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ivtreatreg: A command for fitting binary
treatment models with heterogeneous response
to treatment and unobservable selection

Giovanni Cerulli
Ceris-CNR
National Research Council of Italy
Institute for Economic Research on Firms and Growth
Rome, Ttaly
g.cerulli@ceris.cnr.it

Abstract. In this article, I present ivtreatreg, a command for fitting four differ-
ent binary treatment models with and without heterogeneous average treatment
effects under selection-on-unobservables (that is, treatment endogeneity). Depend-
ing on the model specified by the user, ivtreatreg provides consistent estimation
of average treatment effects by using instrumental-variables estimators and a gen-
eralized two-step Heckman selection model. The added value of this new command
is that it allows for generalization of the regression approach typically used in stan-
dard program evaluation by assuming heterogeneous response to treatment. It also
serves as a sort of toolbox for conducting joint comparisons of different treatment
methods, thus readily permitting checks on the robustness of results.

Keywords: st0346, ivtreatreg, microeconometrics, treatment models, instrumental
variables, unobservable selection, treatment endogeneity, heterogeneous treatment
response

1 Introduction

It is increasingly recognized as good practice to perform ex-post evaluation of economic
and social programs through counterfactual evidence-based statistical analysis. Such
analysis is particularly important at the policy-making level. The statistical approach
is usually applied to measuring the causal effects of an intervention on part of an external
authority, such as local or national government, on a set of subjects targeted by a given
program, such as individuals and companies. Similar analysis is also becoming popular
in reassessing causal relations among factors identified under modern microeconometric
theory from a counterfactual perspective but not necessarily regarding policy implica-
tions.

Several official Stata commands and new user-written commands have been applied
to enlarge the set of available statistical tools for conducting these counterfactual anal-
yses. Table 1 contains a list of commands for estimating binary treatment effects.
However, the most recent release of Stata, version 13, provides a new far-reaching suite
called teffects, which can be used to estimate treatment effects from observational
data.

© 2014 StataCorp LP st0346



454 Fitting binary treatment models

Table 1. Commands for performing econometric program evaluation: ordinary least-
squares (OLS) estimation using a control function; heckit, Heckman-type selection
model; difference-in-differences (DID); instrumental variables (IV); regression discon-
tinuity design

Command  Description Author

regress OLS estimation based on a control  StataCorp
function, linear reweighting, DID
(panel data)

ivregress Basic IV, local average treatment StataCorp
effect

etregress Selection model (heckit) StataCorp

psmatch2* Matching (nearest neighbor on Leuven and Sianesi (2003)
covariates and propensity score)

pscore* Matching (propensity score) Becker and Ichino (2002)

nnmatch®  Matching (nearest neighbor on Abadie et al. (2004)
covariates)

rd* Regression discontinuity design Austin (2007)
(“sharp” and “fuzzy”)

treatrew® Reweighting on propensity score Cerulli (2014)

diff* DID (repeated cross-section) Villa (2009)

* User-written command downloadable from the Statistical Software Components
archive

The teffects command can be used to estimate potential outcome means and av-
erage treatment effects (ATEs). As shown in table 2, the teffects suite covers a large
set of methods, such as regression adjustment; inverse-probability weights; doubly ro-
bust methods, including inverse-probability-weighted regression adjustment; augmented
inverse-probability weights; and matching on the propensity score or covariates (with
nearest neighbors). Other subcommands can be used for postestimation purposes and
for testing reliability of results; for example, overlap allows for plotting the estimated
densities of the probability of getting each treatment level.
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Table 2. Stata 13 teffects subcommands for estimating treatment effects from obser-
vational data

Subcommand  Description

aipw Augmented inverse-probability weighting

ipw Inverse-probability weighting

ipwra Inverse-probability-weighted regression adjustment
nnmatch Nearest-neighbor matching

overlap Overlap plots

psmatch Propensity-score matching

ra Regression adjustment

When applying teffects, the outcome models can be continuous, binary, count, or
nonnegative. Binary outcomes can be modeled using logit, probit, or heteroskedastic
probit regression, and count and nonnegative outcomes can be modeled using Poisson
regression. The treatment model can be binary or multinomial. Binary treatments
can be modeled using logit, probit, or heteroskedastic probit regression. For multino-
mial treatments, one can use pairwise comparisons and then exploit binary treatment
approaches.’

While the teffects command deals mainly with estimation methods suitable under
selection-on-observables, Stata 13 presents two further commands to deal with endoge-
nous binary treatment (occurring in the case of selection-on-unobservables): etregress
and etpoisson. etregress estimates the ATE and the other parameters of a linear
regression model augmented with an endogenous binary treatment variable. Basically,
etregress is an improvement on Stata’s treatreg command, whose estimation is based
on the Heckman (1978) selection model. Because such a model is fully parametric, esti-
mation can be performed either by full maximum likelihood or, less parametrically, by
a two-step consistent estimator. Similarly, etpoisson estimates an endogenous binary
treatment model when the outcome is a count variable by using a Poisson regression.
Both the ATE and the ATE on the treated (ATET) can be estimated by etpoisson.

Although Stata 13 offers the above commands for dealing with endogenous treat-
ment, the commands suffer from two important limitations. First, they assume joint
normality of errors, meaning that they are not robust to violation of this hypothesis.
Second, they do not allow—at least by default—for calculation of causal effects under
observable heterogeneity, meaning that they assume causal effects to be the same in the
subpopulation of treated and untreated units. This second limitation might be partially

1. For multinomial treatment, readers can refer to the user-written command poparms, which estimates
multivalued treatment effects under conditional independence by using the efficient semiparametric
estimation of multivalued treatment effects. See Cattaneo (2010) and Cattaneo, Drukker, and
Holland (2013) for tutorials.
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overcome by introducing interactions between the binary treatment and the covariates
in the outcome equation, but this requires further user programming to recover all the
parameters of interest.

The gsem command, also new in Stata 13, can estimate the causal parameters of
models with selection-on-unobservables, implemented as unobserved components, and
heterogeneous effects, implemented as random coefficients. However, gsem uses full-
information maximum likelihood (ML), thus assuming a fully specified parametric model,
which in some contexts could present questionable reliability.

The ivtreatreg command I present in this article implements a series of methods
for treatment-effects estimation under treatment endogeneity that use only conditional-
moment restrictions. These methods are more robust than those implemented by
etregress or gsem. ML estimators would be naturally more efficient under correct
specification, and this means that a trade-off may arise between robustness and effi-
ciency. On the one hand, assuming some parametric distributive form for the error
terms allows one to use ML estimation reaching the Cramér—Rao lower variance bound.
On the other hand, when these distributive assumptions are questionable, ML may be
less reliable than less efficient (but consistent) estimation procedures, and the latter
ones become more robust. Thus it seems useful to adopt distribution-free methods for
dealing with treatment endogeneity, which the ivtreatreg command makes possible.

ivtreatreg fits four binary treatment models with and without idiosyncratic or
heterogeneous ATEs.? Depending on the model specified by the user, ivtreatreg pro-
vides consistent estimation of ATEs under the hypothesis of selection-on-unobservables
by using IV and a generalized Heckman-style selection model.

Conditional on a prespecified subset of exogenous variables, x—thought of as driving
the heterogeneous response to treatment—ivtreatreg calculates the ATE, the ATET,
and the ATE on the nontreated (ATENT) for each called model, as well as the estimates
of these parameters conditional on the observable factors x.

Specifically, the four models fit by ivtreatreg are direct-2sls (IV regression fit
by direct two-stage least squares), probit-ols (IV two-step regression fit by probit and
OLS), probit-2sls (IV regression fit by probit and two-stage least squares), and heckit
(Heckman two-step selection model).

Extensive discussion of the conditions under which previous methods provide con-
sistent estimation of ATE, ATET, and ATENT can be found in Wooldridge (2010).

ivtreatreg provides value by allowing for generalization of the regression approach
typically employed in standard program evaluation by assuming heterogeneous response
to treatment and treatment endogeneity. It is also a sort of toolbox for conducting joint
comparisons of different treatment methods, thus readily permitting the researcher to
run checks on the robustness of results.

In sections 2 and 3 of this article, I briefly present the statistical framework and
estimation methods implemented by ivtreatreg. In section 4, I present the syntax

2. To my knowledge, no previous Stata command has addressed this objective.
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with a description of the help file, and in section 5, I conduct a Monte Carlo experiment
to test the reliability of ivtreatreg. In section 6, I demonstrate the command applied
to real data from a study of the relationship between education and fertility. I conclude
with section 7, where I provide a brief summary and affirm the value of ivtreatreg.
In the appendix, I derive the formulas for the selection model.

2 Statistical framework®

Our hypothetical evaluation objective is to estimate the effect of binary treatment w
(taking value 1 for treated and 0 for untreated units) on scalar outcome y.* We sup-
pose that the assignment to treatment is not random but instead due to some form of
the unit’s self-selection or external selection. For each unit, (y;, yo) denotes the two
potential outcomes,” where the outcome is 3; when the individual is treated and %o
when the individual is not treated. We then collect an independent and identically dis-
tributed sample of observations (y;, w;,x;) with ¢ = 1,..., N, where x is a row vector of
covariates hypothesized as driving the observable nonrandom assignment to treatment
(confounders).

Here we are interested in estimating the ATE, defined as
ATE = E(yl — yo)

If we rely on observational data alone, we cannot identify the ATE because, for the same
individual and at the same time, we can observe just one out of the two quantities
needed to calculate the ATE (Holland 1986). By restricting the analysis on the group
of treated units, we can also define a second causal parameter, the ATET, as

ATET = E(y1 —yo|w =1)

Similarly, the ATENT, meaning the ATE calculated within the subsample of untreated
units, is

ATENT = E(y; — yo |w = 0)

An interesting relationship links these three parameters:

ATE = ATET p(w = 1) + ATENT p(w = 0)

3. This section draws on the substantial literature on econometrics of program evaluation, such as
Rubin (1974), Angrist (1991), Angrist, Imbens, and Rubin (1996), Heckman, LaLonde, and Smith
(1999), Wooldridge (2010), and Cattaneo (2010). For a recent survey, see also Imbens and
Wooldridge (2009).

4. Notation follows Wooldridge (2010).

5. For simplicity, I avoid writing the subscript form of the unit ¢ when referring to population param-
eters.
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where p(w = 1) is the probability of being treated and p(w = 0) is the probability
of being untreated. Where x is known, we can also define the previous parameters
“conditional on x” as follows:

ATE(x) = E(y1 — yo | X)
ATET(x) = E(y1 —yo |w = 1,%)
ATENT(x)

E(y;1 —yo|w =0,x%x)

These quantities are functions of x, which means that they can be seen as individual-
specific ATEs because each individual owns a specific value of x. Furthermore, by law
of iterated expectation, we have

ATE = Ey{ATE(x)}
ATET = E4{ATET(x)}
ATENT = E,{ATENT(x)}

The analyst needs to recover consistent (and, when possible, efficient) estimators of
the previous parameters from observational data. Before going on, note that through-
out this article we assume that the “stable unit treatment value assumption” (Rubin
1978) holds. This assumption states that “the treatment received by one unit does
not affect other units’ outcome” (Cox 1958). We thus restrict the analysis to a “no-
interference” setting. Indeed, when the stable unit treatment value assumption does not
hold, treatment externality effects between units may occur and pose severe problems
in identifying effects.%

3 Estimation methods

The new command ivtreatreg implements four models to consistently estimate previ-
ous parameters, and three of these are IV estimators. These methods are direct-2sls
(1v regression estimated by direct two-stage least squares), probit-ols (IV two-step re-
gression estimated by probit and OLS), probit-2sls (IV regression estimated by probit
and two-stage least squares), and heckit (Heckman two-step selection model). Each
of these can be estimated by assuming either homogeneous or heterogeneous response
to treatment (for a total of eight models). Before presenting how ivtreatreg works, I
briefly set out the formulas, conditions, and procedures of each model (see Wooldridge
[2010, chap. 21]). We start by assuming that

—~
—_
~—

Yo = po +xBy + eo, E(eg) =0, E(eg | x) =0, po = parameter
y1 = p1 +x8, +e1, E(e1) =0, E(ey | x) =0, g = parameter (2)
Y =1yo+ w1 — yo) (3)

6. Treatment-effects estimation under interference between units is a challenging field of study. Sobel
(2006), Rosenbaum (2007), and Hudgens and Halloran (2008) offer important contributions on
correct inferences within such a setting.
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Equations (1) and (2) represent the potential outcome equations assumed to be linear
in parameters, while the vector x can also contain nonlinear functions of the various
covariates. Equation (3) is the so-called “potential outcome model” and expresses the
observational rule of the model, because y is the observed outcome. We do not need to
explicitly specify an equation for w (that is, a selection equation) in this model; however,
we could specify an equation. We could assume, for instance, that a linear probability
model for the propensity to be selected into treatment is

w="0)+x0; +a (4)

where a is an error component. As soon as we hold that a is uncorrelated with (ey;
€o), then (4) is redundant and not needed to identify causal parameters. However, we
must know w to identify the causal parameters, as we will discuss later. By substituting
(1)—(2) into (3), we get

Yy = po + (p1 — po)w +xBy + w(xBy —xBy) + eo + w(er — eo)
where B, # (3, implies observable heterogeneity and e; # ey implies unobservable
heterogeneity.

Next, we define n = ep + w(e; — eg). We can distinguish two cases: 1) e; = eg and
2) e1 # ep, which can in turn be split into the following subcases:

Case 1.1. e = eg =€, By = B, = B, E(e | x,w) = 0: unobservable homogeneity,
homogeneous reaction function of 39 and y; to x, treatment exogeneity.

In this case, we can show that
E(y| w,x) = po +w ATE + x3
ATE = ATE(X) = ATET = ATET(x) = ATENT = ATENT(X) = 1 — o
Thus no heterogeneous ATE (over x) exists. Furthermore, OLS consistently estimates

ATE.

Case 1.2. e3 = ey = ¢, By # B1; E(n | x,w) = 0: unobservable homogeneity,
heterogeneous reaction function of yy and y; to x, treatment exogeneity.

In this case, we can show that

E(y| w,x) = po +w ATE + xB, + w(x — ux)B (5)
ATE # ATET # ATENT
where 8 = 8, — B, and ux = E(x) is the sample mean of x. In this case, heterogeneous
ATE (over x) exist, and the population causal parameters take the forms
ATE = (111 — po) + HyB
ATE(X) = ATE + (x — 1y )3
ATET = ATE + Ex(x — py |w =1)3
ATET(x) = ATE + {(x — p, )3 | w = 1}
ATENT = ATE + Ex(x — py | w = 0)8
ATENT(X) = ATE + {(x — p, )3 | w = 0}
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whose sample equivalents are

ATE = aOLS
ATE(X) = aoLs + (X — i)ﬁOLS
R —
ATET = doLs + ——— »_ wi(xi — X)Bors

S w; =1
i=1

ATET(x) = {Qors + (x — i)/B'OLS}(w:l)
) N
ATENT = dors + Y _(1 —wi)(xi —X)Bors
(1 — U)7) i=1

M=

i=1

ATENT(x) = {aOLS + (x — i)BOLS}

(w=0)

where it is clear that, under treatment exogeneity, these parameters can be consistently
estimated by plugging-in the parameters from an OLS of (5).

But what happens when treatment exogeneity fails and w becomes endogenous? We
then have three subcases.

Case 2.1. eg = eg = ¢, Bp = 1 = B, E(e| x, w) # 0: unobservable homogeneity,
homogeneous reaction function of yy and y; to x, treatment endogeneity.

In this case, we can show that

E(y | w,x) # po + w ATE + X8,
ATE # ATET # ATENT

However, if an 1V z is available, we can consistently estimate ATE by exploiting an 1V
approach.

Case 2.2. e = ey = ¢, By # B4, E(e| x, w) # 0: unobservable homogeneity,
heterogeneous reaction function of gy and y; to x, treatment endogeneity.

In this case, we can show that

E(y|wvx)#NO+wATE+X/60+w(X_“x)ﬁ (6)
ATE # ATET # ATENT
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Even in this case, if an IV z is available, we can consistently estimate ATE by exploiting
an IV approach. Observe, however, that we have two endogenous variables: w and
w(x — wy). However, once IV estimations of parameters in (6) are available, we can
consistently recover all the causal parameters of interest as follows:

ATE = ary
ATE(x) = arv + (x — X)Bry
LN

ATET = Gty + ——— Y wi(x; — X)Bry

Z w; =1

=1

ATET(X) = {aIV + (x — i)BIV}
(w=1)

! (1 —w;)(x; — i)BIV

] =

ATENT = Qrv +

1

s

(L—w;)?

=1

ATENT(x) = {aw +(x— f)[‘}w}

(w=0)

Case 2.3. e1 # eq, By # 31, E(n | x,w) # 0: unobservable heterogeneity, heterogeneous
reaction function of yg and y; to X, treatment endogeneity.

In this case, we can show that

E(y | w,x) # po +w ATE + X8 + w(X — p1,)3
ATE # ATET # ATENT

To apply IV and get consistent estimation, this case requires a further orthogonal con-
dition,

E{w(er —eo) | x,2} = E{w(e1 —ep)} (7)
Given this condition, estimation may proceed as in Case 2.2.

Next, I present the methods implemented by ivtreatreg by referring to the case of
heterogeneous reaction.

3.1 Control-function regression

Control-function regression consistently estimates the previously defined causal effects
under selection-on-observables, that is, when conditional mean independence (CMI)
holds. CMI implies treatment exogeneity by restricting the independence between po-
tential outcomes and treatment to the mean once covariates x are fixed at a certain
level. The control-function estimation protocol is as follows:



462 Fitting binary treatment models

1. Estimate y; = po + w0 + x;8, + w;i(X; — py )3 + error; by OLS, thus getting
consistent estimates of po, o, By, and 3, with a = ATE.

2. Plug these estimated parameters into the sample formulas and recover all the
causal effects.

3. Obtain standard errors for ATET and ATENT via bootstrap.

However, ivtreatreg does not fit such a model, because it can be more robustly ob-
tained by using the regression-adjustment estimator implemented in the teffects com-
mand of Stata 13 (with the suboption ra). This command handles many functional
forms other than the linear one, and an estimation of ATENT can also be obtained
using the margins command after running the regression in step 1. For this reason,
ivtreatreg concentrates on the endogenous treatment-effect case, for which it adds
new tools.

3.2 Instrumental variables

When the CMI hypothesis does not hold, control-function regression causes biased esti-
mates of causal effects. This happens when the selection-into-treatment is due to both
observable and unobservable factors. In this case, w becomes endogenous, that is, cor-
related with the regression error term. This is the case when the error term of (4) is
correlated with ep in (1) or with ey in (2). IV can also restore consistency under the
selection-on-unobservables. Nevertheless, applying IV requires the availability of at least
one variable z—the instrumental variable—assumed to be directly correlated with the
treatment w and directly uncorrelated with the outcome y. This implies an exclusion
restriction under which 1v identifies causal parameters. ivtreatreg implements the fol-
lowing three consistent but differently efficient Iv methods: direct-2sls, probit-ols,
and probit-2sls.

direct-2sls

By using direct-2sls, the analyst does not consider the binary nature of w. This
method follows the typical 1V steps:

1. Run an OLS regression of w on x and z, thus getting the predicted values of wj,
indicated by wgy ;.

2. Run a second OLS of y on {X, Wy, Wryi(X — py)}. The coefficient of wy, ; is a
consistent estimation of ATE.

3. Plug these estimated parameters into the sample formulas, recover all the other
causal effects, and obtain standard errors for ATET and ATENT via bootstrap.
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probit-ols

In this case, the analyst exploits the binary nature of w by fitting a probit regression in
the first step. Operationally, probit-ols follows these three steps:

1. Apply a probit of w on x and z, thus getting p,,, the predicted probability of w.
2. Run an OLS of y on {1, X, Py, puw(x — py )}

3. Follow step 3 above.

The coefficient of p,, is a consistent and more efficient estimator of ATE (compared
with direct-2sls) given that the process generating w is correctly specified. It has
higher efficiency because the propensity score is the orthogonal projection of w in the
vector space generated by (x,z). However, with this method, standard errors must be
corrected for the presence of a generated regressor and heteroskedasticity.

probit-2sls

Operationally, probit-2sls follows these four steps:

—_

. Apply a probit of w on x and z, thus getting p,,, the predicted probability of w.
2. Run an OLS of w on (1,x,py,), thus getting the fitted values way, ;.
3. Run a second OLS of y on {1,X, Wayy, i, Ware,i(X — fy)

4. Follow step 3 above.

The coefficient of wa . ; is a more efficient estimator of ATE compared with direct-2sls.
Furthermore, to achieve consistency, this procedure does not require that the process
generating w is correctly specified; thus, it is more robust than probit-ols.

3.3 heckit

ivtreatreg considers a generalized heckit model to consistently estimate previous pa-
rameters without using an 1V. The price is that of relying on a trivariate normality
assumption between the error terms of the potential outcomes and the error term of
the treatment. However, this model has the advantage of fitting Case 2.3 without in-
voking (7). The reference model is again the system of (1-4), where we also assume
that (eg,e1,a) are trivariate normal. Such a model, as implemented by ivtreatreg,
generalizes the two-step option of the official Stata command treatreg.

By default, the treatreg command assumes neither observable heterogeneity (be-
cause it holds that 8, = ;) nor unobservable heterogeneity (because it holds that
e1 = ep). When these two assumptions are removed, the model leads to the following
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baseline regression function, which can be consistently estimated by OLS (see Wooldridge
[2010, 949]):

By | x,2z,w) = po + aw + xBy + w(x — p,)B + plwm +po(1 — w)

¢(qb)
1—2(q0)

where « is the ATE, p; and pg are the correlations between the two potential outcomes’
errors and the treatment’s error, and ¢(x) and ®(x) are the density and cumulative
normal distribution, respectively. To estimate the previous regression, ivtreatreg
performs the following two-step procedure:

1. Run a probit regression of w; on (1,x;,2;) and get ((EZ, @1)
2. Run an OLS of y; on {1, w;, X;, wi(Xi — py )i, widhi /i, (1 — w;i) i /1 — @i}
After estimation, one can also test the hypothesis of no selection-on-unobservables by
testing the null:
Hy:p1=po=0
More importantly, it is easy to show that
ATE = «
ATE(x) = a+ (x —X)3

although ATET(x), ATET, ATENT(x), and ATENT assume different forms compared with
previous models, specifically”

ATET(X) = {a+ (x = X)B + (po + p1) x A\1(a0) }(w=1)
;N | X
ATETZ()(—FTZ?UZ‘(XIL'—i)ﬁ—F(ﬂl—Fpo)>< N Zwix/\l(qe)
3w, =1 S w; i=1
i=1 i=1

and

ATENT(x) = {a + (x = X)B + (p1 + po) x Ao (a6)} (=0

N
ATENT = o+~ S (1= w)(x; — R)B + (po + 1)
i;(l —w;) =1
1 N
X Niz(l — wl) X )\ol(qe)
> (L —w;) =1

i=1

Given the estimates of a, p1, po, 3, A1, and Ay from the previous two-step procedure,
one can easily calculate all the causal effects. Here bootstrapping can again be used to
obtain standard errors for ATET and ATENT.

7. See the appendix for the derivation of these formulas.
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4 The ivtreatreg command

The ivtreatreg command fits the four binary treatment models presented above, with
and without idiosyncratic or heterogeneous ATEs. The command calculates the ATE,
ATET, and ATENT, as well as the estimates of these parameters conditional on the
observable factors x [that is, ATE(x), ATET(x), and ATENT(x)].

4.1 Syntax

ivtreatreg outcome treatment [varlist] [zf] [m] [wez’ght], model (modeltype)
[hetero(varlist,h) iv(wvarlist_iv) conf(#) graphic vce(vcetype) beta

const(noconstant) head(noheader) ]

where outcome specifies the target variable that is the object of the evaluation, treat-
ment specifies the binary treatment variable (that is, 1 = treated or 0 = untreated),
and warlist defines the list of exogenous variables that are considered as observable
confounders.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

4.2 Options

model (modeltype) specifies the treatment model to be fit, where modeltype must be one
of the following four models (described in sections 3.3 and 3.4 above): direct-2sls,
probit-2sls, probit-ols, or heckit. model () is required.

modeltype Description

direct-2sls IV regression fit by direct two-stage least squares
probit-2sls IV regression fit by probit and two-stage least squares
probit-ols IV two-step regression fit by probit and OLS

heckit Heckman two-step selection model

hetero (varlist_h) specifies the list of variables over which to calculate the idiosyncratic
ATE(x), ATET(x), and ATENT(x), where x = wvarlist_h. When this option is not
specified, the command fits the specified model without heterogeneous ATE. varlist_h
should be the same set or a subset of the variables specified in varlist.

iv(wvarlist_iv) specifies the variables to be used as instruments. This option is required
with model (direct-2sls); it is optional with other modeltypes.

conf (#) sets the confidence level to the specified number. The default is conf (95).
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graphic requests a graphical representation of the density distributions of ATE(x),

ATET(x), and ATENT(x). graphic gives an outcome only if specified with hetero().
vce (vcetype) specifies the type of standard error reported.

vce(robust) specifies to report standard errors that are robust to some kinds of
misspecification.

vce(bootstrap | jackknife | conventional) may be specified when hetero() is
not specified with model (heckit) to report standard errors that use the bootstrap
method, the jackknife method, or the conventionally derived variance estimator.

beta reports standardized beta coefficients.
const (noconstant) suppresses the regression constant term.

head (noheader) suppresses the display of summary statistics at the top of the output;
only the coefficient table is displayed.

4.3 Remarks

The ivtreatreg command also creates several variables that can be used to further
examine the data:

e _ws_varname_h are the additional regressors used in a model’s regression when
hetero (varlist_h) is specified. _ws_varname_h are created for all models.

e _z varname_h are the 1Vs used in a model’s regression when hetero (varlist_h) and
iv(wvarlist_iv) are specified. _z_varname_h are created only for IV models.

e ATE x is an estimate of the idiosyncratic ATE.
e ATET x is an estimate of the idiosyncratic ATET.
e ATENT x is an estimate of the idiosyncratic ATENT.

e G_fv is the predicted probability from the probit regression, conditional on the
observable confounders used.

e _wLO and _wL1 are the Heckman correction terms.

Finally, the treatment must be a 0/1 binary variable (1 = treated, 0 = untreated).
The standard errors for ATET and ATENT can be obtained via bootstrapping. Also,
when option hetero() is not specified, then ATE(x), ATET(x), and ATENT(x) are single
numbers equal to ATE = ATET = ATENT.
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4.4 Stored results

ivtreatreg stores the following in e():

Scalars
e(N_tot)
e(N_treated)
e(N_untreated)

total number of used observations
number of used treated units
number of used untreated units

e(ate) value of the ATE
e(atet) value of the ATET
e(atent) value of the ATENT

5 A Monte Carlo experiment for testing ivtreatreg

In this section, I provide a Monte Carlo experiment to check whether ivtreatreg com-
plies with predictions from the theory and to assess its correctness from a computational
point of view. The first step is to define a data-generating process (DGP) as follows:

w = 1(0.54 0.521 4+ 0.3z2 + 0.6z + a > 0)
Yo = 0.140.221 + 0.225 + €9
y1 =0.340.321 + 0.322 + €1

where
x1  :1In(hy)
o ln(hg)
z  :ln(hs)
h1 :x%(1) +c
ha :x*(1) +c
hs :x%(1) +c
e x3(1)
and
(a,ep,e1) : N(0,9)
02 ey Oaser 02 PaeoTaTey  PaerTales
Q= 050 Oa,er | = 0’20 Peg,e10e00e1
o2, a2,
02 =1, O'go =3, crg1 =6.5
Paeo =09, pae; = 0.3,  pege; =0

By assuming that the correlation between a and eg(pq,e,) and the correlation between a
and e1(pq,e, ) are different from 0, the w—the selection binary indicator—is endogenous.
We indicate the instrument with z, which is directly correlated with w but directly
uncorrelated with y; and yg. Given these assumptions, the DGP is completed by the
potential outcome means, y; = yo; + w; (y1; — Yoi), generating the observable outcome y.
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The DGP is simulated 2,000 times using a sample size of 2,000. For each simula-

tion, we get a different data matrix (1,22, y,w, z) on which we apply the four models
implemented by ivtreatreg. Table 3 and figure 1 set out the simulation results.

Table 3. Monte Carlo simulation output of ivtreatreg

(1) (2) 3) (4) (5)

Estimator Bias% Mean Std. dev. Mean SE Rejection rate
direct-2sls 5.05 0.235 0.316 0.318 0.042
probit-ols 292  0.217 0.272 0.268 0.045
probit-2sls 1.16  0.227 0.267 0.267 0.045

heckit 0.87 0.226 0.248 0.240 0.045
True value of ATE 0.224

We see that the true value of ATE is 0.224. As expected, all the 1V procedures con-
sistently estimate the true ATE, with a slight bias of around 5% only for direct-2sls.

Figure 1 confirms these findings by jointly plotting the distributions of ATEs obtained
by each single method over the 2,000 DGP simulations. All methods give similar results,
though direct-2sls has a slightly different shape with fatter tails. This suggests that
we should examine the estimation precision. Under our DGP assumptions, we expect
model heckit to be the most efficient method, followed by model probit-ols and
model probit-2sls, with model direct-2sls performing the worst. In fact, our DGP
follows exactly the same assumptions on which the model heckit is based, as well as
the joint trivariate normality of a, ey, and e;.
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Monte Carlo for ATE — Comparison of methods under treatment endogeneity
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ATE
direct-2sls =~ --------- probit-2sls ~ --- -~ -~ probit-ols
—— - heckit
True ATE = .224

Sample size = 2000
Number of simulations = 2000

Figure 1. Monte Carlo distributions of ATE; comparison of IV methods

Table 3 confirms the following theoretical predictions: the lowest standard deviation
is achieved by model heckit (0.248) and the highest by model direct-2sls (0.316),
with the other methods lying in the middle with no appreciable differences. Observe
that the standard error means (mean SE in column 4) show that the values of the
standard deviations of the estimators in column 3 are estimated precisely (values are
much the same). This means that the asymptotic distribution of the ATE estimators
approximates finite-sample distribution well.

Table 3 also shows simulation results for test size. The size of a test is the probability
of rejecting a hypothesis Hy when Hj is true. In our DGP, we set the size level at 0.05
for a two-sided test where Hy: ATE = 0.224 against the alternative Hj : ATE # 0.224.
The results, under the heading “Rejection rate” (column 5), represent the proportion
of simulations that lead to rejection of Hy. These values should be interpreted as the
simulation estimate of the true test size (which we assumed to be 0.05). As expected,
the rejection rates are all lower than the usual 5% significance.

As a conclusion, these results seem to confirm both our expected theoretical results
and the computational reliability of the ivtreatreg command.

6 ivtreatreg in practice: An application to the relation-
ship between education and fertility
To see how ivtreatreg works in practice, we consider an instructional dataset called

fertil2.dta, which accompanies the book Introductory Econometrics: A Modern Ap-
proach by Wooldridge (2013) and is a collection of cross-sectional data on 4,361 women
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of childbearing age in Botswana.® This dataset contains 28 variables on various female
and family characteristics. In this exercise, we are particularly interested in evaluating
the impact of the variable educ7 (taking value 1 if a woman has seven years of education
or more and 0 otherwise) on the number of family children (children). Several condi-
tioning (or confounding) observable factors are included in the dataset, such as the age
of the woman (age), whether or not the family owns a TV (tv), and whether or not the
woman lives in a city (urban). To inquire about the relationship between education and
fertility, following Wooldridge (2010), we estimate the following specification for each of
the four models implemented by ivtreatreg:

. ivtreatreg children educ7 age agesq evermarr urban electric tv,
> hetero(age agesq evermarr urban) iv(frsthalf) model(modeltype) graphic

This specification adopts the covariate frsthalf as the IV and takes value 1 if the
woman was born in the first six months of the year and 0 otherwise. This variable is
partially correlated with educ7, but it should not have any direct relationship with the
number of family children.

The simple difference-in-mean estimator (the mean of the treated ones, which are
the children in the group of more educated women, minus the mean of the untreated
ones, which are the children in the group of less educated women) is —1.77 with a ¢-
value of —28.46. This means that women with more education show about two children
fewer than women with less education, without ceteris paribus conditions. By adding
confounding factors in the regression specification, we get the OLS estimate of ATE as
—0.394 with a t-value of —7.94, still in absence of heterogeneous treatment. This is still
significant, but the magnitude, as expected, dropped considerably compared with the
difference-in-mean estimation, thus showing that confounders are relevant. When we
consider OLS estimation with heterogeneity, we get an ATE equal to —0.37, which is still
significant at 1%.°

When we consider IV estimation, results change dramatically. As we did in our
working example of how to use ivtreatreg, we estimate the previous specification for
probit-2sls with heterogeneous treatment response. The main outcome is reported
below, where results from both the probit first-step and the 1V regression of the second
step are set out. Results on the probit show that frsthalf is partially correlated with
educ?, thus it can be reliably used as an instrument for this variable. Step 2 shows that
the ATE (again, the coefficient of educ7) is no more significant and that it changes sign,
becoming positive and equal to 0.30.

8. The data are downloadable at http://fmwww.bc.edu/ec-p/data/wooldridge/fertil2.dta.
9. OLS results on ATE are obtained by estimating the baseline regression set out in section 3.1 with
OLS.
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. use fertil2.dta

. ivtreatreg children educ7 age agesq evermarr urban electric tv,
> hetero(age agesq evermarr urban) iv(frsthalf) model(probit-2sls) graphic

(output omitted )

Probit regression Number of obs = 4358

LR chi2(7) = 1130.84

Prob > chi2 = 0.0000

Log likelihood = -2428.384 Pseudo R2 = 0.1889

educ? Coef.  Std. Err. z P>|z| [95% Conf. Intervall

frsthalf -.2206627 .0418563 -5.27  0.000 -.3026995 -.1386259

age -.0150337 .0174845 -0.86 0.390 -.0493027 .0192354

agesq -.0007325 .0002897 -2.563 0.011 -.0013003 -.0001647

evermarr -.2972879 .0486734 -6.11 0.000 -.392686 -.2018898

urban .2998122 .0432321 6.93 0.000 .2150789 .3845456

electric .4246668 .0751255 5.65 0.000 .2774235 .57191

tv .9281707 .0977462 9.50 0.000 .7365915 1.11975

_cons 1.13537 .2440057 4.65 0.000 .6571273 1.613612

(output omitted )

Instrumental variables (2SLS) regression

Source SS df MS Number of obs = 4358

F( 11, 4346) = 448.51

Model 10198.4139 11 927.128534 Prob > F = 0.0000

Residual 11311.6182 4346 2.60276536 R-squared = 0.4741

Adj R-squared = 0.4728

Total 21510.0321 4357 4.93689055 Root MSE = 1.6133

children Coef. Std. Err. t P>t [95% Conf. Intervall

educ7 .3004007 .4995617 0.60 0.548 -.6789951 1.279797

_ws_age -.8428913 .1368854 -6.16  0.000 -1.111256 -.5745262

_ws_agesq .011469 .0019061 6.02 0.000 .007732 .0152059

_ws_evermarr -.8979833 .2856655 -3.14  0.002 -1.458033  -.3379333

_ws_urban .4167504 .2316103 1.80 0.072 -.037324 .8708247

age .859302 .0966912 8.89 0.000 .669738 1.048866

agesq -.01003 .0012496 -8.03 0.000 -.0124799 -.0075801

evermarr 1.253709 .1586299 7.90 0.000 .9427132 1.564704

urban -.5313325 .1379893 -3.85 0.000 -.801862 -.260803

electric -.2392104 .1010705 -2.37 0.018 -.43736 -.0410608

tv -.2348937 .1478488 -1.59 0.112 -.5247528 .0549653

_cons -13.7584 1.876365 -7.33 0.000 -17.43704  -10.07977

Instrumented: educ7 _ws_age _ws_agesq _ws_evermarr _ws_urban
Instruments: age agesq evermarr urban electric tv G_fv _z_age _z_agesq
_z_evermarr _z_urban

(output omitted )
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This result is in line with the 1V estimation obtained by Wooldridge (2010). Never-
theless, having assumed heterogeneous response to treatment, we can now also calcu-
late the ATET and ATENT, and inspect the cross-unit distribution of these effects. First,
ivtreatreg returns these parameters as scalars (along with treated and untreated sam-
ple size).

. ereturn list
scalars:

(output omitted )

e(ate) = .3004007409051661
e(atet) = .898290019586237
e(atent) = -.4468834318294228

e(N_tot) = 4358
e(N_treat) = 2421
e(N_untreat) = 1937

(output omitted )

To get the standard errors for testing ATET and ATENT significance, we can easily
implement a bootstrap procedure as follows:

. bootstrap atet=e(atet) atent=e(atent), rep(100):
> ivtreatreg children educ7 age agesq evermarr urban electric tv,
> hetero(age agesq evermarr urban) iv(frsthalf) model(probit-2sls)

Bootstrap results Number of obs = 4358
Replications = 100

command: ivtreatreg children educ7 age agesq evermarr urban electric
tv, >hetero(age agesq evermarr urban) iv(frsthalf) model(probit-2sls)

atet: e(atet)
atent: e(atent)

Observed Bootstrap Normal-based
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
atet .89829 .5488267 1.64 0.102 -.1773905 1.973971
atent -.4468834 .4124428 -1.08 0.279 -1.2556257 .3614897

The results show that both ATET and ATENT are not significant and show quite
different values, but the values are not far from that of ATE. Furthermore, a simple
check shows that ATE = ATETp(w = 1) + ATENT p(w = 0), for example,

. di "ATE= " (e(N_treat)/e(N_tot))*e(atet)+(e(N_untreat)/e(N_tot))*e(atent)
ATE= .30040086

which confirms the expected result. Finally, we analyze the distribution of ATE(x),
ATET(x), and ATENT(x). Figure 2 shows the result.
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Model probit-2sls: Comparison of ATE(x) ATET(x) ATENT(x)
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Figure 2. Distribution of ATE(x), ATET(x), and ATENT(x) in model probit-2sls

We see that ATET(x) presents a substantially uniform distribution, while both
ATE(x) and ATENT(x) show a distribution more concentrated on negative values. In
particular, ATENT(x) shows the highest modal value around —2.2 children, thus pre-
dicting that less-educated women would have been less fertile if they had been more
educated.

ATE results for all four models and for the simple difference-in-mean test (¢ test) are
shown below. The ATE obtained by IV methods is consistently not significant, but it has
a positive value for only probit-2sls. The rest of the ATEs consistently show negative
values—meaning that more-educated women would have been more fertile if they had
been less educated. heckit is a little more puzzling because the result is significant and
very close to the difference-in-mean estimation that is highly suspected as biased. This
could be because the identification conditions of heckit are not met in this dataset.
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. regress children educ7
(output omitted )
. estimates store ttest

ivtreatreg children educ7 age agesq evermarr urban electric tv,
> hetero(age agesq evermarr urban) iv(frsthalf) model(heckit) graphic

(output omitted )
. estimates store heckit

ivtreatreg children educ7 age agesq evermarr urban electric tv,
> hetero(age agesq evermarr urban) iv(frsthalf) model(probit-ols) graphic

(output omitted )
. estimates store probit_ols

ivtreatreg children educ7 age agesq evermarr urban electric tv,
> hetero(age agesq evermarr urban) iv(frsthalf) model(direct-2sls) graphic

(output omitted )
. estimates store direct_2sls

ivtreatreg children educ7 age agesq evermarr urban electric tv,
> hetero(age agesq evermarr urban) iv(frsthalf) model(probit-2sls) graphic

(output omitted)
. estimates store probit_2sls

. estimates table ttest probit_ols direct_2sls probit_2sls heckit,
> b(%9.2f) keep(educ7? G_fv) star

Variable ttest probit_ols direct_2sls probit_2sls
educ7 =1.7T%%% -1.04 0.30
G_fv -0.11

legend: * p<0.05; *x p<0.01; **x*x p<0.001

Variable heckit
educ7 =1.92%x%x
G_fv

legend: * p<0.05; ** p<0.01; *x** p<0.001

Finally, figure 3 shows the plot of the ATE distribution for each method. These
distributions largely follow a similar pattern, although direct-2sls and heckit show
some appreciable differences. heckit, in particular, shows a very different pattern with
a strong demarcation between the plot of treated and untreated units. Consequently, it
appears to not be a reliable estimation procedure, an observation that deserves further
inspection.
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Model probit—ols: Comparison of ATE(x) ATET(x) ATENT(x) Model direct-2sls: Comparison of ATE(x) ATET(x) ATENT(x)
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Figure 3. Distribution of ATE(x), ATET(x), and ATENT(x) for the four models fit by
ivtreatreg

7 Conclusion

In this article, I presented a new user-written Stata command, ivtreatreg, for fitting
four different binary treatment models with and without idiosyncratic or heterogeneous
ATEs. Depending on the model specified, ivtreatreg consistently estimates ATEs under
the hypothesis of selection-on-unobservables exploiting IV estimators and a generalized
two-step Heckman selection model.

After presenting the statistical framework, I provided evidence on the reliability
of ivtreatreg by using a Monte Carlo experiment. To familiarize the reader with
the command, I also applied it to a real dataset. Results from both the Monte Carlo
experiment and the real dataset encourage one to use the command when the empirical
and theoretical setting suggests that treatment endogeneity and heterogeneous response
to treatment are present. In such cases, performing more than one method may be a
useful robustness check. The ivtreatreg command makes such checks possible and
easy to perform.
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Appendix

Derivation of ATET(x), ATET, ATENT(x), and ATENT in the heckit
model

Proof.
The heckit model with observable and unobservable heterogeneity relies on these as-
sumptions:

1. y=po+aw+x8y +w(x — py)B +u
2. E(e1 | x,2) = E(eg | x,2) =0
=160 +601x+622+a>0)=1(qf > 0)
E(a|x,2)=0
(a,ep,e1) ~ 3N

a~N(0,1)—=o0,=1

N ook @

u=eg+w(es —ep)

By definition, we know that
ATET(x) = E(y1 —yo | x,w = 1) = (1 — po) +{91(%) = go(x)} + E(e1 —eo | x,w = 1)
At the same time, because e; and eq are independent of x, we also have

E(e; —ep | x,w=1)=E(e; —eg | w=1)
The value of the last expectation is easy to compute; indeed, by putting

€1 — € =1

it follows that 7 still has a normal distribution. This means that, from the property of
truncated normal distributions,

Enlw=1)=En|b6+01x+bz+a>0)=E(n|ql >0) =0,a—74

From the linearity property of the covariance, we get
Ona = Cov(n;a) = Cov(e; — eg;a) = Cov(er;a) — Cov(ep; @) = ey — Tega = P1 + Po
because pg = —0¢,q and p; = 0e,. This implies that

ATET(x) = {a+ (x =X)B + (p1 + po) X A1(a8)}(w=1)
N

1
ATET:a+TZwi(1—x)B+(p1+po ~
2wy = Z

i=1

N
Z i X A1(q8)
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where
A1(qf) = i((gg))

As for ATET, applying a similar procedure, it is immediate to get

ATENT(x) = {a + (x = X)B + (p1 + po) x Ao (a6)} (1)

ATENT = o+~ S (1= w)(x; ~ X)B + (o1 + o)
;(1 —w;) =1
L N
Xt 57 (1= w) x Ao, (aB)
> (1 - w;) (=)
where (@)
¢(qb
Ao(qf) = T—®(q0)

Showing that ATE = ATET p(w=1) + ATENT p(w=0) in the heckit
model

Proof.
Consider formulas for ATE(x) and ATENT(x) in the heckit model:

ATET(X) = {a+ (x = X)B + (p1 + po) x A1(q0)} (w=1)
ATENT(x) = {a + (x —X)B + (p1 + po) X Ao (qe)}(w:o)

It follows that

ATE(x) = p(w = D){a + (x = X)B + (p1 + po) x A1(ab)}
+p(w = 0){a+ (x —=X)B + (p1 + po) X Ao(aB)}

This implies that

ATE(x) = {a + (x = X)BHp(w = 1) + p(w = 0)} + p(w = ){(p1 + po) x A1(q0)}
+ p(w = 0) {(p1 + po) X Ao (q0)}
— {o+ (x— DB} + plw = 1){(,01 T po)

#(qf) }
1—®(qh)

+ p(w = 0) {(pl + po) x

because p(w = 1) + p(w = 0) = 1. However, we saw that E(n | qf > 0) =
(1 + po) x ¢(af)/®(aB) and E(n | @@ < 0) = (p1 + po) x #(ab)/{1 — ®(ab)}.
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For the law of iterated expectations, we get E(n) = p(w = 1)E(n | g8 > 0) + p(w =
0)E(n | qf > 0) =0, because E(n) = E(e; — ep) = 0, proving that

ATE(x) = a+ (x —X)83

and finally
ATE = Ex{ATE(X)} = «





