an unrestricted model
for Ti, including all the covariates and the GPS (up to a cubic term), with a re-
stricted model that sets the coefficients of all covariates to zero. By default, both
the “blocking on the GPS” approach and the model-comparison approach are applied.
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flag(#) allows the user to specify that drf estimates the GPS without performing the
balancing test. The default is flag(1), which means that the balancing property is
assessed.

DRF options

tpoints(vector) indicates that the DRF is evaluated at each level of the treatment in
vector. By default, the drf program creates a vector with jth element equal to
the jth observed treatment value. This option cannot be used with npoints() or
npercentiles() (see below).

npoints(#) indicates that the DRF is evaluated at each level of the treatment be-
longing to a set of evenly spaced values t0, t1, . . . , t# that cover the range of the
observed treatment. This option cannot be used with tpoints() (see above) or
npercentiles() (see below).

npercentiles(#) indicates that the DRF is evaluated at each level of the treatment
corresponding to the percentiles tq0, tq1, . . . , tq# of the treatment’s empirical distri-
bution. This option cannot be used with tpoints() or npoints() (see above).

det displays more detailed output on the DRF estimation. When det is not specified,
the program displays only the chosen DRF estimator: method(radialpspline),
method(mtpspline), or method(iwkernel).

delta(#) specifies that drf also estimate the treatment-effect function µ(t+#)−µ(t).
The default is delta(0), which means that drf estimates only the DRF, µ(t).

Options for the IW kernel estimator (iwkernel)

bandwith(#) specifies the bandwidth to be used. By default, the global bandwidth
is chosen using the automatic procedure described in Fan and Gijbels (1996). This
procedure estimates the unknown terms in the optimal global bandwidth by using a
global polynomial of order p+3, where p is the order of the local polynomial fitted.

Options for the radial penalized spline estimator (radialpspline)

nknots(#) specifies the number of knots to be selected in the two-dimensional space
of the treatment variable and the GPS. The default is nknots(max(20, min(n/4,
150))), where n is the number of unique (Ti, Ri) (Ruppert, Wand, and Carroll
2003). When this option is specified, the subroutines radialpspline and spacefill

(Bia and Van Kerm 2014) are called. This option cannot be used with the knots()
option (see below).
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knots(numlist) specifies the list of knots for the treatment and the GPS variable. This
option cannot be used with the nknots() option (see above).

standardized implies that the spacefill algorithm standardizes the treatment vari-
able and the GPS variables before selecting the knots. The knots are chosen using
the standardized variables.

Options for the tensor-product penalized spline estimator (mtpspline)

degree1(#) specifies the power of the treatment variable included in the penalized
spline model. The default is degree1(1).

degree2(#) specifies the power of the GPS included in the penalized spline model. The
default is degree2(1).

nknots1(#) specifies the number (#) of knots for the treatment variable. The location
of the Kkth knot is defined as {(k + 1)/(# + 2)}th sample quantile of the unique
Ti for k = 1, . . . ,#. The default is nknots1(max(5, min(n/4, 35))), where n is
the number of unique Ti (Ruppert, Wand, and Carroll 2003). This option cannot
be used with the knots1(numlist) option (see below).

nknots2(#) specifies the number (#) of knots for the GPS. The location of the Kkth
knot is defined as {(k + 1)/(# + 2)}th sample quantile of the unique Ri for k =
1, . . . ,#. The default is nknots2(max(5, min(n/4, 35))), where n is the number
of unique Ri (Ruppert, Wand, and Carroll 2003). This option cannot be used with
the knots2() option (see below).

knots1(numlist) specifies the list of knots for the treatment variable. This option
cannot be used with the nknots1() option (see above).

knots2(numlist) specifies the list of knots for the GPS. This option cannot be used with
the nknots2() option (see above).

additive allows users to implement penalized splines using the additive model without
including the product terms.

Mutual options for the tensor-product and radial penalized spline estimators

Mutual options for the tensor-product and radial penalized spline estimators involve
either the mtpspline subroutine or the radialpspline subroutine, depending on which
estimator is used.

estopts(string) specifies all the possible options allowed when running the xtmixed

models to fit penalized spline models (see help xtmixed for further details).
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5 Example: The lottery dataset
We illustrate the methods and the programs discussed by reanalyzing data from a survey
of Massachusetts lottery winners (see Imbens, Rubin, and Sacerdote [2001] for details on
the survey). We focus on evaluating how the prize amount affects future labor earnings
(from social security records). This example is also considered in Hirano and Imbens
(2004).

The sample we use consists of 237 individuals who won a major prize in the lottery.
The outcome of interest is earnings six years after winning the lottery (year6), and the
treatment is the prize amount (prize). The lottery prize is randomly assigned, but there
is substantial unit and item nonresponse as well as heterogeneity in the sample with
respect to background characteristics. Thus it is more reasonable to conduct the analysis
conditioning on the observed pretreatment variables under the weak unconfoundedness
assumption.

Pretreatment variables are age, gender, years of high school, years of college, winning
year, number of tickets bought, working status at the time of playing the lottery, and
earnings s years before winning the lottery, s = 1, 2, . . . , 6. To avoid results driven
by outliers, we drop observations belonging to the upper 5% of the treatment variable
distribution.

The output from running drf, shown below, is organized as follows. First, the GPS

model and summary statistics of the estimated GPS are shown, and the common support
is determined. The results show that 31 observations were dropped after we imposed the
common support condition. Second, the balancing property is assessed. We specify the
test(L like) option for the balancing test, so results from only the model-comparison
approach using the LR test are reported. The LR test shows that the GPS balances
the covariates: they have little explanatory power conditional on the GPS. Indeed, the
restricted model for Ti that excludes the covariates cannot be rejected at the usual
significance levels (p-value is 0.284), whereas the restricted model that excludes the GPS

is soundly rejected (p-value is 0).

. use lotterydataset.dta

. * we delete the extreme values (1 and 99 percentile)

. drop if year6==.
(35 observations deleted)

. summarize prize, de

Treatment variable = Prize amount

Percentiles Smallest
1% 5.3558 1.139
5% 10.05 5

10% 11.246 5.3558 Obs 202
25% 17.034 6.844 Sum of Wgt. 202

50% 32.1835 Mean 57.36918
Largest Std. Dev. 64.84194

75% 71.642 270.1
90% 137.27 305.09 Variance 4204.477
95% 171.73 323.32 Skewness 2.821964
99% 305.09 484.79 Kurtosis 14.18278
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. drop if prize >= r(p95)
(11 observations deleted)

. replace year6 = year6/1000
year6 was long now double
(92 real changes made)

. matrix define tp = (10\20\30\40\50\60\70\80\90\100)

. set seed 2322

. drf agew ownhs owncoll male tixbot workthen yearm1 yearm2 yearm3 yearm4
> yearm5 yearm6, outcome(year6) treatment(prize) gps test(L_like)
> tpoints(tp) numoverlap(3) method(radialpspline) family(gaussian)
> link(log) nknots(10) nolog(1) search det delta(1)

******************************************************
Algorithm to estimate the generalized propensity score
******************************************************

Estimation of the propensity score

Generalized linear models No. of obs = 191
Optimization : ML Residual df = 178

Scale parameter = 1365.58
Deviance = 243073.1517 (1/df) Deviance = 1365.58
Pearson = 243073.1517 (1/df) Pearson = 1365.58

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = ln(u) [Log]

AIC = 10.12285
Log likelihood = -953.731889 BIC = 242138.2

OIM
prize Coef. Std. Err. z P>|z| [95% Conf. Interval]

agew .0158337 .0053884 2.94 0.003 .0052727 .0263947
ownhs .0585063 .0742126 0.79 0.430 -.0869477 .2039603

owncoll -.0108263 .0389408 -0.28 0.781 -.0871488 .0654962
male .3615542 .1564085 2.31 0.021 .0549991 .6681093

tixbot -.0174202 .0188308 -0.93 0.355 -.0543279 .0194875
workthen .0680442 .1819285 0.37 0.708 -.2885291 .4246174

yearm1 -.0033454 .0102149 -0.33 0.743 -.0233662 .0166754
yearm2 .0018299 .0151926 0.12 0.904 -.0279471 .0316069
yearm3 -.0190244 .0134829 -1.41 0.158 -.0454505 .0074016
yearm4 .0451296 .0194034 2.33 0.020 .0070997 .0831596
yearm5 -.0094795 .0147496 -0.64 0.520 -.0383882 .0194293
yearm6 -.0055688 .0084792 -0.66 0.511 -.0221877 .0110501
_cons 2.534394 .489911 5.17 0.000 1.574186 3.494602

Note: The common support condition is imposed
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*****************************************************************
31 observations are dropped after imposing common support
*****************************************************************

drf_gpscore

Percentiles Smallest
1% .0000774 .0000308
5% .00118 .0000774

10% .0033023 .0003464 Obs 160
25% .0077024 .0004499 Sum of Wgt. 160

50% .0092675 Mean .0082089
Largest Std. Dev. .002953

75% .0103387 .0107928
90% .0107204 .010793 Variance 8.72e-06
95% .0107831 .0107953 Skewness -1.419599
99% .0107953 .0107956 Kurtosis 3.908883

********************************************
End of the algorithm to estimate the gpscore
********************************************

**********************************************************
Log-Likelihood test for Unrestricted and Restricted Model
**********************************************************

****************************************************
Unrestricted Model

link(E[T]) = GPSCORE + GPSCORE^2 + GPSCORE^3 + X
****************************************************

Generalized linear models No. of obs = 160
Optimization : ML Residual df = 144

Scale parameter = 383.389
Deviance = 55208.02303 (1/df) Deviance = 383.389
Pearson = 55208.02303 (1/df) Pearson = 383.389

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = ln(u) [Log]

AIC = 8.881567
Log likelihood = -694.5253454 BIC = 54477.2

OIM
prize Coef. Std. Err. z P>|z| [95% Conf. Interval]

drf_gpscore -139.9919 107.5174 -1.30 0.193 -350.7222 70.73837
drf_gpscore2 -45688.7 24107.57 -1.90 0.058 -92938.68 1561.268
drf_gpscore3 4243995 1464344 2.90 0.004 1373934 7114055

agew .0067685 .0036542 1.85 0.064 -.0003935 .0139306
ownhs .0159357 .0348134 0.46 0.647 -.0522974 .0841687

owncoll .0146014 .028581 0.51 0.609 -.0414163 .0706192
male -.0071926 .0945985 -0.08 0.939 -.1926022 .178217

tixbot -.0120352 .0108077 -1.11 0.265 -.033218 .0091475
workthen -.0411355 .1226241 -0.34 0.737 -.2814743 .1992032

yearm1 .0042786 .0080239 0.53 0.594 -.011448 .0200052
yearm2 -.0129785 .0123375 -1.05 0.293 -.0371595 .0112024
yearm3 .0191091 .015091 1.27 0.205 -.0104687 .048687
yearm4 .001562 .0113064 0.14 0.890 -.0205982 .0237222
yearm5 -.008559 .0116933 -0.73 0.464 -.0314774 .0143595
yearm6 .0002114 .00695 0.03 0.976 -.0134105 .0138332
_cons 4.74533 .2766597 17.15 0.000 4.203088 5.287573
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********************************************************
Restricted Model: Pretreatment variables are excluded

link(E[T]) = GPSCORE + GPSCORE^2 + GPSCORE^3
********************************************************

Generalized linear models No. of obs = 160
Optimization : ML Residual df = 156

Scale parameter = 386.9127
Deviance = 60358.37384 (1/df) Deviance = 386.9127
Pearson = 60358.37384 (1/df) Pearson = 386.9127

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = ln(u) [Log]

AIC = 8.820758
Log likelihood = -701.6606578 BIC = 59566.65

OIM
prize Coef. Std. Err. z P>|z| [95% Conf. Interval]

drf_gpscore -84.75421 83.03918 -1.02 0.307 -247.508 77.99958
drf_gpscore2 -53755.36 20238.49 -2.66 0.008 -93422.08 -14088.64
drf_gpscore3 4533115 1287859 3.52 0.000 2008958 7057273

_cons 5.034825 .0706282 71.29 0.000 4.896396 5.173253

**********************************************************
Restricted Model: GPS terms are excluded (link(E[T]) = X)

**********************************************************

Generalized linear models No. of obs = 160
Optimization : ML Residual df = 147

Scale parameter = 1311.924
Deviance = 192852.8661 (1/df) Deviance = 1311.924
Pearson = 192852.8661 (1/df) Pearson = 1311.924

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = ln(u) [Log]

AIC = 10.09489
Log likelihood = -794.5908861 BIC = 192106.8

OIM
prize Coef. Std. Err. z P>|z| [95% Conf. Interval]

agew .0196754 .0078967 2.49 0.013 .0041982 .0351525
ownhs .0445558 .0879733 0.51 0.613 -.1278687 .2169802

owncoll .0102703 .0484571 0.21 0.832 -.0847039 .1052445
male .3800062 .1676205 2.27 0.023 .051476 .7085364

tixbot -.0179112 .0212375 -0.84 0.399 -.0595359 .0237135
workthen .1593496 .2189032 0.73 0.467 -.2696929 .5883921

yearm1 .0158358 .0119526 1.32 0.185 -.0075909 .0392624
yearm2 -.0347405 .0256188 -1.36 0.175 -.0849524 .0154713
yearm3 -.0074285 .0246622 -0.30 0.763 -.0557656 .0409086
yearm4 .0487374 .0278511 1.75 0.080 -.0058497 .1033245
yearm5 -.013943 .018552 -0.75 0.452 -.0503042 .0224183
yearm6 .000416 .0150639 0.03 0.978 -.0291088 .0299408
_cons 2.285246 .6383848 3.58 0.000 1.034035 3.536457
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********************************************************************
Likelihood-ratio tests:

Comparison between the unrestricted model and the restricted models
********************************************************************

LR_TEST[3,4]
Lrtest T-Statistics p-value Restrictions

Unrestricted -694.52535 . . .
Covariates X -701.66066 14.270625 .2837616 12

GPS terms -794.59089 200.13108 3.952e-43 3

Number of observations = 160

***********************************************************
End of the assesment of the balancing property of the GPS

***********************************************************

Then we estimate the DRF and the treatment-effect function, which represents the
marginal propensity to earn out of the yearly prize money, using both penalized spline
techniques and the IW kernel estimator. Following Hirano and Imbens (2004), we ob-
tain the estimates of these functions at 10 different prize-amount values, considering
increments of $1,000 between $10,000 and $100,000 for the estimation of the treatment-
effect function. Note that we scaled the prize amount by dividing it by $1,000. To avoid
redundancies, we show details on the output from running drf for only the radial penal-
ized spline estimator (method(radialpspline)). Note that the det option is specified,
so details on estimating the DRF are shown.

****************
DRF estimation

****************

Radial penalized spline estimator
Run 1 .. (Cpq = 383.37)
Run 2 .. (Cpq = 427.99)
Run 3 ... (Cpq = 388.19)
Run 4 .. (Cpq = 365.61)
Run 5 ... (Cpq = 389.08)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -509.60164
Iteration 1: log restricted-likelihood = -509.58312
Iteration 2: log restricted-likelihood = -509.58286
Iteration 3: log restricted-likelihood = -509.58286
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Computing standard errors:

Mixed-effects REML regression Number of obs = 129
Group variable: _all Number of groups = 1

Obs per group: min = 129
avg = 129.0
max = 129

Wald chi2(2) = 5.01
Log restricted-likelihood = -509.58286 Prob > chi2 = 0.0818

year6 Coef. Std. Err. z P>|z| [95% Conf. Interval]

prize -.2582684 .215657 -1.20 0.231 -.6809484 .1644115
drf_gpscore -1355.627 897.2735 -1.51 0.131 -3114.25 402.997

_cons 34.56937 11.09994 3.11 0.002 12.8139 56.32485

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
sd(__00002U..__000033)(1) .0285723 .0584111 .0005198 1.570645

sd(Residual) 13.36947 .8725761 11.76412 15.19389

LR test vs. linear regression: chibar2(01) = 0.06 Prob >= chibar2 = 0.4072
(1) __00002U __00002V __00002W __00002X __00002Y __00002Z __000030 __000031

__000032 __000033

. matrix list e(b)

e(b)[1,20]
c1 c2 c3 c4 c5 c6

y1 15.131775 12.106819 9.3763398 7.2519104 6.0217689 5.5866336

c7 c8 c9 c10 c11 c12
y1 5.7080575 5.9898157 6.0769106 5.7288158 -.3081758 -.2900365

c13 c14 c15 c16 c17 c18
y1 -.23826795 -.15935109 -.05448761 -.00673878 .02770708 .02217719

c19 c20
y1 -.01213146 -.06489899

. matrix C = e(b)

. drop gpscore

. set seed 2322
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. bootstrap _b, reps(50): drf agew ownhs owncoll male tixbot workthen yearm1
> yearm2 yearm3 yearm4 yearm5 yearm6, outcome(year6) treatment(prize)
> test(L_like) tpoints(tp) numoverlap(3) method(radialpspline) family(gaussian)
> link(log) nolog(1) search nknots(10) det delta(1)
(running drf on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 191
Replications = 50

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

c1 15.13177 24.33924 0.62 0.534 -32.57225 62.8358
c2 12.10682 6.628999 1.83 0.068 -.8857812 25.09942
c3 9.37634 6.500001 1.44 0.149 -3.363427 22.11611
c4 7.25191 7.843234 0.92 0.355 -8.120547 22.62437
c5 6.021769 12.20073 0.49 0.622 -17.89122 29.93475
c6 5.586634 15.15628 0.37 0.712 -24.11914 35.2924
c7 5.708057 18.95607 0.30 0.763 -31.44515 42.86127
c8 5.989816 23.01648 0.26 0.795 -39.12166 51.10129
c9 6.076911 26.94703 0.23 0.822 -46.7383 58.89212
c10 5.728816 31.02343 0.18 0.853 -55.07598 66.53361
c11 -.3081758 2.3051 -0.13 0.894 -4.826088 4.209736
c12 -.2900365 2.43639 -0.12 0.905 -5.065274 4.485201
c13 -.2382679 .5888614 -0.40 0.686 -1.392415 .9158791
c14 -.1593511 .641826 -0.25 0.804 -1.417307 1.098605
c15 -.0544876 .4563326 -0.12 0.905 -.9488831 .8399079
c16 -.0067388 .4477181 -0.02 0.988 -.8842501 .8707725
c17 .0277071 .5016994 0.06 0.956 -.9556057 1.01102
c18 .0221772 .4548985 0.05 0.961 -.8694075 .9137618
c19 -.0121315 .4958827 -0.02 0.980 -.9840437 .9597808
c20 -.064899 .5120701 -0.13 0.899 -1.068538 .93874

Figures 1 and 2 show the estimates of the DRF and the treatment-effect function by
using the semiparametric techniques implemented in the drf routine and a paramet-
ric approach. The parametric estimates are derived using the doseresponse routine
(Bia and Mattei 2008), which follows the parametric approach originally proposed by
Hirano and Imbens (2004).7 As can be seen in figures 1 and 2, the two penalized spline
estimators and the IW kernel estimator lead to similar results: the DRFs have a U shape
(which is more tenuous in the case of the radial spline method) and the treatment-effect
functions have irregular shapes increasing over most of the treatment range and decreas-
ing for high treatment levels. The parametric approach shows quite a different picture.
The DRF goes down sharply for low prize amounts and follows an inverse J shape for
prize amounts greater than $20,000. The treatment-effect function reaches a maximum
around $30,000, and then it slowly decreases.

7. The code to derive the graphs is shown here for only the radial penalized spline estimator.
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. line radialest treatment, lcolor(black)
> yscale(r(6 18)) title("Radial spline method")
> xtitle("Treatment") ylabel(6 7 8 9 10 11 12 13 14 15 16 17 18)
> xlabel(0 10 20 30 40 50 60 70 80 90 100)
> ytitle("Dose-response function") scheme(medim)

. graph save DRF_RAD.gph, replace
(file DRF_RAD.gph saved)

. graph export DRF_RAD.eps, replace
(note: file DRF_RAD.eps not found)
(file DRF_RAD.eps written in EPS format)

. line radialder treatment, lcolor(black)
> yscale(r(-0.45 0.15)) title("Radial spline method")
> xtitle("Treatment") ylabel(-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2)
> xlabel(0 10 20 30 40 50 60 70 80 90 100)
> ytitle("Derivative") scheme(medim)

. graph save dDRF_RAD.gph, replace
(file dDRF_RAD.gph saved)

. graph export dDRF_RAD.eps, replace
(note: file dDRF_RAD.eps not found)
(file dDRF_RAD.eps written in EPS format)
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Figure 1. Estimated dose–response functions
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Figure 2. Estimated treatment-effect functions

Figures 3 and 4 show the DRFs and the treatment-effect functions estimated using
the semiparametric and parametric techniques, now accompanied by pointwise 95% con-
fidence bands. The confidence bands are based on a normal approximation using boot-
strap standard errors, which are computed calling the drf program (or doseresponse
program) in the bootstrap command.8

8. The radial spline-based models may produce slightly different estimates in different runs and when
using the bootstrap command. This happens because within those models, an optimal set of
“design points” is chosen via random selection of the knot values using the spacefill algorithm (see
Bia and Van Kerm [2014] for further details). Some selected sets of knots may raise convergence
issues depending on the data. Thus we recommend that users set a seed before running the drf

code to make the results replicable.
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. twoway (line upperEstRAD treatment, lcolor(black))
> (line radialest treatment, lcolor(black))
> (line lowerEstRAD treatment, lcolor(black)),
> yscale(r(-40 60)) xtitle("Treatment") ylabel(-40 -20 0 20 40 60)
> title("Radial spline method") ytitle("Dose-response function")
> xlabel(0 10 20 30 40 50 60 70 80 90 100) scheme(medim)

. graph save CI_DRF_RAD.gph, replace
(file CI_DRF_RAD.gph saved)

. graph export CI_DRF_RAD.eps, replace
(note: file CI_DRF_RAD.eps not found)
(file CI_DRF_RAD.eps written in EPS format)

. twoway (line upperDerRAD treatment, lcolor(black))
> (line radialder treatment, lcolor(black))
> (line lowerDerRAD treatment, lcolor(black)),
> yscale(r(-2 2)) xtitle("Treatment") ylabel(-2 -1 0.0 1 2)
> title("Radial spline method") ytitle("Derivative")
> xlabel(0 10 20 30 40 50 60 70 80 90 100) scheme(medim)

. graph save CI_dDRF_RAD.gph, replace
(file CI_dDRF_RAD.gph saved)

. graph export CI_dDRF_RAD.eps, replace
(note: file CI_dDRF_RAD.eps not found)
(file CI_dDRF_RAD.eps written in EPS format)
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Figure 3. 95% confidence bands for the dose–response functions
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Figure 4. 95% confidence bands for the treatment-effect functions

The example allows us to highlight two important points. First, figures 3 and 4
show that differences in the point estimates and their precision among the three semi-
parametric estimators are more pronounced for low and high treatment levels. This is
because our data are sparse for lower and higher values of the treatment.9 Because of
the nonparametric methods we use, estimation becomes noisier and the parameters are
estimated less precisely in regions of the data with few observations, which is reflected
in the wider confidence intervals. This is particularly evident for the radial spline ap-
proach, which seems to be more sensitive to the sample size than the IW and penalized
splines estimators are. Second, it is clear from figures 3 and 4 that the parametric
estimator produces much tighter confidence bands relative to the semiparametric esti-
mators. This is due to the additional structure imposed by the parametric estimator,
which allows extrapolation from regions where data are abundant to regions where data
are scarce. However, if the assumptions behind the parametric structure are incorrect,
the results, including their precision, are likely misleading.

9. In particular, there are very few observations for prizes lower than $15,000 and greater than $40,000.
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6 Conclusion

We develop a program where we implement semiparametric estimators of the DRF based
on the GPS, assuming that assignment to the treatment is weakly unconfounded given
pretreatment variables. We propose three semiparametric estimators: the IW kernel
estimator developed in Flores et al. (2012) and two estimators using penalized spline
methods for bivariate smoothing. We use data from a survey of Massachusetts lottery
winners to illustrate the proposed methods and program. We find that the semipara-
metric estimators provide estimates of the DRF and the treatment-effect function that
are substantially different from those obtained when using the parametric approach orig-
inally proposed in Hirano and Imbens (2004). All the semiparametric estimators agree
on a U -shaped DRF, which contrasts with the estimated inverse J shape uncovered by
the parametric estimator. Although we cannot draw a firm conclusion about the relative
performance of the estimators based on one dataset, we argue that a misspecification
of the conditional expectation of the outcome given treatment and GPS could result
in inappropriate removal of self-selection bias and in misleading estimates of the DRF.
Therefore, it is advisable to also use semiparametric estimators that account for compli-
cated structures that are difficult to model parametrically. Conversely, semiparametric
estimators can be sensitive to the sample size and might not perform well in regions
with few observations.
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