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Abstract 

A transfer from a richer individual to a poorer one seems to be the most intuitive and 

straightforward way of reducing income inequality in a society. However, can such a transfer 

reduce the welfare of the society? We show that a rich-to-poor transfer can induce a response in 

the individuals’ behaviors which actually exacerbates, rather than reduces, income inequality as 

measured by the Gini index. We use this result as an input in assessing the social welfare 

consequence of the transfer. Measuring social welfare by Sen’s social welfare function, we show 

that the transfer reduces social welfare. These two results are possible even for individuals 

whose utility functions are relatively simple (namely, at most quadratic in all terms) and 

incorporate a distaste for low relative income. We first present the two results for a population of 

two individuals. We subsequently provide several generalizations. We show that our argument 

holds for a population of any size, and that the choice of utility functions which trigger this 

response is not singular - the results obtain for an open set of the space of admissible utility 

functions. In addition, we show that a rich-to-poor transfer can exacerbate inequality when we 

employ Lorenz-domination, and that it can decrease social welfare when we draw on any 

increasing, Schur-concave welfare function.  

 

Keywords: A rich-to-poor transfer; Relative income; Sen’s social welfare function  
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1. Introduction 

We study together two of the main determinants of the wellbeing of societies: social welfare, and 

income inequality. The standard approach in economics and philosophy has been to measure 

aggregate wellbeing by means of a social welfare function, and income inequality by means of 

an index. More than four decades ago, Sen (1973) argued forcefully that the latter should be 

made part of the former. Specifically, Sen (1973) proposed to measure social welfare as income 

per capita times one minus the Gini coefficient of income inequality, arguing that income per 

capita alone cannot serve as a helpful guide to wellbeing. This stance informs us that, for 

example, the welfare of a society in which two individuals have incomes 2 and 2 is higher by 

one third than the welfare of a society in which two individuals have incomes 1 and 3. We are 

aware that income inequality can be measured in a variety of ways. Because our focus in this 

chapter is on studying social welfare as defined by Sen, we use the Gini coefficient of income 

inequality as our measure of income inequality. 

For a century now, the Pigou-Dalton transfer principle (Pigou, 1912, Dalton, 1920) has 

been a lightning rod and fundamental guide in the design and implementation of policies aimed 

at redressing inequality. Pigou (1912, p. 24) wrote as follows: “[E]conomic welfare is likely to 

be augmented by anything that, leaving other things unaltered, renders the distribution of the 

national dividend less unequal. If we assume all members of the community to be of similar 

temperament, and if these members are only two in number, it is easily shown that any 

transference from the richer to the poorer of the two, because it enables more intense wants to be 

satisfied at the expense of less intense wants, must increase the aggregate sum of satisfaction.” 

Dalton (1920, p. 321) expressed the principle in the following way: “If there are only two 

income-receivers, and a transfer of income takes place from the richer to the poorer, inequality is 

diminished. There is, indeed, an obvious limiting condition: the transfer must not be so large as 

more than to reverse the relative positions of the two income-receivers, and it will produce its 

maximum result, that is to say, create equality, when it is equal to half the difference between the 

two incomes.” Subsequently, the Pigou-Dalton principle became an axiom that any admissible 

measure of income inequality has to obey (see, for example, Weymark, 2006). 

It appears that the principle serves well Sen’s social welfare function. However, 

considerable research (for example, Mirrlees, 1971; Saez, 2002; Choné and Laroque, 2005) 
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indicates that implementing the Pigou-Dalton transfer may weaken the incentive to work. This 

response may reduce per capita income, thereby outweighing the redistributive welfare gains. As 

a consequence, while income inequality is reduced, Sen’s social welfare is lowered. Another 

reason why the Pigou-Dalton transfer could decrease Sen’s social welfare is the “leaky bucket” 

argument (Okun, 1975): if only a fraction of the tax ends up being transferred, per capita income 

decreases. 

Here, however, we argue that there is yet another channel for the apparently seamless 

chain (a Pigou-Dalton transfer => lowered Gini coefficient => raised Sen’s social welfare) to 

break down. So much so that, in fact, enacting the transfer could achieve the exact opposites: 

increase the Gini coefficient and reduce Sen’s social welfare. Why could this be so? To present 

our argument, we track the effects of the transfer on the responses of the individuals concerned. 

We find that their adjustment in behavior in the wake of the transfer can exacerbate rather than 

reduce income inequality. In order to present this possibility efficiently, we employ several 

simplifications. (Later on in the chapter, we step out of several of these simplifications.) We 

consider a stylized production economy (an “artisan economy”) in which two individuals 

produce a single consumption good. The utility of each individual depends negatively on his 

work effort and on his distaste for low relative income, and positively on his consumption. In 

such a constellation, a marginal rank-preserving transfer from a richer individual to a poorer 

individual can lead simultaneously to exacerbated inequality as measured by the Gini index and 

to a decrease in Sen’s measure of social welfare. This finding is presented in the next section of 

the chapter by means of a constructive example. In Section 3 we assess the robustness of the 

insight provided by the example with respect to the form of the utility functions, the size of the 

population, and the measures of inequality and social welfare employed. Additionally, in an 

Appendix we show that the results do not depend on the format of the transfer: a transfer 

financed by a proportional tax levied on the income of the richer individual yields the same 

results as does the lump-sum tax and transfer assumed in the main text. 

What drives our results are the individuals’ distaste for low relative income and their 

responses in terms of effort to any variation in that income. Related work (Stark, 2013) provides 

evidence that low relative income / relative deprivation) matters, and that an increase (decrease) 
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in relative deprivation intensifies (reduces) work effort so as to mitigate the increase (take 

advantage of the decrease).1  

A Pigou-Dalton transfer from a richer individual to a poorer individual weakens the 

latter’s incentive to work hard because the income “deprivation” experienced by the poorer 

individual is reduced. This scaling back of effort arises because, fundamentally, the benefits in 

terms of income when the poorer individual exerts effort are of two types: income as a means of 

enabling consumption, and income as a means of escaping an excessively low relative income. 

Thus, we provide a new behavioral explanation based on relative deprivation for the reduction of 

labor supply of the poorer individual as a result of redistributive policies, which is considered in 

the received literature on optimal taxation.2 The triple assumptions that individuals like higher 

income, dislike effort, and dislike low relative income are not exceptional. In combination, the 

adjustments in effort by the two individuals can increase inequality, as measured by the Gini 

index,3 and decrease social welfare, as measured by Sen’s social welfare function. As could be 

anticipated, though, the wellbeing of the poorer individual improves. 

Why is it important to identify a new explanation for the labor supply response of the 

recipient(s) of the transfer? One reason is that different explanations give rise to different policy 

responses. Suppose that a policy maker wants to encourage the recipient of a transfer not to scale 

back his work effort and reduce his output. When relative deprivation is a factor, then revision of 

the reference group of the poorer individual in conjunction with the transfer could leave the 

labor supply of the poorer individual intact. As an illustration, consider a transfer of one income 

unit from a richer individual whose income is 14 to a poorer individual whose income is 2, and 

measure income relative deprivation as the aggregate of the income excesses divided by the size 

                                                 
1 We use the index of relative deprivation as a measure of low relative income (an Appendix in Stark, 2013, is a 

brief foray into relative deprivation). 
2 A classical work on this subject is Mirrlees (1971). For more recent studies on the response of labor supply to 

redistributive tax regimes see, for example, Saez (2002), and Choné and Laroque (2005). A second strand of 

literature investigating this issue builds on testing the “negative income tax” proposed by Friedman (1962); see, for 

example, Burtless (1986) who reports on reduced work supply among the beneficiaries of negative income in tax 

experiments in the U.S. 
3 It is not the objective of this chapter to inquire into the properties of the Gini coefficient as such. Rather, we study 

the behavior of individuals, and we ask how this behavior influences the Gini coefficient. Specifically, we do not 

look at the Gini coefficient as a function of the post-transfer incomes, 
1 2

)( ,G x x , but rather at the Gini coefficient as 

a function of the transfer  , 
1 2
( ,( () ))G x x  , where the behavior of the individuals, as epitomized by the functions 

)(
i

x  , shapes the “reaction” of the coefficient. 
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of the comparison group. The pre-transfer relative deprivation of the poorer individual is 

(1 2)(14 2) 6  , and his post transfer relative deprivation is (1 2)(13 3) 5  . This individual’s 

relative deprivation can be retained at 6 if, for example, an individual whose income is 11 is 

added to the reference group of the poorer individual, because then (1 3)[(11 3) (13 3)] 6    .  

At this juncture, three comments are in order. First, what adds value to our result is that 

in and by itself, the desire of individuals not to experience relative deprivation seemingly 

provides a built-in force favoring a more equal income distribution. “Interference” in the 

prevailing distribution by means of a rich-to-poor transfer could be expected to reinforce the 

already prevalent “bias” in favor of equality. Nonetheless, we observe the opposite. In a sense, 

the sum of the responses of the individuals whose preference is for less inequality to an income-

equalizing transfer is a higher level of aggregate inequality, as measured by the Gini index. 

Second, in this chapter we broaden the meaning and scope of the Pigou-Dalton transfer 

in that we embed it in a social context. This perspective leads us to drop the implicit Pigou-

Dalton transfer principle assumptions of one-dimensionality and no-externalities. The 

introduction of factors that put a wedge between income and utility can then render the effect of 

a Pigou-Dalton transfer perverse. We consider broadening the domain in which the transfer is 

assessed. After all, individuals exhibit social preferences, income is hardly ever derived in 

isolation and, as a large body of modern day evidence suggests, while individuals like having 

income, they dislike having low relative income.4 Starting from a “utility equilibrium” in which 

an individual strikes a balance between these two factors, the tradeoff between them could alone 

imply that improvement in the sphere of low relative income is accompanied by a muted desire 

for income. 

Third, although in the main we analyze a population that consists of two individuals, our 

inequality cum welfare results are not limited to a two-individual Gini coefficient as a measure 

of inequality, and to a two-individual Sen’s social welfare function as a measure of societal 

wellbeing. We address the case of a rich-to-poor transfer in a population of any number of 

individuals where the transfer exacerbates inequality which, in turn, is evaluated by Lorenz-

                                                 
4 Empirical studies that marshal evidence regarding the role of interpersonal comparisons for people’s behavior 

include Zizzo and Oswald (2001), Luttmer (2005), Fliessbach et al. (2007), Blanchflower and Oswald (2008), 

Takahashi et al. (2009), Card et al. (2012), and Cohn et al. (2014). 

 



5 

 

domination, and decreases wellbeing as measured by a general, Schur-concave class of social 

welfare functions. In addition, we consider more than one method of taxing the income of the 

rich individual in the population. 

The detailed structure of the chapter is as follows. In Section 2 we present a constructive 

example, built on specific utility functions, of the possibility that in the wake of a rich-to-poor 

transfer, income inequality will increase, and social welfare will take a beating. In Section 3 we 

provide generalizations of this example. In Proposition 1, presented in Subsection 3.1, we show 

that our results are not contingent on the specific utility functions to which we resort in Section 

2. In Claim 2, displayed in Subsection 3.2, we relax the assumption regarding the number of 

individuals in the population, and we provide a generalization in terms of both the inequality 

measure and the welfare measure. Usage of these two alternative measures yields, once again, an 

increase and a decline, respectively, in the wake of a marginal rich-to-poor transfer. Section 4 

concludes. We provide two appendices. In Appendix A, we present several technical lemmas 

that are needed for the proof of Proposition 1. In Appendix B, we show that the after-effects of a 

Pigou-Dalton transfer reported in the main text arise also when the transfer is financed by a 

proportional tax levied on the income of the richer individual. In Appendix C, we present the 

proof of part 1 of Claim 2. 

 

2. A constructive example  

To begin with, we assume that individual i, {1,2}i , converts units of work (costly effort) 

0ie   into units of pre-transfer income, iy , at the rate of one-to-one, that is, iiy e . To allow for 

the possibility of a transfer of income between the individuals, we denote by 0ic   i’s 

consumption, which is equal to i’s post-transfer income, ix . We resort to the following 

specification of the utility function 3

1 :U R R , 2

1

3( )CU  R  for individual 1 

 11 1

2

1 11 1( , , ) 4 ,U c e r dc gr fe    (1) 

and to the following specification of the utility function 3

2 :U R R , 2

2

3( )CU  R  for 

individual 2 
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 2 2 2

2

2 2 2 2( , , ) ,
2

b
U c e r ac hr e    (2) 

where , , , , , 0a b d f g h   and where, acknowledging the distaste for low relative income in the 

individuals’ preferences, 
ir  is the extent of the concern for low relative income of individual i, 

who compares his (post-transfer) income with the income of the other individual j.5, 6 We note 

that the utility functions defined in (1) and (2) are concave in consumption and in the level of 

exerted effort, thus they can be thought of as standard utility specifications, enriched by 

acknowledging the concern for low relative income, which we operationalize by the index of 

relative deprivation. This index is  

 
1

( , ) max{ ,0}
2

j ii i jx x xRD xr    , (3) 

where 3j i  . From the equality i ix c , it follows that ( , ) ( , )i i j i jr RD x x RD c c  .  

We now use the relationships between consumption and post-transfer income and 

between effort exerted and pre-transfer income. Without a transfer, we have that 

i i i ic x y e   , namely  

 

 
2

1 1 1 1 1 1

2

2 2 2 2 2 2 2 2 1 2 2 1 2

1 1 1 1 2 1 2
( , , ) ( , , ( , )) 4 ,( , )

( , , ) ( , , ( , )) ( , ) ,
2

U c e r U y y RD y y dy g fyRD y y

b
U c e r U y y RD y y ay hRD y y y

   

   
 (4) 

 Throughout, we use the pre-transfer incomes 21, 0y y   (which are equal to the levels of 

work effort exerted by the individuals, 21,e e ) as the decision variables in the utility 

maximization problem of the individuals.  

We determine the ordering of the pre-transfer incomes and secure positivity of the 

exerted levels of effort at the optimum on assuming that 

 
2

0
g

f d
a

b
   , (5) 

                                                 
5 By 

2
(X)C  we denote the set of functions from X  to R  that are twice continuously differentiable. 

6 We defined the functions 
1

U  and 
2

U  on 
3

R  in order to ensure traceability of their derivatives in the neighborhood 

of zero. Still, because the variables consumption, effort, and relative deprivation retain their intuitive interpretation 

only when they are non-negative, the domain of the maximization problems below will be constrained accordingly. 
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which ensures that * *

2 1 0yy  ; an asterisk denotes optimal values.7 That is, under (5) and in the 

absence of any transfer, individual 1 is relatively poor, and individual 2 is relatively rich. 

Because * *

2 2 1( , ) 0r RD y y   (individual 2 is at the top of the income distribution and, therefore, 

he is not relatively deprived), the utility function of individual 2 for 
2 1,y y  in the neighborhood 

of * *

2 1,y y  reduces to 

 22

2

2 2 2( , ,0)
2

b
U y y ay y  . (6) 

Maximizing 22 2( , ,0)U y y  in (6) with respect to 
2y , and maximizing 1 11 1 2( , , ( , ))U y y RD y y  in (4) 

with respect to 1y , yield 

 

*

1

*

2

,
2

.

a f d
y

b g

a
y

b


 



  

Because 
* *

2 1 0
2

f d
y

g
y


    and 

2
0

2

g a f d
f d

a

b gb


     , (5) indeed ensures that 

* *

2 1 0yy  . 

Consider now a (marginal) transfer of income in the amount 0   from the richer 

individual 2 to the poorer individual 1.8  The consumption levels, equal to the post-transfer 

incomes, of the two individuals become 

                                                 
7 We prove that (5) implies the ordering 

* *

2 1
y y

 
by contradiction. Suppose that

 

* *

1 2
y y . Then, for 

1 2
, 0y y   in the 

neighborhood of 
1 2

* *
,y y , we have that 

1 1 2
( , ) 0r RD y y   and 

1 1 1 1 1
0( , , )U y y dy fy  . Because f d , we have 

that the optimal effort exerted by individual 1 is 
*

1
0y  . Because 

* *

1 2
0yy   , we must have that 

*

2
0y  . 

However, for 
1

0y   we get that the right-hand derivative of the utility function of individual 2 at 
*

2
0y   is positive 

(
 

2

2 2 2 2

0
2

, , (0, )
lim 0
y

dU y y RD y
a

dy




  ), yielding the inference that 
*

2
0y   cannot be optimal and, thus, 

contradicting the assumption 
* *

1 2
y y . That (5) also ensures positivity of 

1 2

* *
,y y  will be addressed momentarily. 

8 In Appendix B we study the possibility of a rich-to-poor transfer that is financed not by a lump-sum tax but, rather, 

by a proportional tax on the income of the richer individual. 
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1 1

2 2

1

2

,

.c

c x y

x y





  

  
  

Assuming that the transfer is small enough so as not to reverse the ordering of the incomes, that 

is, assuming that 1 2yy    , we have that 2 2 1( 0, )r RD y y     , and we can then 

consider the utility function of individual 1 as a function of the variables 1 2 )( , ,y y  , and the 

utility function of individual 2 as a function of the variables 2( ),y  . To avoid possible 

ambiguity, we denote these functions as 

 
1 2

2

1 1 2 1 1 1 1 2 11

2 2

2

2 2 2 2 2

( , , ) ( , ( , )) ( ( 2 ,

( , ) ( ,0)
2

) )

( ) .

,

,

u y y U y y RD y y d y g y y fy

b
u y U y y a y y

     

  

         

    
 (7)  

For a given 0  , individual i maximizes iu  with respect to iy . Solving simultaneously, the two 

first order conditions  

 

2

2

1
1

1

2

2

2 ( ) ,

,

) 0

0

(2 f
u

g y y
y

u
b

d

ya
y




  







  

 

  

allow us to express the optimal level of effort / pre-transfer income, * )(iy  , and the optimal level 

of consumption / post-transfer income, * )(ix  , as functions of  .9 We thus have that 

  

2

*

1

*

) 2
2

)

,

( ,

(
a f d

b g

a
y

b

y  




  



 (8) 

and that 

 

2

* *

1 1

*

2

*

( ( ,

( (

) )
2

) ) .

a f d
x

x

y
b g

a
y

b

   

   


    

  

 (9) 

                                                 

9 Because 

2

1

2

1

2 0
u

g
y

 





 and 2

2

2

2
0

u
b

y
 





, the second order conditions for both maxima are satisfied. 
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We express the Gini index defined on the post-transfer incomes (which here constitute 

“net incomes”) as a function of the transfer  

 
 1

*

*

1

2

*

2

* ) )
)

2 ) )

( (
(

( (

x x
G

x x

 


 





. (10) 

Let )(SW   be Sen’s (1973) social welfare function - the product of per capita post-transfer 

income and one minus the Gini index - expressed as a function of the transfer, namely we let 

  
*

1

*

2( ()
(

)
) 1 ( )

2
S

x x
GW

 
 


  . (11) 

We then have the following claim. 

Claim 1. A marginal transfer from the richer individual to the poorer individual: (a) exacerbates 

income inequality as measured by the Gini index; (b) decreases Sen’s measure of social welfare. 

Proof.  

(a) Combining (5), (9), and (10), we get that 

 
   

2 2

2 2

0 0

( ) 2 ( ) 2 ( )
(0) 0

8 2 ( 4 ) 4 ( 4 ) 4 ( )

d b f d b g f d b g f d
G

d ag b f d g ag b f d g ag b f d
 

  
 

   
    

       


 
.(12) 

Therefore, a marginal transfer   increases the Gini index.  

(b) Denoting by )(X   the per capita post-transfer income as a function of the transfer, 

 1

*

2

*) )( 2( /( )X x x    , we get that  

 

0

4 ( 4 )
(0)

4
1

d ag b f d g
X

d bg







   
   

 
  . (13) 

From (11) we get that  

  )( ( ) 1 ( )SW X G    . (14) 

From (12) and (13) we have that each of the two terms in (14) decreases after a marginal transfer 

and, therefore, )(SW   also decreases (because, obviously, )( 0X  
 
and 1 ( ) 0G   ). Q.E.D. 
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The example presented in this section poses a puzzle: the income of the poorer individual 

and the change in Sen’s measure of social welfare move in one direction, while the wellbeing of 

the poorer individual moves in the opposite direction. A Pigou-Dalton transfer could be expected 

to improve the wellbeing of the poorer individual, and in our case it indeed does: it is easy to 

confirm that following the transfer, the utility of the poorer individual increases.10 However, at 

the same time, his post-transfer income (consumption) decreases;11 in terms of absolute (post-

transfer) income, he does not end up benefitting from the transfer. Yet, the difference between 

*

2 )(x   and *

1 )(x   is constant (equal to 
2

f d

g


, refer to Figure 2 below) and, thus, it is 

independent of the size of the transfer. Consequently, the (extent of the) low relative income 

experienced by the poorer individual is also constant. On the other hand, the transfer allows the 

poorer individual to keep his low relative income stable while easing up his effort.12  This 

suffices to increase his wellbeing, in spite of the drop in his consumption, because the 

combination of a constant low relative income and reduced effort is valued more highly than a 

higher consumption (recalling the relationship between f and d in the rightmost inequality in 

(5)).  

This gain in the wellbeing of the poorer individual is not expressed when we look at Sen’s 

measure of welfare. Apparently, Sen’s social welfare function, built so as to take into account 

only a change in nominal (aggregate) income and a “synthetic” measure of inequality, does not 

embrace the satisfaction that the poorer individual derives from keeping his low relative income 

stable with a reduced work effort. 

We illustrate our results graphically. To this end, we set the parameter values to 

1/ 4a b d   , and 1/ 2f g h   . We note that these values satisfy assumption (5). Figures 

1 through 5 display, respectively and as functions of the transfer  : the optimal levels of the 

individuals’ efforts / pre-transfer incomes 1 2

* *),( ( )y y  ; the optimal levels of the individuals’ 

                                                 
10 We have that marginal utility of the poorer individual with respect to the transfer is positive, that is  

 * *

1 21
( (

2
), ),

0
du y y

f d
d

  


   , 

which follows from (5). Refer also to Figure 3. 

11 It is easy to see from (9) that 
*

1
)(x   is a decreasing function of the transfer. See also Figure 2. 

12 From (8) we have that 
*

1
)(y   is a decreasing function of the transfer; refer also to Figure 1. 



11 

 

consumptions / post-transfer incomes 
1 2

* *),( ( )x x  ; the individuals’ utility levels derived from 

the optimal efforts  * *

1 1 2( ), ( ),u y y   ,  22

*( ),u y   ; the Gini index )(G  ; and Sen’s social 

welfare )(SW  . For *

1 )(y   to be positive, it must hold that 0.375
2 4

a f d

b g



    and, thus, 

0.375   is chosen as the right end of the abscissa in each of the graphs.13 

  

 

Figure 1. The optimal levels of the individuals’ efforts / pre-transfer incomes, 1 2

* *),( ( )y y  , as 

functions of the transfer .  

 

                                                 

13 From (8) we get that 
*

1
)( 0y    if 2 0

2

a f d

b g



   , which is equivalent to 

2 4

a f d

b g



  . 
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Figure 2. The optimal levels of the individuals’ consumptions / post-transfer incomes, 

1 2

* *),( ( )x x  , as functions of the transfer .  

 

Figure 3. The individuals’ utility levels derived from the optimal efforts,  * *

1 1 2( ), ( ),u y y   , 

 22

*( ),u y   , as functions of the transfer .  
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Figure 4. The Gini index, ( )G  , as a function of the transfer .  

 Note: the scale of the vertical axis does not begin at zero. 

 

 

Figure 5. Sen’s social welfare, ( )sW  , as a function of the transfer .  
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3. Generalizations 

In this Section we strengthen our main argument in several respects. First, in Subsection 3.1 we 

show that the example of a rich-to-poor transfer that exacerbates income inequality, where 

inequality is measured by the Gini coefficient, and decreases wellbeing where social welfare is 

measured by Sen’s welfare function, is not a singularity; it holds for all utility functions from an 

open set in the function space. In Subsection 3.2 we relax the assumption regarding the number 

of individuals in the population and we show that a Pigou-Dalton transfer can increase inequality 

and reduce social welfare under measures other than the Gini coefficient and Sen’s social 

welfare function: specifically, a marginal rich-to-poor transfer can exacerbate inequality when 

the extent of inequality is assessed by Lorenz-domination, and it can decrease social wellbeing 

when social welfare is measured by any increasing, Schur-concave welfare function. 

 

3.1. Non-singularity of the utility specification  

We show that the results reported in the preceding section can be derived for utility functions 

that are more general than (1) and (2). We begin with a brief outline of the steps that we take to 

proceed. First, we look at the space of pairs of twice continuously differentiable functions, 

2 3 2 3( ) ( )C CR R  as the space of possible utility functions of individual 1, 1V , and of individual 

2, 2V . This space encompasses the utility functions 1U  and 2U  defined in Section 2. Second, 

constraining this space to the neighborhood of the fixed pair 1 2( , )U U U , we simplify any pair 

of functions 1 2( , )V V V  from this neighborhood into 2 3 2 2

1 2( , ) ( ) ( )v v v C C  R R , akin to 

what we did in Section 2 with respect to the simplification of 1 2( , )U U U  into 1 2( , )u u u . 

Third, we show that the results that we obtained in Section 2 hold for some open neighborhoods 

of u in the space 22 3 2( ) ( )C CR R , and thereby we (indirectly) show that the properties hold 

also for some open neighborhoods of U in the function space 2 3 2 3( ) ( )C CR R . 

Let 2 3

1 1 1 1 1( ) ( , , )V cC e r  R å  be the space of possible utility functions of individual 1, 

and let 22 2 2

2 3

2( ) ( , , )V c e rC  R å  be the space of possible utility functions of individual 2. We 

endow the spaces 1  and 2  with the topology of uniform convergence with respect to second 
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derivatives (or 2C -uniform convergence topology), namely the topology where the open 

neighborhood basis for a function f  consists of the sets: 

 

3
1 2 3 1 2 3

2 3

, , , 1,2,3 1( , , )

2 2

2 3

( ) ,

( ) ( ) (

(

) ( ), ,

) : ( ) ( )j kx x

j j j k j

x x

k

g C g x f xf

g f

x x x x x

g f
x x x

x
x

   

 

 



  

   

 


 


 
 









R
RA

 

where 
1 2 3, , 0    , and with a product topology on the space 1 2  .

 

 Obviously, the utility functions 1U  and 2U  given by (1) and (2) belong, respectively, to 

1  and 2 .14 We fix a pair of such functions, namely their coefficients , , , , ,a b d f g h , which 

satisfy assumption (5). As already noted, we are interested in functions from the neighborhood 

of the pair 1 2( , )U U U  in the space 1 2  . From the analysis conducted in Section 2 we 

know that 1 21 11( , , ( , ))U y y RD y y      and 2 2 2 2 1( , , ( , ))U y y RD y y      have unique 

maxima, respectively, *

1 )(y   and *

2 )(y  , such that * *

2 1) ( )( 0y y    for a sufficiently small  . 

Thus, a pair of functions 1 2 1 2( , )V V V   , which is close enough to U, taken as 

1 21 11( , , ( , ))V y y RD y y      and 2 2 2 2 1( , , ( , ))V y y RD y y      will also have unique 

maxima denoted, respectively, by *

1, )(Vy   and *

2, )(Vy  , which are in the neighborhoods of *

1 )(y   

and *

2 )(y  , respectively, so that ,

*

,

*

2 1) ( )( 0V Vy y    for a sufficiently small  . Therefore, 

similar to Section 2, we can simplify the notation used in the definition of the pair of functions 

1 2V    which are sufficiently close to U such that individual 1 is the poorer and individual 

2 is the richer, and a marginal transfer   does not reverse the ordering of the incomes so that the 

richer individual 2 does not experience relative deprivation. With these considerations in mind, it 

is convenient to change the variables in the pair of the utility functions 1 2V    in the 

following way: 

                                                 
14 Here, while we take the functions 

1
U  and 

2
U  as given by formulas (1) and (2), we relax the ranges of their 

arguments beyond the sets in which these arguments retain their meaningful economic interpretation. In particular, 

in order to ensure differentiability of the utility functions in the neighborhood of zero, we allow the functions’ third 

argument (relative deprivation) to take a negative value. This relaxation does not entail any ambiguity because soon 

thereafter, we confine our attention to small neighborhoods of income levels such that the relative deprivation of 

individual 1 is strictly positive, and the relative deprivation of individual 2 is equal to zero. 
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 

1 1 2 1 1 1 2 1

2 2 2 2 2

1
) ,( 2( , , , ,

, ,,, 0

)
2

( )

v Vy y y y

v V y y

y y

y

  

 

  

 

 
 

   (15) 

where   is sufficiently small, 2 3 2

1 1 2

2

2( ), ( )vC Cv    R R ,15 and where we drew on the 

definition of low relative income, 1 1 22 1( , ) ( , )r RD c c RD y y      and 

2 2 1 2 1( , ) ( , ) 0r RD c c RD y y      .16 These transformations of variables are smooth and do 

not change the value of the second argument in iV , namely of iie y , so the optimal choices of 

effort levels / pre-transfer incomes of the individuals remain unchanged when their utility 

functions are transformed from 1 2( , )V V V  to 1 2( , )v v v , just as was the case upon 

“translating” 1 2( , )U U U  into 1 2( , )u u u  in Section 2. 

We endow each of the spaces 1 , 2  with the topology of uniform convergence with 

respect to second derivatives, and the space 1 2   with a product topology. Obviously, 1 1u   

and 22u  .  

For 1 2( , )U U U  defined as in (1) and (2), and for the corresponding 1 2( , )u u u  defined 

as in (7), we showed in Section 2 that under condition (5) a marginal transfer from the richer 

individual 2 to the poorer individual 1 exacerbates the Gini index, and decreases Sen’s social 

welfare. In the following proposition we state and prove that there exists an open, non-empty 

neighborhood of u in the space 1 2   (and, thus, also of U in 1 2  ) consisting of utility 

functions for which the same results hold. 

                                                 
15 Actually, we only need to consider restriction of the function 

1 1 1 1
( , , )V c e r  to the neighborhood of the subspace 

3

1 1 1 0 1 1
{( , , ) : }c e r c e


 R  in 

3

0
R , and of the function 

2 2 2 2
( , , )V c e r  to the neighborhood of the subspace 

2 2 0

2

2 2
{( , 0) :, 0} }{c e c e


 R  in 

2

0
{0}


R  and change their variables in these neighborhoods. However, the 

change of variables can be extended to the entire sets 
3

R  and 
2

{0}R , so that the definitions of the functions 
1

v  

and 
2

v  extend naturally to the entire 
3

R  and 
2

R .  

16 In the analysis provided in this section we formally allow 0   in order to ensure traceability of the derivatives 

with respect to   of the optimal solutions to the individuals’ maximization problems. However, only for 0   the 

economic interpretation of transfer from the “rich” to the “poor” individual is relevant. 
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Proposition 1. For any 1 2( , )u u u  constructed as above, there exists an open neighborhood 

1 2N     of u (with respect to the 2C -uniform convergence topology) such that for any 

1 2( , )v v v N   a marginal transfer 0   from the richer individual whose utility function is 2v  

to the poorer individual whose utility function is 1v : (a) exacerbates income inequality as 

measured by the Gini index; and (b) decreases Sen’s measure of social welfare. 

Proof.  

Let 1 2 1 2, )( uu u      be associated with the given pair of utility functions 

1 2 1 2)( ,U U U    defined by (1) and (2) and satisfying (5). For 1I  , where 1I  is a 

sufficiently small neighborhood of 0 , *

1 )(x  , *

2 )(x  , *

1 )(y  , and *

2 )(y 
 
are all positive and 

2

* *

1 ( () )y y  . Let 1 2 1 2, )( vv v     . If 2I  , where 2I  is a sufficiently small open 

neighborhood of 0 , and if 1 2( )v N I , where 1 2( )N I  is a sufficiently small neighborhood of u , 

then the optimal effort levels of the individuals whose utility functions are 1v  and 2v , which we 

denote, respectively, by *

,1( )vy  , and *

,2 ( )vy  , exist, they are unique, and they observe 

* *

,1 ,20 ( ) ( )v vy y   .  

We show that following a marginal transfer from the richer individual 2 to the poorer 

individual 1 the Gini coefficient increases. The proof regarding the decrease of Sen’s measure of 

social welfare follows analogously, and is therefore omitted. 

We denote by ( )vG   the Gini index defined on the optimal post-transfer incomes for the 

pair of utility functions 1 2( , )v v v , namely *

,1 ,

*

1( ) ( )v vyx      and *

,2 ,

*

2( ) ( )v vyx     . 

Mimicking (8), we have 

 
 

,2 ,

* *

1

,1

*

,

*

2

( ) ( )
( ) .

2 ( ) ( )

v v

v

v

v

x x
G

x x

 


 





  

Thus, 

   
,2 ,1 ,1 ,2 ,2 ,1 ,

* * *

1 ,2

,1 ,2 ,1

* * * *

,

*

* * *

2

2 2
*

(0 (0 (0 (0 () ) ) ) ) 1) ) ( ) 1) )
0)

) ) ) )

(0 (0 (0 (0
(

(0 (0 (0 (0

v v v v v v v v

v v v v

v

y yx x x x y
G

x x y

y

y

     
 






 , 
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so (0)vG  is a continuous function of ,1 ,2 ,1 ,2

* * * *(0), (0), (0), (0)v v v vy y y y  . Therefore, it suffices to 

prove that ,1 ,2 ,1 ,2

* * * *(0), (0), (0), (0)v v v vy y y y   depend continuously on the initial choice of the pair of 

utility functions 2 1 2( )v N N I  , where 2N  is a sufficiently small neighborhood of u. If this is 

true, then the function (0)vv G  is continuous for 2v N , and the counter-image of (0, )  of 

that function, which we denote by 3N  ( 3 2N N ), is an open neighborhood of u in 1 2  , such 

that (0) 0vG   for any 3v N . Then, for each 3v N , vG  as a function of   is increasing in an 

open neighborhood of 0. 

To confirm continuity, we state and prove three lemmas in Appendix A. Lemma 1 shows 

that *

,1( )vy   and *

,2 ( )vy   are indeed differentiable functions of   for any v from some 

neighborhood of u, which we denote by 2N . Lemmas 2 and 3 guarantee continuity (with respect 

to the utility functions) of the optimal effort level functions *

,1( )vy   and *

,2 ( )vy   and of their 

derivatives, respectively, at 0  . Thus, Lemmas 2 and 3 imply that the function 

 *

,1 ,2 ,1

*

,2

* *(0), (0), (0), (0)v v v vy y y yv    is continuous and, therefore, (0)vG  is a continuous function 

of 2v N . Consequently (0) 0vG   for 3v N . With 3N N , the proposition follows. Q.E.D. 

 The inference drawn from Proposition 1 is that the results obtained in Section 2 are not 

an outgrowth of a specific, singular choice of the pair of quadratic utility functions; they hold for 

an open set of utility functions. Specifically, for each pair of (at most quadratic) functions 1 2,U U  

defined, respectively, in (1) and (2), such that the parameters , , , , ,a b d f g h  satisfy (5), there 

exists an open neighborhood of general utility functions for which the results of Claim 1 also 

hold. The sum of these neighborhoods constitutes an open subspace in the space of twice 

continuously differentiable functions. 

 

3.2. Lorenz dominance, general social welfare functions, and a population of any size  

In Section 2 we considered a population consisting of two individuals, and we assessed the 

effect of a Pigou-Dalton transfer from a richer individual to a poorer individual on the Gini 

coefficient as a measure of inequality, and on Sen’s welfare function as a measure of social 
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welfare. That a rich-to-poor transfer can increase inequality and reduce social welfare does not 

depend, however, on the population consisting of just two individuals, nor on the particular 

inequality and social welfare measures used in Section 2. Here we outline an example that 

confers robustness to the results of Section 2: the results continue to hold for a population of any 

number of individuals, and exacerbation of inequality can arise not only when the Gini 

coefficient is used as an index, but also when the Lorenz curve is the measurement rod. We 

show that the Lorenz curve defined on the post-transfer distribution of incomes is dominated by 

the Lorenz curve defined on the pre-transfer distribution of incomes. Furthermore, we provide a 

generalization of the previously reported result of a decrease of social welfare obtained when the 

social welfare function used was Sen’s. Apparently, any increasing, Schur-concave social 

welfare function will register a decrease as a result of the transfer. 

 Consider a population of individuals {1,2, , }i n  , nN , 2n  . We define utility 

functions 3:iU R R , 2 3( )i CU  R , such that for individual 1 utility is  

 1 1 1

2

11 1( , , ) 4 ,iU x y r dx gr fy    (16) 

and for individuals {2,..., }i n  utility is  

 2( , , )
2

i
i i ii ii i ii

b
U x y r a x h r y   , (17) 

where ix  and iy  are, respectively, the post-transfer and the pre-transfer incomes, 

 1 2

1

1
( , , , ) max{ ,0}

n

i i n k

k

ir RD x x x x x
n 

     (18) 

is the relative deprivation of individual i, and , , , , , 0i i id g f a h b   for {2,..., }i n .17 We have the 

following claim. 

Claim 2. For any 2n   there exist parameters , , , , , 0i i id g f a h b   for {2,..., }i n  such that: 

1. Without a transfer, the optimal levels of effort / income of individuals {1,2, , }i n  , *

ix , are 

such that 

                                                 
17 The relative deprivation measure in (18) is the index of relative deprivation defined for any population of size 

2n  . In (3) the index was used for a population of two individuals. 
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* *

2

*

1 ... nx x x   . 

2. For a marginal transfer 0  , the pre-transfer distribution of incomes,  * *

1 2

*, ,..., nx x x , Lorenz-

dominates the post-transfer distribution of incomes,  2

* * *

1 ) )( , ( ,.. ( )., nx x x   . 

3. Following a marginal transfer 0  , any increasing, strictly Schur-concave social welfare 

function defined as a function of the transfer  , )(W  , will register a decrease, namely 

)(0) (W W  . 

Proof. For a given 2n  , let 

 
3

1,  
(

,
2( 1) 2 1 ( 3))n

d g
n

n

n n n





    
 and 2f  , (19) 

and for {2,..., }i n , let 

 2 ,  2 2 ,i i

i i ia h b   . (20) 

The proof of part 1 of the claim replicates approximately the steps taken in Section 2, 

where we considered the case of two individuals. Because the proof is somewhat long, it is 

relegated to Appendix C. Here, we present a brief summary of the protocol of the proof. Proofs 

of parts 2 and 3 of the claim follow thereafter. 

First, in the absence of a transfer, maximization of the utility functions (16) and (17) 

evaluated with the parameters in (19) and (20) yields the optimal efforts / incomes levels *

1 1x   

and * 12 2i i

ix
i

n

   for {2,..., }i n . Obviously, we have that * * * *

1 2 3 nx x x x  , which is the 

essence of part 1 of the claim. 

Next, we introduce a (marginal) transfer of income 0   from each of the “richer” 

individuals 2,3, ,n  to the poorest individual 1. Analogously to the treatment in Section 2, we 

find that a marginal transfer does not change the optimal effort levels of these individuals, which 

yields the post-transfer optimal incomes 

 * * 1( ) 2 2i i

i i

i
x x

n
       (21) 
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for {2,..., }i n . In turn, the post-transfer income of individual 1 is 18  

 *

1 )( 1x    . (22) 

To prove part 2 of the claim, we note that the Lorenz curve for an income distribution 

1( ,..., )nx x  is defined as a piecewise linear curve connecting the points ( , )i iF L , 1,...,i n , where 

/iF i n , and /i i nL X X  for 
1

i

j

j

iX x


 . We rewrite the levels iX  and iL  as functions of the 

transfer  , namely as 

1

* *

1

( ) )(
i i

j j

j j

iX x x i  
 

     

and 

                                                 

18 From steps that replicate the derivation presented in equations (C9)-(C11) in Appendix C, we get that the relative 

deprivation of individual 1 who receives from each of the other individuals, {2,..., }i n , a transfer of   is 

       * 1

1 1 1

2 2

1

1 1
( ) ( 1) 2 2 ( 1) ( 1)

1
2 ( 1) /

/

4 ( 1)( ) .

n n

i i

i

i i

n

nr x y n i n y n
n n

n n n y n
n

   





 

          

       

 
 

Using (16) and (19), the utility function of individual 1 is 

 

2

1

1 1 1 1 1 1

2 ( 1) / 4 ( 1)( )
[ ( 1) , , ] ( 1) 2 .

2( 1) 2 ( 1) ( 3)

n

n

n n n n y n
U y n y r y n y

n n n n


 

    
      

   

  

  
 

Hence, 

 
11 1 1 1

1

1

2 ( 1) ( 1)( ) 4[ ( 1) , , ] ( 1)
1 (1 ) .

2 ( 1) ( 3) 2 ( 1) ( 3)

n

n n

n n n y ndU y n y r n n
y n

dy n n n n n n




      
     

     
 

By solving 
1 1 1 1 1
[ ( 1) , , ] / 0dU y n y r dy    we get that the optimal effort level / pre-transfer income of individual 

1, expressed as a function of  , is 

*

1
)( 1 ,ny     

implying that the post-transfer income of this individual is  

* *

1 1
( ) ( ) ( 1) 1x y n        . 
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*

*

1

1

(
)

)
(

( )

i

j

j

i n

j

j

i

n

x i
X

L
X

x n













 








. 

For both the pre-transfer distribution    * * * * *

2 2

*

1 1, ,..., (0), (0),..., (0)n nx x x x x x  and the post-

transfer distribution  2

* * *

1 ) )( , ( ,.. ( )., nx x x   , the points iF  are the same, thus a Lorenz-

domination of distribution  * * *

1 2(0), (0),..., (0)nx x x  over distribution  2

* * *

1 ) )( , ( ,.. ( )., nx x x    with 

0   is equivalent to ((0) )i iL L   for all 1,..., 1i n  , and with ((0) )i iL L   for at least one 

{1,..,., 1}j n  . We next show that for any 1,..., 1i n  , we have that (0) 0iL  , which is 

sufficient for ((0) )i iL L   to hold for a marginal transfer 0  .  

We have that  

* *

2

*

1 1

1

)(0

i n

j j

j j

i
n

j

j

xn i x

L

x

 









 



 



. 

Using (21) and (22) for * *(0)j jx x , 
1

*
i

j

j

x


  for any 1,...,i n  can be rewritten (drawing on 

the derivation presented in equations (C9)-(C11) in Appendix C) as  

1

* 1

2

12 2
1 2 (1 2 )

1 2 3 2 ( 1) 3
i

i ij
i i

j
j

j j

n i

nn

j
x i

n



 

  
        

 
  . 

Therefore, 

1

2

*

2

*

1

2 (2 1 ) 3 2 (1 1/ ) 3
(0

2 (2 1 ) (1 1/

)

) 3( )2
.

i n

n

j

j

n

j

i

i n

j

in i n n
L

x

n ii n n i

x





          



 

    


















 



23 

 

In order to enable us to sign )(0iL , we define and investigate the following function: 

( ) 2 (2 1 ) (1 1/ ) 3 )2 (nx xf x n x n n x       

for [1, ]x n  R . This function is continuous for [1, ]x n , and it is twice differentiable for 

(1, )x n . We have that 

 ( ) 2 2l (1 1/ ) 3(2 1 ) n2 1
x n nn xf x       

and that 

 ln2( l( ) 2 01 ) n2 ( ln2 2)
xx nf n x       

for any 2n   and [1, ]x n ; that is, ( )f x  is a convex function and although it does not have a 

local maximum for (1, )x n , it takes its maximum value either at 1x  , or at x n . At these 

two points, respectively,  

(1) 3 2 (1 1/ )

(

0

) 0

,

.

nf n n

f n

   



 

Thus, for [1, ),x n ( ) 0.f x   

For any 1,..., 1i n   we can rewrite )(0iL as 

2

*

1

( )
) .(0

n

j

j

iL

x

f i




 
 
 





 

From the preceding analysis of the properties of ( )f x , we infer that for 1,..., 1i n   and any 

2n  , ( ) 0f i   and, consequently, ) 0(0iL  . This completes the proof of part 2 of the claim. 

In order to prove part 3 of the claim, we draw on (21) and (22), which state that a 

marginal transfer lowers the income of every individual. Thus, the mean income of the 

population is lowered. Consequently, we get a generalized-Lorenz-domination of the pre-transfer 

distribution of incomes over the post-transfer distribution of incomes, which (recalling 

Shorrocks, 1983) is equivalent to a decrease of any increasing, strictly Schur-concave social 
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welfare function following a marginal rich-to-poor transfer. This completes the proof of part 3 of 

the claim. Q.E.D. 

 

4. Discussion  

By means of a constructive example, we presented a rationale as to why a rank-preserving 

transfer from a richer individual to a poorer individual might exacerbate (rather than reduce) 

income inequality (as measured by the Gini index or by the Lorenz-domination). This result was 

derived when the preference profiles of the individuals are quite natural and not overly 

restrictive, and it holds for a nonsingular set of possible utility functions. Specifically, we 

assumed that the individuals’ utility functions exhibit distaste for low relative income. 

Demonstrating that a Pigou-Dalton transfer fails to decrease income inequality could imply that 

a more demanding transfer principle will be needed to secure reduced inequality. Moreover, 

when a Pigou-Dalton transfer increases inequality, then on such a transfer, the wellbeing of the 

population, as measured by a broad class of social welfare functions, registers a decline. 

Specifically, Sen’s (1973) social welfare function indeed does that, in spite of the fact that after 

the transfer, the utility of the poorer individual increases.  

Interestingly, Pigou (1920) himself provided two reasons why the “principle of transfers” 

might fail to reduce inequality. First, when the richer individual employs poorer individuals, the 

amount taken from the richer individual will hurt the poorer individuals because the former will 

not be able to create as many workplaces, or pay as much. Second, on receipt of the transfer, the 

poorer individual will agree to work for a lower wage because some of his needs will be catered 

for by the transfer.  

The argument advanced in this chapter is related to this second reasoning if we consider 

that keeping low relative income in check is a “need” for the poorer individual, which is now 

catered for by the transfer. Additionally, our argument highlights important considerations that a 

social planner who is concerned about income inequalities should bear in mind. When acting in 

the seemingly simplest and most straightforward way to address inequality, namely making a 

Pigou-Dalton transfer, the social planner cannot be sure that the transfer and its consequences 

will increase the income of the poor, improve inequality measures, and raise welfare. Having 

said all that, we note that the wellbeing of the poor might still improve as a result of the transfer.  
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Appendix A: Continuity lemmas 

As a preliminary, we note that 
2

2

2
22
, ) 0(

u
y b

y



  


 and that 

2

2

1
1 22
, ,( ) 2 0

u
y y g

y



  


 for any 

1 2 0 1 2

2( , , ) ( )y y I I    R . Therefore, there exist 2 1 2( )NN I  such that for any 

1 2 2( , )vv v N  it holds that 
2

2

2
22

( , ) 0,
v

y
y

 



 and that 

2

2

1
1 22

) 0( , ,
v

y y
y







 for any 

1 2 0 1 2

2( , , ) ( )y y I I    R . 

In the following lemmas we assume that 1 2I I   . 

Lemma 1. 

For any 2v N  there exist an open interval J  such that 1 20 J I I   , and there exist 

continuously differentiable functions : J R , : J R  such that 

(a) *

,2( ) )(J vy     ; 

(b) ,

*

1( ) )(vJ y     . 

Proof.  

To prove part (a), we note that because 1 2 2( , )vv v N  , then *

,2 ( )vy   is an optimal effort level 

for utility function 2v  and for 0   iff ,2

*2

2

( ( , )) 0v

v

y
y  




 . Also, from the assumptions on 2N  it 

follows that 
2

2

2
22

( , ) 0
v

y
y





  (in particular, 

2

2

2
22

( , ) 0
v

y
y

 



) for any 1 2( , , )y y    and, hence, 

the implicit function theorem can be applied to complete the proof of part (a). 

Analogously, for part (b), because 1 2 2( , )vv v N  , then *

,1( )vy   is an optimal effort level 

for utility function 1v  for 0   and for 
*

,2 ( )vy   iff ,1 ,2

1

* *1 ( ( ) ( , ) 0, )v v

v
y

y
y   





. From the 

assumptions on 2N  we have that 
1

2

1
1 22

) 0( , ,
v

y y
y







 (in particular, 
2

*1
1 ,2

1

2
( ( 0, ), )vy y

v

y
 





) for 

any 1 2( , , )y y   , and from part (a) we have that *

,2 ( )vy   is a continuous and differentiable 
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function of J  . Applying the implicit function theorem to the condition 

,1 ,2

1

* *1 ( ( ) ( , ) 0, )v v

v
y

y
y   





 yields 

 

   

 

,1 ,2

2 2
* * * * *1 1

* 2

,2 ,1 ,2

2
* *1

2

1

1 1
,1

,1 ,2

( (), ), ) ), ),

( )

)

( ( (

( (, ),

v v v v v

v

v v

v v
y y y y y

y y y

y
v

y

y

y

      




  

 


   
 









. (A1) 

This completes the proof of part (b). Q.E.D. 

In Lemmas 2 and 3 below, we apply Heine’s definition of continuity. We consider a 

sequence 0 1, 2, 0( ) (( , ))n n n n nv v v 

   of functions from the space 1 2  , such that as n  tends to 

infinity, the sequence tends (with respect to the product topology) to 2v N . Because we are 

only interested in the asymptotic behavior of that sequence, we can assume that 2nv N  for each 

n . From Lemma 1 we know that for each pair 1, 2, 2( , )n n nv v v N   there exist a function 

2, ,2

* ( )
nvy   (the solution to the maximization problem of the richer individual with a utility 

function 2, ( , )nv  ) and a function 
1, ,1

* ( )
nvy   (the solution to the maximization problem of the 

poorer individual with a utility function 
2,1 ,

*

, 2, ( ),( )
nn vv y   ). 

Lemma 2. 

For any 2v N  and any sequence 0 1, 2, 0( ) (( , ))n n n n nv v v 

   such that 
nnv v


 , we have that 

(a) 
2, ,

*

,22

* (0) (0)
n vnvy y


 ; 

(b) 
1, , 1

*

1 ,

* (0) (0)
nv vn

y y


 . 

Proof.  

As in Lemma 1, the proofs of parts (a) and (b) are analogous, albeit here part (b) requires 

additional attention because the behavior of the poorer individual (function 
*

,1( )vy  ) depends on 

*

,2 ( )vy  , but not vice versa. Thus, we only provide here a proof for part (b), assuming that part 

(a) is true. 
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Let 0  . We show by contradiction that there exists 
1n  such that for any 1n n  we 

have 
1, ,

*

1 ,1

* (0) (0)
nv vy y   . Let 

2
* *1

2 ,1 ,2

1

( (0), (0),0 0)v vy y
v

y



 


 , which follows from the fact 

that 2v N . From the continuity of the first and second derivatives of 1v , and from the fact that 

,1 ,2

1

* *1 ( (0), 0) 0(0),v v

v
y

y
y





, we know that there exists 0   such that 
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* *
,2 ,2

1 ,1 ,1

2

2

1 1
1 2 1 22(0) , (0)
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 

 

 
   
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Let min{ , } ò . We choose 1n  such that for any 1n n  and for any 2

1 2 0, )(y y R , we 

have that 
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y y y y
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 (we can so write because 1,nv  tends to 1v  in our 

2C -uniform convergence topology), and that 
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*

2 ,2

* (0) (0)
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Now, if we assume that 
1, ,

*

1 ,1

* (0) (0)
nv vy y    for some 1n n , then 
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where the second to last inequality holds due to (A2). This clearly contradicts (A3). Therefore, 

1, ,

*

1 ,1

* (0) (0)
nv vy y    for any 1n n . Q.E.D. 

Lemma 3. 

For any 2v N  and any sequence 0 1, 2, 0( ) (( , ))n n n n nv v v 

   such that 
nnv v


 , we have that 
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Proof. 

As in the case of Lemma 2, we need to prove only part (b) because the proof of part (a) is 

analogous. 
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, which follows from the fact that 1 2 2( , )v v N , we have that 



29 

 

2

1,

1 22

1

( , ) 0, 0
nv

y y
y





 for any 2

1 2 0, )(y y R . Thus, the functions 
1 1 2( , )yyv y y , 

1 1 2, )(y y yv  , 

1, 1 2( , )yy

nv y y , and 1, 1 2( ),y

nv y y  are well-defined and continuous for 2

1 2 0, )(y y R  and, due to the 

convergence of 
1( )n nv 


, we have that 1, 1( )yy

n nv 

  tends to 
1

yyv , and that 1, 1( )y

n nv  

  tends to 
1

yv   (with 

respect to 2C -uniform convergence topology) as n tends to infinity. 
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Let *
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Appendix B: A transfer financed by a proportional tax levied on the income of the richer 

individual  

In Section 2, we considered a lump-sum transfer that did not reduce the richer individual’s 

incentive to exert effort. It is natural to ponder whether the outcome of a rich-to-poor transfer 

exacerbating income inequality and decreasing Sen’s social welfare arises also when the transfer 

is enacted via a proportional tax of the income of the richer individual. 

We consider the individuals’ utility specifications as in Section 2, albeit with one 

difference: the amount taken from the richer individual 2 and transferred to the poorer individual 

1 is a proportion of the pre-transfer income of the richer individual 2, and is equal to 2ty , where 

[0,1)t  is small enough so that the taxing of the richer individual’s income does not reverse the 

ordering of the incomes of the two individuals. 

Using the utility functions (1) and (2) with parameters that satisfy (5), we know that 

without a transfer ( 0t  ), the optimal levels of effort and incomes are the same as those 

calculated in (7). When we apply a proportional (marginal) transfer 0t  , the post-transfer 

incomes of the two individuals are 

 
1 2

2 2 2
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.

x y

x tyy

ty 

 
   

Reenacting the utility maximization procedure of Section 2, we obtain the following optimal 

levels of effort / pre-transfer incomes as functions of t 
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which yield the following optimal levels of consumption / post-transfer incomes  
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The Gini index defined on the post-transfer incomes and expressed as a function of the 

transfer t is 
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Combining (5) and (B3) we get that 
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that is, a (marginal) proportional transfer t  also increases the Gini index. 

From the second line of (B1) we see that *

2( )y t  is a decreasing function of t, that is, in 

this setting, the transfer indeed reduces the incentive of individual 2 to exert effort. Additionally, 

from (B2) we see that both *

1 )(x t  and *

2 )(x t  are decreasing functions of t. In conjunction with an 

increase of the Gini index, this implies that a (marginal) proportional transfer t  decreases Sen’s 

social welfare as well. 
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Appendix C: Proof of part 1 of Claim 2 

For the parameters , , , , ,i i id g f a h b  defined in (19) and (20), the utility functions 3:iU R R , 

2 3( )i CU  R  of individuals 2,3{ , }, ni   are 

 22, 2 ,( , ) i i

i i i ii i iU x rx y r y     

and the utility function of the individual 1 is 
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We first derive the optimal effort levels / incomes of individuals in the absence of a 

transfer, that is, for i ix y . Defining 
: j ij y

j

y

iS y


   for ,2,{1 , }ni  , for individuals 

2,3{ , }, ni   we have that 
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where 
ik  denotes the position of individual i  in the pre-transfer ordering of incomes (such that 

ik n  if individual i is the richest, and 1ik   if individual i is the poorest). From the first order 

condition for maximum of the utility functions in (C2) we have that the optimal income / effort 

level *

iy , 2,3{ , }, ni  , is 

 * 12 2 ( )i ii
i i iy

k
k

n
   . (C3) 

From (C3) it follows that for any 2,3{ , }, ni   

 1( ) [2 ,2 )i i

i ik  , (C4) 

thus, 

 1 1 3 3 2 2( ) ( ) ( ) ( )n n n nk k k k          

and  

 1 23... 1n nn k k k k    .  (C5) 
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In particular, when 
1i k , then 

ik i . 

We next show that for individual 1 whose utility function is given in (C1), the optimal 

level of effort / income in the absence of a transfer is such that *

1 1y   and, thus, as follows from 

(C4), this individual will be the poorest in the population; that is 1 1k  . We have that  
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and, thus,  
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For 1k n , the derivative in (C6) is negative (in particular, it is not zero) so that for individual 1 

to choose 1y  so high that 1k n  is not optimal. Then, surely, 1k n . By solving the first order 

condition 11

1

1 1( , , )
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dU y y r
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 , we get that  
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and, therefore, 
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namely 1 1 1( , )S k  is an increasing function of 1S . We can rewrite 1S  as 
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we get that 
1S S  and, consequently, that 1 1 1 1 1) , )( , (k kS S  . In addition, we have that the two 

terms on the right hand side of (C8) can be expressed, respectively, as 
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and as  
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Insertion of (C9) and (C10) in (C8) yields  
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and, thus, from the definition of 1 1 1( , )S k  in (C7),  
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To help investigate the properties of the function 1 1)( ,S k , we define an auxiliary function 
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for [1, ]z n  R . Then, from comparing (C12) and (C13), we get that 1 1 1)( , ( )S fk k  . We 

have that  



36 

 

 

2 2

3

2 2

3

2

3

2 2 3)

2 3 ( 1)( 1) 2 3)

2 3) ( 1)( 1

2 ( ) 2 (
( )

( )

2 2 (

( )

(2 2 )( 2
0

( )

)

n

n

n n

nz z n z

z n z z

n n n
f z

n z n

z n z

n n n

n z n

n n

n z n


  





     

       


 
  



  

   

 

for any 2n   and [1, ]z n  and, thus, 
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for any 2 {1,..., }k n . Therefore, the optimal income of individual 1 is lower than the income of 

individual 2 and, thus, individual 1 is the poorest. By enlisting (C5) we have that ik i  for each 

{1,2,..., }i n , and that, without a transfer, the optimal effort levels / income in the population are 
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for {2,..., }i n , such that * *

2

*

1 ... ny y y   . Because without a transfer we have that * *

i ix y , 

then 
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1 ... nx x x   , 

which completes the proof of part 1 of the claim. Q.E.D. 
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