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Abstract. The analysis of multinomial data often includes the following question
of interest: Is a particular category the most populous (that is, does it have the
largest probability)? Berry (2001, Journal of Statistical Planning and Inference

99: 175–182) developed a likelihood-ratio test for assessing the evidence for the ex-
istence of a unique most probable category. Nettleton (2009, Journal of the Amer-

ican Statistical Association 104: 1052–1059) developed a likelihood-ratio test for
testing whether a particular category was most probable, showed that the test was
an example of an intersection-union test, and proposed other intersection-union
tests for testing whether a particular category was most probable. He extended
his likelihood-ratio test to the existence of a unique most probable category and
showed that his test was equivalent to the test developed by Berry (2001, Journal
of Statistical Planning and Inference 99: 175–182). Nettleton (2009, Journal of the
American Statistical Association 104: 1052–1059) showed that the likelihood ratio
for identifying a unique most probable cell could be viewed as a union-intersection
test. The purpose of this article is to survey different methods and present a
command, cellsupremacy, for the analysis of multinomial data as it pertains to
identifying the significantly most probable category; the article also presents a
command for sample-size calculations and power analyses, power cellsupremacy,
that is useful for planning multinomial data studies.

Keywords: st0348, cellsupremacy, cellsupremacyi, power cellsupremacy, most
probable category, multinomial data, cell supremacy, cell inferiority

1 Introduction

If Y1, Y2, . . . , Yk are independent Poisson-distributed random variables with means µ1,
µ2, . . ., µk, then (Y1, Y2, . . . , Yk), conditional on their sum, is multinomial(N, p1, p2, . . . ,
pk), where pi = µi/

∑
∀k
µk represents the probability of the ith category. Multinomial

data are common in biological, marketing, and opinion research scenarios. In a recent
study, Price et al. (2011) used data from the 2008 National Health Interview Survey
to examine whether 18- to 26-year-old women who are most likely to benefit from
catch-up vaccination are aware of the human papillomavirus (HPV) vaccine and have
received initial and subsequent doses in the 3-dose series. The study found that the
most common reasons for lack of interest in the HPV vaccine were belief that it was not
needed (35.9%), not knowing enough about it (17.1%), concerns about safety (12.7%),

c© 2014 StataCorp LP st0348



500 Cell supremacy

and not being sexually active (10.3%). These 4 responses were among the 11 possible
response categories to the survey question. Is the belief among respondents that the HPV

vaccine was not needed the unique most probable reason for lack of interest in the HPV

vaccine? Response to questionnaire-based infertility studies varies, and Morris et al.
(2013) noted that different modes of contact can affect response. Results of their study
indicated that 59% of the women surveyed preferred a mailed questionnaire, 37% chose
an online questionnaire, and only 3% selected a telephone interview as their mode of
contact. Is a mailed questionnaire the most preferred mode of contact? Are these
results significant? The purpose of this article is to survey different methods and to
present a command for the analysis of multinomial data as it pertains to identifying the
significantly most probable category; the article also presents a command for sample-size
calculations and power analyses that is useful for planning multinomial data studies.

2 Methods

Nettleton (2009) posed the test for the supremacy of a multinomial cell probability as an
intersection-union test (IUT). Suppose X = (X1, . . . , Xk) has a multinomial distribution
with n trials and the cell probabilities p1, . . . , pk. The parameter p = (p1, . . . , pk) lies
in the set P of vectors of order k, whose components are positive and sum to one.
The tested null hypothesis states that a particular cell of interest is not more probable
than all others. Suppose the kth cell is the cell of interest; then the hypothesis can be
formulated as

H0 :

k−1⋃

i=1

pk ≤ pi versus H1 :

k−1⋂

i=1

pk > pi

which Nettleton (2009) noted can be stated as

H0 : pk ≤ max(p1, . . . , pk−1) versus H1 : pk > max(p1, . . . , pk−1)

Nettleton (2009) offered three possible asymptotic IUT statistics: the score test, the
Wald test, and the likelihood-ratio test. Suppose x = (x1, . . . , xk) is a realization of
X = (X1, . . . , Xk); then p̂i = xi/n so that p̂ = (p̂1, . . . , p̂k) is the maximum likelihood
estimate of p = (p1, . . . , pk). Each asymptotic IUT statistic is zero unless xk is greater
than max(x1, . . . , xk−1). Nettleton (2009) also suggested a test based on the conditional
distribution of Xk, given the sum of xk and m, where m = max(x1, . . . , xk−1).

2.1 Score test

The test statistic for the asymptotic score test is

TS =

{
n(p̂k−p̂M )2

p̂k+p̂M
if p̂k > p̂M = max(p̂1, . . . , p̂k−1)

0 otherwise

H0 is rejected if and only if TS ≥ χ2
(1),1−2α, where χ

2
(1),1−2α represents the {100 ×

(1− 2α)}th quantile of the χ2 distribution with 1 degree of freedom. The approximate
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p-value for the test is given by Pr(χ
2
(1) ≥ TS | TS)/2, where χ2

(1) denotes a χ2 random
variable with 1 degree of freedom.

2.2 Wald test

The test statistic for the asymptotic Wald test is

TW =

{
n(p̂k−p̂M )2

p̂k+p̂M−(p̂k−p̂M )2 if p̂k > p̂M = max(p̂1, . . . , p̂k−1)

0 otherwise

H0 is rejected if and only if TW ≥ χ2
(1),1−2α. The approximate p-value for the test

is given by Pr(χ
2
(1) ≥ TW | TW )/2.

2.3 Likelihood-ratio test

The test statistic for the asymptotic likelihood-ratio test is

TLR =




2

{
M ln

(
2M

M+xk

)
+ xk ln

(
2xk

M+xk

)}
if xk > M = max(x1, . . . , xk−1)

0 otherwise

H0 is rejected if and only if TLR ≥ χ2
(1),1−2α. The approximate p-value for the test

is given by Pr(χ
2
(1) ≥ TLR | TLR)/2.

2.4 Conditional binomial test

The conditional distribution of Xk, given m + xk, where m = max(x1, . . . , xk−1), is
binomial(m + xk, 1/2). Thus a p-value for testing the null hypothesis that is valid for
all n is Pr{Xk ≥ xk | xk + max(x1, . . . , xk)}. The conditional IUT is equivalent to a
permutation test, where the p-value is expressed as

p-value =

m+xk∑

x=xk

(
m+ xk
x

)
× 2−(m+xk)

The simulation studies by Nettleton (2009) showed that the conditional IUT based on
the binomial distribution yielded a true p-value typically less than the nominal value.
Farcomeni (2012) suggested that the exact test (that is, conditional binomial) may
be conservative and that the exact significance level may be smaller than the desired
nominal level. Farcomeni (2012) suggested using the typical continuity correction for
the binomial; namely, he recommended the mid-p value as the p-value of the test.
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2.5 Mid-p value test

Using the mid-p value approach, we see that the p-value is

p-value =

(
m+ xk
xk

)
× 2−(m+xk+1) +

m+xk∑

x=xk+1

(
m+ xk
x

)
× 2−(m+xk)

2.6 Inferiority test

The test for cell supremacy can be formulated as

H0 : pk ≤ max(p1, . . . , pk−1) versus H1 : pk > max(p1, . . . , pk−1)

One could formulate the test for cell inferiority (that is, a particular cell is least
probable) as

H0 : pk ≥ min(p1, . . . , pk−1) versus H1 : pk < min(p1, . . . , pk−1)

Farcomeni (2012) suggests using the exact test for inferiority where the sum goes
from 0 to xk. That is, the p-value for the conditional IUT for inferiority would be

p-value =

xk∑

x=0

(
m+ xk
x

)
× 2−(m+xk)

and the mid-p value adjustment could be stated as

p-value =

(
m+ xk
xk

)
× 2−(m+xk+1) +

xk−1∑

x=0

(
m+ xk
x

)
× 2−(m+xk)

Alam and Thompson (1972) discussed the challenges of testing whether a particular
cell is least probable from a design point of view. Nettleton (2009) showed that the
likelihood-ratio test statistic could be used to test for the existence of a unique most
probable cell. That is, rather than test whether a particular cell chosen a priori is
the most probable, one could test whether the largest observed cell was uniquely most
probable. The likelihood-ratio test statistic matches the test statistic developed by
Berry (2001) and rejects H0 if and only if TLR ≥ χ2

(1),1−2α. The approximate p-value

for the test is given by Pr(χ
2
(1) ≥ TLR | TLR), where χ

2
(1) denotes a χ

2 random variable
with 1 degree of freedom. That is, the p-value is twice the p-value for the test in which
a particular cell chosen a priori is most probable.

2.7 Power

We consider the case of a random variable X˜multinomial(n, p1, . . . , pk). Without
loss of generality, we will assume that pk is the maximum among the k cells. Let
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pM = max(p1, . . . , pk−1)—that is, assume the maximum pi; i = 1, 2, . . . , k− 1 occurs at
i =M—and consider the test

H0 : pk = pM versus H1 : pk > pM

The score test rejects H0 if
TS ≥ χ2

(1),1−2α

and for xk > xM ,

TS =
n (p̂k − p̂M )

2

p̂k + p̂M
= n





(
p̂k − p̂k+p̂M

2

)2

p̂k+p̂M

2

+

(
p̂M − p̂k+p̂M

2

)2

p̂k+p̂M

2





where α is the significance level of the test. To evaluate

power = Pr(TS ≥ χ2
(1),1−2α | pk, pM ∋ pk > pM )

we need the noncentrality parameter,

λ = n

{
(pk − p0)

2

p0
+

(pM − p0)
2

p0

}
= 2n

{
(pk − p0)

2

p0

}

where p0 = (pk + pM )/2 (Guenther 1977). For example, consider the random variable

X˜multinomial(n = 50, p1 = 0.1, p2 = 0.1, p3 = 0.1, p4 = 0.3, p5 = 0.4)

Suppose we wish to test the hypothesis

H0 : p5 ≤ max(p1, . . . , p4) versus H1 : p5 > max(p1, . . . , p4)

at the α = 0.05 significance level. The null hypothesis is rejected if TS ≥ 2.70554. Solely
based on p4 and p5, the noncentrality parameter for testing the 5th cell selected a priori
as the most probable cell is

λ = 100×
{
(0.4− 0.35)2

0.35

}
≈ 0.71429

and the approximate power is

power ≈ Pr(χ
2
(1),0.71479 ≥ 2.70554) ≈ 0.21833

where χ2
(1),0.71479 is a noncentral χ2 random variable with a noncentrality parameter of

0.71479 and 1 degree of freedom. The simulation of size 100,000 yielded a power equal
to 0.214 for this scenario. The approximation is ignorant of the distribution of the first
k − 1 cells. Because p4 is three times greater than any other cell probability amount
in the first k − 1 cells, the approximation yields a reasonable result. Now consider the
random variable

X˜multinomial(n = 50, p1 = 0, p2 = 0, p3 = 0.3, p4 = 0.3, p5 = 0.4)
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We have a trinomial, and there is strong competition for the maximum among the first
k − 1 cells. Because the cells of a multinomial are not independent, one would expect
the distribution of the first k − 1 cells that affect the power to detect the kth cell to
be the most probable. The simulated power for this scenario was 0.087. Thus the
approximation of power must consider the impact of the distribution of the first k − 1
cells. The correlation among the two cells of a multinomial is

ρa,b = −
√

papb
(1− pa)(1− pb)

The power to detect the 5th cell as the most probable is the power that p5 > p4 and
p5 > p3. Consider approximating the power by

power ≈ Pr

(
TS ≥ χ2

(1),1−2α | pk, pM
){

Pr

(
TS ≥ χ2

(1),1−2α | pk, pN
)}1+ρM,N

where pM and pN represent the maximum and the second largest of the cell probabilities
of the first k − 1 cells, respectively, and ρM,N represents the correlation between cells
M and N . For our example, the approximate power is

power ≈ Pr(TS ≥ χ2
(1),1−2α | p5 = 0.4, p3 = 0.3)

×
{
Pr

(
TS ≥ χ2

(1),1−2α | p5 = 0.4, p4 = 0.3
)}1+ρ4,3

≈ (0.21833) (0.21833)1−0.42857

≈ 0.09151

Applying this form of the approximation to the original example with p1 through p3
equal to 0.1 and p4 equal to 0.3 yields an approximate power of

power ≈ Pr

(
TS ≥ χ2

(1),1−2α | p5 = 0.4, p3 = 0.3
)

×
{
Pr

(
TS ≥ χ2

(1),1−2α | p5 = 0.4, p3 = 0.1
)}1+ρ4,3

≈ (0.21833) (0.91232)1−0.21822

≈ 0.20322

Table 1 provides simulations of size 100,000 for several scenarios to investigate the
adequacy of our proposed approximation. For each scenario, p6 is the cell of interest,
ρ5,4 represents the correlation between the 5th and 4th cell, “Sim.” is the simulated
power, and “Approx.” is our power approximation.
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Table 1. Power analysis

Scenario p1 p2 p3 p4 p5 p6 ρ5,4 Subjects Sim. Approx.

1 0 0.1 0.1 0.1 0.3 0.4 −0.2182 25 0.137 0.119
2 50 0.214 0.203
3 200 0.520 0.519
4 1000 0.984 0.984
5 0 0 0 0.3 0.3 0.4 −0.4286 25 0.057 0.056
6 50 0.087 0.092
7 200 0.353 0.356
8 1000 0.971 0.974
9 0.0626 0.0625 0.0625 0.0625 0.25 0.5 −0.1491 25 0.413 0.384
10 50 0.664 0.651
11 200 0.994 0.993
12 1000 1.000 1.000
13 0 0 0 0.25 0.25 0.5 −0.3333 25 0.260 0.237
14 50 0.504 0.493
15 200 0.989 0.988
16 1000 1.000 1.000
17 0.05 0.05 0.05 0.05 0.2 0.6 −0.1147 25 0.747 0.698
18 50 0.953 0.935
19 200 1.000 1.000
20 1000 1.000 1.000
21 0 0 0 0.2 0.2 0.6 −0.2500 25 0.631 0.567
22 50 0.915 0.890
23 200 1.000 1.000
24 1000 1.000 1.000
25 0.1 0.1 0.1 0.1 0.2 0.4 −0.1667 25 0.257 0.265
26 50 0.550 0.530
27 200 0.981 0.978
28 1000 1.000 1.000
29 0 0 0.2 0.2 0.2 0.4 −0.2500 25 0.143 0.170
30 50 0.326 0.376
31 200 0.953 0.961
32 1000 1.000 1.000

2.8 Conclusions

Nettleton (2009) suggested that the asymptotic procedures are preferred for moderate to
large sample sizes based on simulations, but the IUT based on conditional tests is a useful
option when a small sample size casts doubt on the validity of the asymptotic procedures.
Our power simulations tend to also suggest that the power approximation works best
for moderate to large sample sizes. Scenarios 29–32 present a slightly more complex
problem with three cells vying for the top spot among the first cells. For these scenarios,
our power approximation yields slightly liberal results because the approximate power is
consistently larger than the simulated power. Under this scenario, the power to detect
the 6th cell as the most probable is the power that p6 > p5, p6 > p4, and p6 > p3.
Thus one could improve the approximation by considering the added competition for
supremacy among the first k − 1 cells. That is, for n = 200, the approximate power is
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power ≈ Pr

(
TS ≥ χ2

(1),1−2α | p5 = 0.4, p4 = 0.2
)

×
{
Pr

(
TS ≥ χ2

(1),1−2α | p5 = 0.4, p3 = 0.2
)}1+ρ4,3

×
{
Pr

(
TS ≥ χ2

(1),1−2α | p5 = 0.4, p3 = 0.2
)}1+2ρ4,3

≈ (0.97761) (0.97761)1−0.25(0.97761)1−0.50

≈ 0.95032

which compares favorably with the simulated power. However, we believe that for most
real-world problems, considering the impact of the top two cell probabilities among the
first k − 1 cells is sufficient.

3 The cellsupremacy, cellsupremacyi, and
power cellsupremacy commands

3.1 Syntax

cellsupremacy varname
[
weight

]

cellsupremacyi, counts(numlist)

power cellsupremacy, freq(numlist) n(#)
[
simulate dots reps(#)

alpha(#)
]

fweights is allowed; see [U] 11.1.6 weight.

3.2 Option for cellsupremacyi

counts(numlist) specifies the cell counts for each category of the variable of interest.
counts() is required.

3.3 Options for power cellsupremacy

freq(numlist) specifies the frequency of cells for each category of the variable of interest.
freq() is required.

n(#) specifies the number of observations. n() is required.

simulate calculates the simulated power and the approximate power. When not spec-
ified, only the approximated power is calculated.
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dots shows the replication dots when using the simulate option.

reps(#) specifies the number of simulations used to calculate the power. The default
is reps(10000).

alpha(#) specifies the alpha that is used for calculating the power. The default is
alpha(0.05).

3.4 Examples

Suppose we are studying breast cancer and we find that the distribution of subtypes is
a trinomial distribution with HER2+, HR+, and TNBC. In our data, we find that patients
with leptomeningeal disease were more likely to be HER2+ (45%). We are interested in
knowing whether this particular category is the most populous (that is, does it have
the largest probability of occurring?). The following example will generate a sample
dataset and illustrate the use of the new command to answer this question.

. set obs 100
obs was 0, now 100

. generate subtype = "HER2+" in 1/45
(55 missing values generated)

. replace subtype = "HR+" in 46/73
(28 real changes made)

. replace subtype = "TNBC" in 74/100
(27 real changes made)

. tab subtype

subtype Freq. Percent Cum.

HER2+ 45 45.00 45.00
HR+ 28 28.00 73.00
TNBC 27 27.00 100.00

Total 100 100.00

. cellsupremacy subtype

TESTS FOR CELL SUPREMACY
Category HER2+ had the largest observed frequency.
TESTING WHETHER CATEGORY HER2+ SELECTED A PRIORI IS MOST PROBABLE.

Quantity Score Wald LR Binomial Mid-P
-----------------------------------------------------------------
Test Statistic 3.9589 4.1221 3.9955
p-value 0.0233 0.0212 0.0228 0.0302 0.0237

TEST FOR THE EXISTENCE OF A MOST PROBABLE CELL

Quantity LR
-------------------------
Test Statistic 3.9955
p-value 0.0456

TESTS FOR CELL INFERIORITY
Category TNBC had the smallest observed frequency.
TESTING WHETHER CATEGORY TNBC SELECTED A PRIORI IS LEAST PROBABLE.

Quantity Binomial Mid-P
---------------------------------------------
p-value 0.5000 0.4469
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The p-values for all tests are less than 0.05, which indicates that HER2+ is the most
probable. The test for the existence of a most probable cell is also significant. On the
other hand, if we were interested in cell inferiority (least probable), we would not reject
our hypothesis because our p-values are approximately 0.50. Below is another example
with a slightly different distribution than before.

. clear

. set obs 100
obs was 0, now 100

. generate subtype = "HER2+" in 1/45
(55 missing values generated)

. replace subtype = "HR+" in 46/85
(40 real changes made)

. replace subtype = "TNBC" in 86/100
(15 real changes made)

. tab subtype

subtype Freq. Percent Cum.

HER2+ 45 45.00 45.00
HR+ 40 40.00 85.00
TNBC 15 15.00 100.00

Total 100 100.00

. cellsupremacy subtype

TESTS FOR CELL SUPREMACY
Category HER2+ had the largest observed frequency.
TESTING WHETHER CATEGORY HER2+ SELECTED A PRIORI IS MOST PROBABLE.

Quantity Score Wald LR Binomial Mid-P
-----------------------------------------------------------------
Test Statistic 0.2941 0.2950 0.2943
p-value 0.2938 0.2935 0.2937 0.3323 0.2950

TEST FOR THE EXISTENCE OF A MOST PROBABLE CELL

Quantity LR
-------------------------
Test Statistic 0.2943
p-value 0.5875

TESTS FOR CELL INFERIORITY
Category TNBC had the smallest observed frequency.
TESTING WHETHER CATEGORY TNBC SELECTED A PRIORI IS LEAST PROBABLE.

Quantity Binomial Mid-P
---------------------------------------------
p-value 0.0005 0.0003

Because HER2+ and HR+ have similar frequencies, we cannot conclude that HER2+ is
the most probable. In this case, we can conclude that TNBC is the least probable cell. The
above examples can both be implemented by entering the raw counts cellsupremacyi
45 28 27 or cellsupremacyi 45 40 15, respectively.
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To illustrate how to use the power cellsupremacy command to calculate the power
of the test, we consider the examples in section 2.7 for testing cell superiority for the
random variables,

X˜multinomial(n = 50, p1 = 0, p2 = 0, p3 = 0.3, p4 = 0.3, p5 = 0.4)

and

Y˜multinomial(n = 50, p1 = 0.1, p2 = 0.1, p3 = 0.1, p4 = 0.3, p5 = 0.4)

. clear

. set seed 339487731

. power_cellsupremacy, simulate freq(0 0 0.3 0.3 0.4) n(50)

Simulations (10000)

N Simulated Power Approximate Power
50 0.0898 0.0915

. power_cellsupremacy, simulate freq(0.1 0.1 0.1 0.3 0.4) n(50)

Simulations (10000)

N Simulated Power Approximate Power
50 0.2121 0.2032
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