

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

DIVISION OF AGRICULTURAL SCIENCES
AGRICULTURAL EXPERIMENT STATION
UNIVERSITY OF CALIFORNIA

Calculating Frontier Multi-Product, Multi-Factor Production and Cost Relationships - A Computerized Algorithm by DARYL CARLSON

> 378.794
> 64547
> $76-$

University of California, Davis Department of Agricultural Economics

CALCULATING FRONTILR MULTI-PRODUCT, MULTI-FACTOR PRODUCTION AND COST RELATIONSHIPS - A COMPUTERIZED ALGORITHM -

by

Daryl Carlson
Page
Introduction 1
Concepts of Economic Efficiency 2
A Graphic Approach 8
The "Farrel1" Approach 11
Least-Cost Modification 19
The Linear Programming Computer Program 21
Modes of Operation 22
Control Parameters 25
Input Deck Structure 26
Illustrative Uses of the Program 28
Example 1: A general efficiency run 29
Example 2: A specific efficiency run 32
Example 3: A production surface run 35
Example 4: A production surface run with variable means 37
Example 5: A total economic efficiency run 40
Example 6: A cost surface run 43
The Computer Program 45
References 58

```
Calculating Efficient Multi-Product, Multi-Factor
Production and Cost Relationships
- A Computerized Algorithm -
```

When estimating relationships between inputs and outputs of production processes, it is often desirable to estimate the efficient or frontier relationship rather than the average. Least-squares regression methods are usually used for estimating average production and cost functions. Extensive literature exists on functional form problems, multiple product specification difficulties, and multicollinearity problems associated with standard regression approaches. Much less attention has been given to the problem of estimating efficient production and cost relationships although, from a theoretical point of view, the efficient production function is of considerable interest.

Two methods for calculating efficient production and cost relationships have been developed. Constrained-residuals regression was originally suggested by D. Aigner and S. Chu (1968) and has been implemented by C. Timmer (1971). This method consists of constraining all of the regression residuals to have the same sign and as a result the estimated function is forced to the "frontier" of the observations. For production function estimation with the residuals equal to the predicted output minus the actual output, the residuals would be constrained to be nonnegative. The term "frontier" will be used in this paper rather than "efficient" to denote those firms that use the minimum levels of inputs for given levels of outputs and for other given firm characteristics. Since the frontier relationships are only efficient relative to the observed firms, the underlying, truly efficient relationships cannot be determined from cross-sectional data.

The other production frontier computational approach was originated by M. Farrell (1957, 1962), extended by J. Boles (1967, 1972), and applied by W. Seitz (1971), B. Sitorus (1966), and D. Carlson (1972, 1975). Essentially, Farrell's method is to plot the observations (firms) as points in a space of as many dimensions as there are variables included in the analysis, to form the convex hull of this set of points, and to take the appropriate part of the surface of the convex hull as the estimate of the frontier relationship between all of the variables. The work by Farrell, Boles, and Seitz has concentrated on the development of the method to compute efficiency indices for each observed firm within a given sample.

The purpose of this paper is to further describe and extend Farrell's technique following the linear programming approach developed by J. Boles, to describe the procedures for using a computer program that calculates efficiency indices and frontier production and cost relationships, and to illustrate the use of the program with several examples. The computerized algorithm described in this paper differs from the algorithm developed by J. Boles (1971) in one important dimension. The procedure has been generalized to handle several "qualitative" factors in addition to the inputs and outputs of the production process. This capability is extremely useful for exploratory work with poorly defined production processes. Also the computer program described in the paper is much simpler to operate for an individual unfamiliar with linear programming.

Concepts of Economic Efficiency:
Defining measures of efficiency is an extremely difficult task for production processes involving more than one input and one output.

The problem is further complicated when scale and output quality is included into the specification of the production process. Following the approach by S. Danф (1966) and J. Henderson and R. Ouandt (1971), the general implicit production function is written as

$$
F\left(X_{1}, \ldots, X_{I} ; Y_{1}, \ldots, Y_{J} ; Q_{1}, \ldots, Q_{K} ; S\right)=0
$$

where: X_{i} is input i
Y_{j} is output j
Q_{k} is quality factor k
S is a measure of the scale of the production process.

For the case where there are I inputs, one output, no quality factors and constant returns to scale the production function, $Y_{1}=$ $\mathrm{f}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{I}}\right)$, is defined as the locus of the maximum output levels for alternative combinations of inputs. From the definition of the production function in this simple case, the measure of technical efficiency for firm n is given by:

$$
T E_{n}=\frac{Y_{1 n}}{f\left(Y_{1 n}, \cdots, X_{I n}\right)}
$$

Similarly, if input prices, C_{i}, are specified, the total economic efficiency of firm n can be measured by:

$$
E E_{n}=\frac{\mathrm{X}_{1}, \ldots, X_{I}}{f\left(X_{1}, \ldots, X_{I}\right)=Y_{\ln }\left[\sum_{i=1}^{I} \frac{X_{i}}{Y_{1 n}} . C_{i}\right]} \sum_{i=1}^{I} \frac{X_{i n}}{Y_{1 n}} \cdot C_{i}
$$

This definition of economic efficiency is based on the assumption that all firms face the same input prices. This definition can be generalized by replacing C_{i} in the above equation with $C_{i n}$. However if input prices are different across firms, the resulting measure of
economic efficiency indicates something other than production efficiency. Such a measure combines the efficiency of the firm's ability to obtain inexpensive inputs with production efficiency.

Since total economic efficiency (EE) is equal to the product of the technical efficiency measure (TE) and a measure of price or allocative efficiency (AE), the latter efficiency measure can be calculated for firm n as follows:

$$
A E_{n}=E E_{n} / T E_{n}
$$

The above three definitions provide measures of the standard types of efficiency for a production process with I inputs, one output, and constant returns to scale. These measures assume that the production function, $Y_{1}=f\left(X_{1}, \ldots, X_{I}\right)$, is known or can be estimated.

If the production process is extended to allow for nonconstant returns to scale, the production function, $Y_{1}=f\left(X_{1}, \ldots, X_{I} ; S\right)$, is defined as the locus of the maximum output levels for alternative combinations of inputs and for different scales of operation (Henderson and Quandt, 1971). In other words, there are a family of production functions; one for each size of firm. To illustrate, Figure 1 shows an isoquant for two of the inputs and several levels of scale (S).

Figure 1: Isoquants for Alternative Scales of Operation

For this production situation, the measure of short-run technical efficiency for firm $n, T E_{n}^{s}$, follows directly from the constant returns case:

$$
\mathrm{TE}_{\mathrm{n}}^{\mathrm{s}}=\frac{\mathrm{Y}_{1 \mathrm{n}}}{\mathrm{f}\left(\mathrm{X}_{1 \mathrm{n}}, \cdots, \mathrm{X}_{\mathrm{In}} ; \mathrm{S}_{\mathrm{n}}\right)}
$$

And similarly for the measure of short-run economic efficiency,

$$
\left.E E_{n}^{s}: \quad E E_{n}^{s}=\frac{\min }{X_{1}, \ldots, X_{I}}, \ldots, X_{I} ; S_{n}\right)=Y_{1 n}\left[\sum_{i=1}^{I} \frac{x_{i}}{Y_{1 n}} \cdot C_{i}\right] .
$$

These definitions of short-run efficiency are based on the assumption that in the short-run the firm can not change its scale of operation. For the case of nonconstant returns to scale, the long-run measures of technical and economic efficiency are the same as the measures for the constant returns to scale situation. In the long run it is possible for the firm to adjust its scale of operation and therefore its efficiency should be measured relative to the optimal scale of operation.

Following the approach of S. Dand (1966), quality parameters can be included into the production function in the same manner as Henderson and Quandt include the scale parameter. As illustrated in Figure 1, a firm's efficiency should be determined relative to the production function for that firm's scale of operation. Similarly, a firm's efficiency should be determined relative to a production function with the same qualitative characteristics as that of the particular firm. The measures of short-run technical and economic efficiency are given by:

$$
\mathrm{TE}_{\mathrm{n}}^{\mathrm{s}}=\frac{\mathrm{Y}_{1 \mathrm{n}}}{\mathrm{f}\left(\mathrm{X}_{1 \mathrm{n}}, \ldots, X_{\mathrm{In}} ; Q_{1 n}, \cdots, \mathrm{O}_{\mathrm{Kn}} ; S_{\mathrm{n}}\right)}
$$

$$
E E_{n}^{s}=\frac{f\left(X_{1}, \ldots X_{I} ;{ }^{X_{1}}, \ldots, X_{n}, \ldots, Q_{k n} ; S_{n}\right)=Y_{1 n}\left[\sum_{i=1}^{I} \frac{x_{i n}}{Y_{1 n}} . C_{i}\right]}{\sum_{i=1}^{I} \frac{X_{i n}}{Y_{1 n}} . C_{i}}
$$

The above definitions and measures of efficiency span all cases except those production processes with several outputs and several inputs. Ignoring for a moment nonconstant returns to scale and quality parameters, it is still difficult to define general measures of technical and economic efficiency for a multiple output, multiple input production process. Several approaches have been suggested but none are very appropriate for many applications. One procedure is to construct an output index, Y^{*}, by applying weights to each of the individual outputs. The usual approach is to use output prices to generate a total revenue variable to be used as an index. This procedure assumes that all firms face the same output prices and makes it impossible to separate technical efficiency from economic efficiency with respect to the mix of outputs produced. That is, if a firm is shown to be inefficient with this measure, it might be the case that the firm is efficiently producing its set of outputs but that the firm is producing the wrong mix of outputs given the prices of the outputs.

A second procedure for dealing with the multiple output, multiple input case is to construct an input index, X^{*}, by applying weights to each of the individual inputs. This approach is the input complement to the above procedure and it suffers from the same problem.
Λ third technique is to base the efficiency measure on one of the outputs with all the other outputs fixed at specified levels. This approach is useful in situations where one particular output is of primary
interest. The resulting measure of technical efficiency with respect to an output r for firm $n, T E_{n}^{r}$, is given by:

$$
T E_{n}^{r}=\frac{Y_{r n}}{f\left(X_{1 n}, \ldots, X_{I n} ; Y_{1 n}, \ldots, Y_{r-1, n}, Y_{r+1, n}, \ldots, Y_{J}\right)}
$$

Similarly, the measure of economic efficiency is:

$$
\begin{aligned}
& \text { min } \\
& X_{1}, \ldots,{ }_{I} \\
& Y_{1}, \ldots, Y_{r-1}, Y_{r+1}, \ldots, Y_{J} \quad\left[\sum_{i=1}^{I} \frac{X_{i}}{Y_{r n}} . C_{i}\right] \\
& E E_{n}^{r}=\frac{f\left(X_{1}, \ldots, X_{I} ; Y_{1}, \ldots, Y_{r-1}, Y_{r+1}, \ldots, Y_{J}\right)=Y_{r n}{ }_{i=1} Y_{r n}{ }_{i=1}}{\sum_{i=1} \sum_{i n} Y_{r n} \cdot C_{i}} .
\end{aligned}
$$

The difficulty with the above efficiency measures is that each firm will quite likely have different relative measures of efficiency depending upon the output chosen as the basis.

A fourth approach to this multiple input, output problem is one of decomposition. If the production process under study is not truly a joint production process, then it may be possible to separate the problem into an analysis of each output relative to the inputs used for that output alone. In this manner, the problem reduces into a form that can be handled with the single output measures discussed earlier. A firm's efficiency would then be determined for the production of each output separately.

The most general and satisfactory method for computing efficiency measures for joint, multiple input-output processes has been developed by M. Farrell (1957) but has been surprisingly neglected in empirical applications. His measures of efficiency completely generalize to the multiple input, multiple output, nonconstant returns to scale production
process with quality dimensions. The next section presents a graphical description of Farrell's approach and the fourth section describes the computational algorithm required to implement his technique.

A Graphic Approach

Since Farrell's approach is not based on a statistically estimated equation but rather operates directly on the basic data, it is helpful to describe the technique from a graphical perspective. If the production process involves one input and one output, the production function can be drawn as shown in Figure 2.

Figure 2: The Farrell Production Function

Each plotted point represents a firm and the production function, as determined by Farrell's method, is given by the curve OABCD. That is, the points on this curve represent the maximum output observed for
a given level of input or, alternatively, the minimum amount of input observed for a given level of output. To define the curve OABCD as the production function, it is necessary to assume that the producton function is convex. This assumption implies that if two points are attainable in practice (for example, B and C), then so is any point representing a weighted average of them (points on the line connecting B and C). It must also be assumed that the production process is nonstochastic and that the variables are measured with no error. Calculation of the production function in this manner is obviously sensitive to the accuracy of the data. Since by definition of the production function, the desired relationship is to be at the extremes of the data, it is difficult to avoid this problem. Extreme caution must be taken with the data used in an analysis of this type.

This graphical approach of determining the production function has one very important advantage over statistical techniques. In order to estimate a production function with regression techniques, it is necessary that a functional form be specified. With the graphical method this requirement is not necessary as the data determines the shape of the relationships between all of the inputs and outputs.

The production function relationships between different inputs and alternative outputs may be desired, so a consistent method of constructing the production surface is needed. In order to accomplish this graphically as well as computationally, it is necessary to treat the input variables as positive and the output variables as negative. These relationships are illustrated in Figure 3.

Note that for all of the relationships, input versus input, input versus output, and output versus output, the desired production curve
is the southwest portion of the outer ring circumscribing the scatter of points. The familiar isoquant relationship between two inputs (these inputs must be scaled by output to be true isoquants) of the production process appears in quadrant I of the graph in Figure 3. Productivity curves are shown in quadrants II and IV and the output transformation curve appears in the third quadrant. Since the outputs are specified as negative, the transformation curve as drawn in Figure 3 is inverted from the standard form.

Figure 3: The Multiple Input-Output Graphic Approach

For a two input, one output production process, the measures of technical, economic, and allocative efficiency are drawn in Figure 4 and calculated as below:

$$
\begin{aligned}
& \mathrm{TE}=\frac{\mathrm{OB}}{\mathrm{OC}} \leq 1 \\
& \mathrm{EE}=\frac{\mathrm{OA}}{\mathrm{OC}} \leq 1 \\
& \mathrm{AE}=\frac{\mathrm{EE}}{\mathrm{TE}}=\frac{\mathrm{OA}}{\mathrm{OC}} \cdot \frac{\mathrm{OC}}{\mathrm{OB}}=\frac{\mathrm{OA}}{\mathrm{OB}} \leq 1 .
\end{aligned}
$$

Figure 4: Graphical Efficiency Measures

Although this graphical procedure can be completely generalized to several outputs and several inputs by expanding the number of dimensions of the graph, it is obviously not possible to draw the relationships. It is at this point that Farrell's computational method must be introduced. His procedure makes it possible to calculate portions (or slices) of the multi-dimensional production surface which can be graphed in two dimensions.

The "Farre11" Approach

For the case of many variables, the computational method by M. Farrell (1957, 1962) provides an efficient procedure for generating
relationships like those illustrated in Figures 2-4. To determine the frontier relationships with Farrell's basic approach, J. Boles (1971, 1972) greatly simplified the computations required by formulating the procedure in terms of a linear programming problem. The link between the graphic approach illustrated above and the linear programming approach can best be made for the case of one output variable and two inputs. The desired relationship is illustrated in Figure 5.

Figure 5: Illustration of the Computational Approach

To interpret the input isoquant graphically, the two input variables should be scaled by the output variable. The relationship between the two input variables with all the other variables held constant is desired. To locate the observed firms that determine the frontier relationship between the two input variables, each scaled by
the output variable, the procedure is to express the coordinates of each firm as a linear function of the coordinates of the other firms that lie closest to the origin of the graph in Figure 5. That is, find two firms (a and b) for each firm, s, in the sample such that:

$$
\begin{aligned}
& z_{a} \frac{X_{1 a}}{Y_{1 a}}+z_{b} \frac{X_{1 b}}{Y_{1 b}}=\frac{X_{1 s}}{Y_{1 s}} \\
& z_{a} \frac{X_{2 a}}{Y_{1 a}}+z_{b} \frac{X_{2 b}}{Y_{1 b}}=\frac{X_{2 s}}{Y_{1 s}}
\end{aligned}
$$

and $\left(z_{a}+z_{b}\right)$ is a maximum over all possible pairs of firms a and b. The two firms that satisfy the above maximization problem lie on curve CC' in Figure 5. To force $\left(z_{a}+z_{b}\right)$ to the maximum, it is necessary that the two observations closest to the origin of Figure 5 be selected as firms a and b. It is also necessary that the two observations span firm s. That is, point s must lie between rays OA and $O B$ in Figure 5. If firm s lies on the curve, the solution to the above problem is with $z_{s}=1.0$ and the rest of the $z^{\prime} s$ equal to zero. This solution follows since if firm s is on the frontier there will not exist any observations between the origin and point s or any weighted average of points between s and the origin unless there are identical observations or weighted averages of observations that are identical to s.

By defining the variables, $X_{i t}=$ the quantity of the $i^{\text {th }}$ input used by the $t^{\text {th }}$ firm $Y_{t}=$ the quantity of output of the $t^{\text {th }}$ firm
the above maximization problem for T firms can be written in a linear programming framework as:

$$
\begin{array}{cl}
\text { Maximize } & \sum_{t=1}^{T} z_{t} \\
\text { Subject to } \sum_{t=1}^{T} z_{t} \frac{X_{\text {it }}}{Y_{t}} \leq \frac{X_{i s}}{Y_{s}} \quad i=1,2 \\
& z_{t} \geq 0
\end{array} \quad t=1, \ldots, T .
$$

The procedure for determining those firms that are on the production surface $C C^{\prime}$ (as drawn in Figure 5) is to solve the above LP problem once for each firm in the analysis. Each time that the LP is solved a different firm is placed on the right-hand side of the constraints. All firms (including the one on the right-hand side) are included on the left-hand side of the constraints. If the solution with a particular firm on the right-hand side specifies a z value of one for that firm and a z value of zero for all of the other firms, that firm is on the production surface. In this manner, all of the firms that lie on the production surface can be identified. By definition, these firms are the technically efficient firms.

This simple, three-variable model can be generalized to include several input variables, other output variables, quality dimensions, and a scale parameter. These latter variables allow other aspects of the production process (besides inputs and outputs) to be included into the production or cost function specification. Let

$$
\begin{aligned}
& Y_{r t}=\text { the quantity of output } r \text { of the } t^{\text {th }} \text { firm } \\
& Q_{k t}=\text { the } k^{\text {th }} \text { quality factor for the } t^{\text {th }} \text { firm } \\
& S_{t}=\text { the scale paraneter for the } t^{\text {th }} \text { firm, }
\end{aligned}
$$

then the general linear programming model for T firms, I input variables, J output variables, and K quality variables is written as:

Maximize $\sum_{t=1}^{T} z_{t}$

Subject to:
[1] Input constraints

$$
\sum_{t=1}^{T} z_{t} x_{i t} \leq x_{i s} \quad i=1, \ldots, I
$$

[2] Output constraints

$$
\sum_{t=1}^{T} z_{t} Y_{j t} \geq Y_{j s} \quad j=1, \ldots, J
$$

[3] Quality constraints

$$
\frac{\sum_{t=1}^{T} z_{t} Q_{k t}}{\sum_{t=1}^{T} z_{t}} \geq 0_{k s} \quad k=1, \ldots, k
$$

[4] Scale constraint

$$
\frac{\sum_{t=1}^{T} z_{t} s_{t}}{\sum_{t=1}^{T} z_{t}}\left[\frac{\leq}{\bar{\sum}}\right] \mathrm{S}_{\mathrm{s}}
$$

[5] Nonnegative constraint

$$
z_{t} \geq 0 \quad t=1, \ldots, T .
$$

The input constraints and the output constraints are identical except that the inequality sign is reversed. This reversal is consistent with the differences in sign used in the graphic illustration shown in Figure 3. The constraints for the quality variables are considerably different from the input and output variable constraints. The input and output constraints are structured in a form that allows large firms to have nonzero z solution values when a small firm is on
the right-hand side of the constraints and vice versa. It is the ratios between all the inputs and all the outputs that are important and not the actual levels of the inputs and outputs. The magnitudes of the z 's will adjust for the differences in the input and output levels. The quality and scale constraints, however, must be of a different form to correctly construct the production surface. If a high quality firm is on the right-hand side of the constraints, only high quality firms (on the average) should have nonzero z 's in the solution. Since the magnitude of the z 's will depend on the input and output levels of the firms, the weighted average form of the quality and scale constraints is necessary. For inputs and outputs, the ratios of the variables are important in the determination of the production surface and not their levels. For the quality and scale variables, it is the levels and not the ratios with the inputs and outputs that are important.

The quality dimensions are defined in such a way that they are like outputs in the sense that they use resources. That is, a firm producing a higher quality output will need to use more (or at least as much) of the inputs. Therefore, the inequality signs for the quality constraints are of the same direction as the output constraints.

Because of the existence of diseconomies as well as economies of scale, it is possible to specify the scale constraint with the inequality in either direction. The economies of scale portion of the relationship shown in Figure 6, as an illustration can be determined with the scale constraint specified with a \leq inequality. The diseconomies of scale portion can be determined with the \geq scale constraint. It is also possible to use a strict equality constraint to force the
scale to be exactly the same (on the average) as the scale of the firm on the right-hand side. If the convexity assumption mentioned earlier is not restrictive, it is better to use the inequality constraints for determining the production surface. With the inequality constraints the surface will obviously be convex and therefore the relationships, such as shown in Figure 6, will be smooth curves ranging from a straight line (no economies or diseconomies of scale) to a "U" shaped curve (both economies and diseconomies of scale).

Figure 6: Illustration of the Scale Constraint

The linear programming model specified above yields a direct measure of technical efficiency for multiple input-output production processes. The measure of short-run technical efficiency for firm n T
is given by $1.0 / \sum_{t=1} z_{t}$ when the LP model is solved with firm n on the right-hand side of the constraints and the scale constraint is included. If $\sum_{t=1}^{T} z_{t}=1.0$, firm n is technically efficient. If firm n is inefficient, then $\sum_{t=1} z_{t}$ will be greater than 1.0. The measure of long-run technical efficiency for firm n is exactly the same but the

LP should be solved with the scale constraint omitted. The appropriate measure of economic efficiency will be developed in the following section.

This computational methodology is useful for determining portions of the production surface in addition to calculating efficiency indices for individual firms. A slight change in the formulation of the above LP is useful for easily calculating the production function relationships between alternative input, output, quality, and scale variables. The required modification is to place one of the input or output variables into the objective function. To keep the quality and scale constraints in a proper form it is also necessary to multiply both sides of those constraints by the variable included in the objective function. The input and output constraints remain in the same form as in the previous model. An illustration of the resulting, reformulated model is shown in Figure 7 with one of the output variables in the objective function.

It should be noted that the choice of the variable appearing in the linear programming objective function (Y_{rt} in the example in Figure 7) depends on the information that is desired. The distance being maximized (or minimized in the case of an input variable) is parallel to the axis of the variable in the objective function. It should be stressed that this is not comparable to the choice of the dependent variable in a regression equation, where the results can be drastically different depending on the variable selected. With the linear programming approach, the results are always consistent regardless of the direction towards the frontier surface that the results are generated.

In addition to using observed firms on the right-hand side of the constraints, hypothetical firms can be constructed and used in the LP model as well. This procedure makes it possible to more systematically analyze the frontier relationships between different variables. If an output variable is in the objective function and the right-hand side value of an input constraint is varied, a frontier productivity curve is traced out. A frontier transformation curve results if an output constraint is varied with an output variable in the objective function. With an input variable in the objective function and varying an input constraint, a frontier isoquant is computed. If an input variable is used in the objective function, the problem is then one of minimization rather than maximization as shown in Figure 7.

Figure 7: The LP Computational Model

$$
\begin{aligned}
& \text { Maximize } \sum_{t=1}^{T} z_{t} Y_{r t} \\
& \text { Subject to: } \sum_{t=1}^{T} z_{t} X_{i t} \leq X_{i s} \quad i=1, \ldots, I \\
& \sum_{t=1}^{T} z_{t} Y_{j t} \geq Y_{j s} \quad j=1, \ldots, J \\
& \sum_{t=1}^{T} z_{t} Y_{r t}\left(Q_{k t}-Q_{k s}\right) \geq 0 \quad k=1, \ldots, K \\
& \sum_{t=1}^{T} z_{t} Y_{r t}\left(S_{t}-S_{s}\right)\left[\begin{array}{c}
\leq \\
\underset{\sum}{\sum}
\end{array}\right] 0 \\
& z_{t} \geq 0 \quad t=1, \ldots, T,
\end{aligned}
$$

Least-Cost Modification

The basic computational algorithm as described above can be modified to find the least-cost method of producing given levels of
outputs with specified firm characteristics from the observed data. Letting $C_{i}=$ the unit price of input i, the least-cost algorithm is:

$$
\begin{aligned}
& \text { Minimize } \sum_{t=1}^{T} z_{t} \sum_{i=1}^{I} C_{i} X_{i t} \\
& \text { Subject to: } \sum_{t=1}^{T} z_{t} Y_{j t} \geq Y_{j s} \quad j=1, \ldots, J \\
& \sum_{t=1}^{T} z_{t} \sum_{i=1}^{I} c_{i} X_{i t}\left(\Omega_{k t}-Q_{k s}\right) \geq 0 \quad k=1, \ldots, k \\
& \sum_{t=1}^{T} z_{t} \sum_{i=1}^{I} C_{i} X_{i t}\left(S_{t}-S_{s}\right)\left[\begin{array}{l}
\leq \\
\underset{\sum}{\geq}
\end{array}\right] 0 \\
& z_{t} \geq 0 \quad t=1, \ldots, T \text {. }
\end{aligned}
$$

Verbally, the problem is to minimize the total cost of production subject to the constraints that the constructed firm has at least as much of each specified output and equals or exceeds the various firm quality constraints.

From the solution values of the $z_{t}{ }^{\prime} s$, the cost-minimizing level of each input is given by $X_{i}^{*}=\sum_{t=1}^{T} z_{t} X_{i t}$. If certain inputs are considered fixed, they can be included as constraints in the LP model, either as equalities or inequalities if idle capacity is allowed, and enter the objective function only as fixed constants.

This procedure allows the computation of least-cost methods of producing various output combinations with specified firm quality factors, given input prices, and the production relationships observed from the cross-section of firms. Instead of minimizing with respect to one input (or maximizing with respect to one output) as done in the basic computational approach, all the inputs are weighted by
their unit prices, and their weighted sum is minimized. A measure of total economic efficiency results from the solution of the model in this formulation. For firm n the measure of economic efficiency would be:

$$
E E_{n}=\frac{\sum_{t=1}^{T} z_{t} \sum_{i=1}^{N} C_{i} X_{i t}}{\sum_{i=1}^{N} C_{i} X_{i n}}
$$

Alternatively, the quantity $\sum_{i=1}^{T} C_{i} X_{i t}$ in the above formulation can be replaced by the actual total expenditures of the $t^{\text {th }}$ firm. This approach also yields information about the cost-minimizing behavior observed for the sample of firms. These procedures make the appropriate link between the production relationships and the cost relationships for this type of frontier analysis. Revenue maximization problems with given levels of inputs can also be formulated and solved by this algorithm. The same procedure as outlined above could be used with unit prices of the outputs used instead of input prices. The Linear-Programming Computer Program:

As shown in Figure 7, the computational procedure for calculating efficiency measures and frontier multi-product, multi-factor production and cost relationships results in a very simple linear programming problem. Since most empirical applications of the frontier technique involve solving a large number of linear programs, it is desirable to have a general computer program that reads the production and cost data for each firm, reads several control parameters describing a specific application, processes all of this input information, sets
up the linear programing problems, and uses an LP algorithm as a subroutine to generate the desired solutions.

The remaining sections of this paper describe and illustrate the use of the computer program developed for calculating efficiency measures and frontier production and cost relationships. The FøRTRAN computer program is listed in the final section of this paper. The alternative modes of operating the program are described, the control parameters are defined, the input deck structure is laid out, and several illustrative runs of the program are presented in the following sections.

Modes of Operation:
Given the large number of alternative measures of efficiency that have been defined and the alternative portions of the production surface that can be calculated, there are several different ways in which the computer program can be run. Each of the available options are described below.

General efficiency option: This option calculates the general multi-product, multi-factor technical efficiency index for each firm in the sample. The LP solution value yields the information required to directly calculate the efficiency index. The LP solution value will equal -1.0 for firms on the production frontier surface and will be less than -1.0 for firms not on the surface. Since the LP activities are firms in the sample, the primal solution also indicates which frontier firms, when added together with the optimal coefficients of the primal variables as weights, dominate each of the nonfrontier firms.

Specific efficiency option: This option calculates the technical efficiency index relative to a specified variable for each firm in the
sample. The LP solution value yields the optimal value of the specified variable (minimum value for inputs, maximum value for outputs) with all of the other variables constrained for the particular firm. For input variables, the technical efficiency index is calculated by dividing the firm's actual value for the specified input by the LP solution value. For input variables, the technical efficiency index is calculated by dividing the LP solution value by the firm's actual value for the specified output.

Production surface option: This option calculates points on a portion of the production frontier surface. For example, if the frontier relationship between one input and one output is desired the procedure would be to specify the output variable in the objective function and to solve the LP for alternative values on the RHS of the input constraint. As illustrated in Figure 8, the program computes the maximum amount of output 1 for each of the levels of input 1 (I_{1}, I_{2}, and I_{3}) with all the other outputs, inputs, and qualitative

Figure 8: Calculation of the Production Surface

Input 1
factors held constant. The three points on the frontier production surface $\left(0_{1}, 0_{2}\right.$, and $\left.0_{3}\right)$ are calculated in one replication of the program although the replication requires three linear programming problems to be solved. If an input is specified in the objective function and the RHS of an input constraint is varied, an isoquant will be traced out. If an output is specified in the objective function and the RHS of an output constraint is varied, a product transformation curve will be traced out. If an output (input) is specified in the objective function and the RHS of an input (output) constraint is varied, a marginal productivity curve is traced out. Similarly, outputs or inputs can be specified in the objective function and the RHS of a quality factor or a scale constraint varied to yield frontier relationships for the quality and scale factors.

Variable mean option: This option is designed to enable the user to specify the point at which the production surface is to be calculated. If this option is not used, the RHS of all of the constraints are set equal to the mean value for each of the respective variables. The production surface option enables the user to then vary one of the constraint RHS's. With this variable mean option, it is possible to change all or several of the constraint variables in order to trace out different portions of the multi-dimensional production surface.

Least-cost option: This option is designed to trace out a portion of the frontier cost surface using the per unit cost approach rather than total expenditures directly. Per unit costs must be inputted for each input variable that is to be included in total cost for the objective function. Except for the additional data requirement, this option has the same procedures and capabilities as the production
surface option. It is also possible to use this option along with the specific efficiency option to calculate indices of total economic efficiency for each firm in the sample.

Control Parameters:

For any run of the computer program, the user must specify several parameters that control the way the LP problem is to be set up. These parameters allow the user considerable flexibility in using the program under the alternative options described above. The control parameters are listed and defined below:

NVAR	$=$ Number of constraint variables in the problem.
ISO	$=1$ if a production surface run; = 0 if an efficiency
	run.
IEF	$=1$ if a general efficiency run; = 0 if a specific
	efficiency run.
IVM	$=1$ if different variable means are to be read in for
	each replication; $=0$ otherwise.
ICST	' = 1 if a "least-cost" run is desired; = 0 otherwise.
ICN	$=$ Number of total variables for "least-cost" run;
	$=0$ if $\operatorname{ICST}=0$.
NREP	$=$ Number of replications; $=1$ if $\mathrm{ISO}=0$.
NEQ	= Number of equality constraints. The equality con-
	straint variables must be specified first in INDEX
	(-).
INDEX (•)	$=$ Index numbers for variables; objective function
	variable listed last.
$\operatorname{cost~(~} \cdot$)	$=$ Per unit costs of inputs for "least-cost" option;
	omit if ICST $=0$

VIST (•) = Variable means; listed in same order as INDEX; omit if $I V M=0$.

IFRST $\quad=$ Index number of "isoquant" variable; omit if ISO $=0$.
VONE (•) = Three alternative values of "isoquant" variables; omit if ISO $=0$.

Input Deck Structure:

The sequence of control parameter cards and data cards are described below:

CARD 1: NREP, NVAR, ISO, IEF, NEO, ICST, IVM, ICN (Mandatory)

The format for Card 1 is 8 I 5 .
CARD 2: INDEX (•)
(Mandatory)

The index indicates the position of the desired variable in VST, the input data matrix (see below). A minus sign indicates that the variable is used in a \geq constraint and a positive sign indicates that the variable is used in a s constraint. Qualitative variables are specified by adding 100 to the basic index and therefore 103 represents a quality variable that appears in the $3^{\text {rd }}$ position of VST. The format for Card 2 is 20I4.

$$
\text { CARD 3: } \operatorname{COST}(\cdot)
$$

This card(s) should be included only if ICST $=1$. The format is 8 F 10.2 and if there are more than 8 inputs, use more than one card.

CARD 4: IDENT (•), (VST $(I, \cdot), I=1,20)$.
(Mandatory)

These cards should be set up in a format most convenient for reading in the data to be used in the analysis and the READ and FORMAT statement in the program should be appropriately modified. IDENT (•) should contain an identification number (integer) for each firm included in the analysis and $\operatorname{VST}(I, \cdot)$ should contain a value (real number) for each of the I variables and for each firm. The program is currently set up so that an IDENT code of '999999' indicates that all of the data has been read in. The current format is I6, 9 F 10.0 .

CARD 5: VIMST (•)
(Optional)

This card(s) should be included only if IVM $=1$. The format is 10 F 8.0 and if NVAR >10 more than one card must be used. Note that the sign of the mean values must correspond to the sign of the appropriate variable in INDEX (•).

$$
\text { CARD 6: IFRST, (VONE }(I), I=1,3)
$$

This card(s) should be included only if ISO $=1$. The format is (I5, $5 \mathrm{X}, 3 \mathrm{~F} 10.0$) and there should be NREP of these cards if ISO $=1$. The first integer on the card refers to the position in INDEX of the variable to be varied over three values and the following three real numbers are the values.

To better illustrate the alternative uses of this computer program, several runs are described, the input cards laid out, and the output presented in this section. For these examples, variables 1 and 2 are outputs, variables 3 and 4 are inputs, variable 5 is a scale measure, and variable 6 is a qualitative factor. There are 50 firns in the sample.

Example 1: A general efficiency run:

$\operatorname{CARD} 1: \quad 1,6,0,1,0,0,0,0$

CARD 2: $\quad-1,-2,3,4,105,-106$

CARD (s) 4: DATA

The output of this run is shown on the following pages for the first 3 firms in the sample. The general technical efficiency indices calculated from the results are:

```
Firm Solution \(\quad\) Index ( \(-1.0 /\) Solution)
1
2
\(-1.00\)
1.000
\(-4.78\)
0.209
3
-1.97
0.507
```

```
CUNTROL PARAMETERS
```

CUNTROL PARAMETERS
NUMBER OF REPLICATIONS = 1
NUMBER OF REPLICATIONS = 1
NUMPER TF CONSTRATNT VARIABLES = 6
NUMPER TF CONSTRATNT VARIABLES = 6
NUMBER OF FQUALITY CONSTRAINTS = 0
NUMBER OF FQUALITY CONSTRAINTS = 0
MAXIMUM NUMRER OF INPUT VARIARLES FOR LEAST-COST ALGITITHM= = 0
MAXIMUM NUMRER OF INPUT VARIARLES FOR LEAST-COST ALGITITHM= = 0
VARJABLF INDEX LJST... -1 -2 3 4 105-106 !
VARJABLF INDEX LJST... -1 -2 3 4 105-106 !
THTS IS NUT AN ISOQUANT RUN
THTS IS NUT AN ISOQUANT RUN
THIS IS NOT A LFAST-INPUT-COST RUN
THIS IS NOT A LFAST-INPUT-COST RUN
VARIARLE MFANS ARE MOT TO bE RFAD FOR EACH RFPLICATION
VARIARLE MFANS ARE MOT TO bE RFAD FOR EACH RFPLICATION
NUMRER OF ORSERVATIONS= 50

```
NUMRER OF ORSERVATIONS= 50
```


I ISTIAG IF DATA "ATRIX

1	1002	-140.0	185.8	0.0	7.5	-4.0	-2236.0
$?$	105 ?	-2490.0	560.0	74.0	86.6	-3.0	-3743.0
3	1057	-1068.0	232.?	0.0	27.8	-3.0	-4009.0
4	1080	-113.0	111.5	0.0	4.9	-2.0	-2518.0
5	1090	-937.0	281.5	30.4	12.5	-3.0	-5202.0
6	1101	-1899.0	$172 \cdot 0$	0.0	5.2	-3.0	- 3039.0
7	1107	-166.0	113.3	0.0	4.6	-2.0	-1716.0
8	1345	-273.0	12?.1	5.3	6.4	-2.0	-2063.0
9	1353	-139.0	110.0	ก.0	5.9	-2.0	-2262.0
10	1360	-3932.0	258.?	0.0	11.3	-4.0	-4920.0
11	1365	-970.0	288.3	0.0	11.4	-3.0	-4.07.0
12	1378	-2447.0	469.0	0.0	16.2	- 2.0	-7324.0
13	1380	-598.0	183. K	0.0	5.8	-2.0	-2676.0
14	1480	-317.0	256.0	0.0	18.0	-4.0	-4024.0
15	1481	-883.0	248.6	14.0	18.0	-4.0	-3637.0
16	1546	-536.0	$120 \cdot 0$	0.0	3.3	-2.0	-2176.0
17	1557	-1456.0	113.0	0.0	4.1	-2.0	-1530.0
18	1561	-1521.0	116.3	0.0	4.8	-2.0	-1985.0
19	1577	-314.0	$307 \cdot 0$	17.0	11.5	-4.0	-4895.0
20	1573	-290.0	100.5	0.0	4.6	-2.0	-1831.0
71	1574	-5466.0	70c. 7	40.2	31.3	-2.0	-5382.n
22	1590	-256.0	109.6	0.0	5.6	-3.0	-2278.0
23	1599	-470.0	198.?	3.0	7.1	-2.0	-2963.0
24	1601	-589.0	289.0	0.0	10.7	-2.0	-4192.n
25	1616	-2285.0	320.0	0.0	13.0	-2.0	-4598.0-
26	1620	-73n.0	275.0	39.0	17.8	-3.0	-4049.0
27	1674	-134.0	507.0	25.1	75.8	-3.0	-7692.0
28	1759	-2378.0	553.4	97.0	37.1	-3.0	-7274.0
29	1898	- 76.9 .0	78.4	0.0	3.5	-2.0	-1955.0
30	1812	-1722.0	114.0	0.0	4.6	-1.0	-1998.0
31	1815	-1903.0	115.0	0.0	10.8	-2.0	-2080.0
32	1816	-1952.0	121.0	0.0	5.6	-2.0	- 2115.0
33	1890	-626.0	499.9	12.9	22.7	-?.0	-7443.0
3 l	1915	- 38 Br 0	22?.7	10.1	9.1	-2.0	-3903.0
35	1926	-317.0	221.5	7.6	10.5	-4.0	- 3878.0
36	1927	-304.0	311.5	9.0	12.9	-3.0	-4901.0
37	1949	-1159.0	188.0	2.0	6.8	-2.0	- 3444.0
38	1950	-4410.0	537.9	0.0	22.4	-3.0	-6946.0
30	1963	-717.0	474.0	55.0	19.2	-4.0	-8267.0
40	1976	-486.0	268.0	30.0	17.4	-4.0	-5056.0
41	1977	-768.0	363.6	28.3	15.5	-3.0	-5258.0
42	200?	-1067.0	47 n -0	42.0	21.7	-3.0	-8737.0
43	2006	-239.0	25R.0	0.0	8.3	-2.0	-3572.0
44	2008	-624.0	$370 \cdot 0$	69.0	18.0	-4.0	-6380.0
45	2015	-2949.0	449.9	73.1	17.3	-3.0	-8479.0
46	2017	-645.0	285.5	0.0	9.5	-3.0	-4453.0
47	2020	-1067.0	350.7	67.2	15.0	-4.0	-6,669.0
18	2024	-463.0	257.6	11.1	9.9	-3.0	- 1641.0
49	\% 31	-1474.0	$470 \cdot 0$	30.0	18.6	-4.0	-8824.0
50	2184	0.0	20nor	0.5	6.9	-2.0	-3043.0

TTFRATIINS＝ $1 ?$

SILUTION VALUE＝－． $100000 \mathrm{~F}+01$

COST SFNGITIVITY

$$
-.107067 E+n 1 \quad .145835 F+01
$$

－． 7 2 $6527 \mathrm{~F}=01 \quad .150731 \mathrm{~F}+00$
$-.354967 E+70 \quad .311385 F=01$
RFSOURCE SFNSITIVITY
-.787 R29F＋04 $\quad .100000 \mathrm{~F}+21$
$-.516603 \mathrm{E}+04 \quad .118197 \mathrm{~F}+\mathrm{n} 4$
－． 374 つ14F＋03 .50 のn31F＋03
$=.740000 \mathrm{~F}+02$ ． $100000 \mathrm{~F}+21$
－． $385906 \mathrm{~F}+03 \mathrm{O} \quad .100000 \mathrm{~F}+71$
-.3 A6054F＋00 ．201712F＋01

PTFQATTINS＝ 21
sIIUTITN VAIIJE＝－． $197110 F+01$

```
        DRIMAI VARIABIFS
        .137784F+0n
        .169553r+01
        .1377タ4r+0n
 NUAL VARTABIES PRIMAL SIACK
    n.
        PRIMAL SIACK
        -. 280G40F-03
        -.9719ん0r-n2
        0.
    0.
        -.449483F+00
            3 1057
        DUAL SLACK
        0.
        0.
        0.
        !.
        0.
        0.
        432517E+02
    0.
        0.507
```

 const sfngttivity
 10
 ? ?
 Example 2: A specific efficiency run:

CARD 1: $\quad 1,5,0,0,0,0,0,0$

CARD 2: $\quad-2,3,4,105,-106,-1$

CARD (s) 4: DATA

The output of this run is shown on the following pages for the first 3 firms in the sample. The calculated technical efficiency indices relative to variable

1 (an output) are:

```
                    Actual Frontier
                            Value
                    2,236
                    3,743
                    -11,824
                                    0.317
                    3 4,009
                        - 4,903
                            0.818
CONTROL PARAMETERS
    NIMMBER MF RFPLICATIONS = 1
    NUMBER TF CONSTRAINT VARIABLES = 5
    NUMBER TF FOUALITY CONSTRAINTS = 0
    MAXIMUM NIMMRER DF INPUT VARIABLES FOR LEAST=COST ALGORITHM =0
VARIABIF INDEX LIST... -2 3 4 105-106 -1
THIS IS NCT AN ISOQUANT RUN
THIS IS NOT A LEAST-INPUT-COST RUN
VARIABLE NEANS ARE NOT TO BE READ FOR EACH REPLICATION
NUMRER OF DBSERVATIONS= 50
VARIABLE MEANS...
    -1130.8 278.2 15.9 14.1 - 2.7 -4327.3
```



```
TTERATIONS= 19
```

SOLITION: VALIEE = $\quad .223600 E+04$

	PRIMAI VARIABLES	DUAL SLAC
1	－100000F＋01	0 －
	DUAL VARIABLES	PRIMAL SLAC
1	0 。	0 。
2	－． $120377 \mathrm{E}+02$	0 。
3	0.	0 ．
a	－． $230797 \mathrm{E}+00$	0.
5	－． $853991 \mathrm{E}+00$	0 ．
	11002	1.000

TTERATIONS＝ 12
SOLUTION VAIUE $=-.118245 E+05$
DUAL SLACK
0 -
0 。
PRIMAL SLACK
-456581E+04
0 。
$.740000 E+02$
$.936607 E+06$
0 。
0.317
PRIMAI VARIABLES
DUAL VARIABLES
PRIMAL SLACK
1.000

```
Primal variables
```

Primal variables
10
10
10
10
n|AL. VARIABLES
l llol
l llol
l llol
l llol
l llol

```
TTERATIONS = 19
SOLIJTION VALUE \(=-.490296 E+04\)
PRIMAL VARIARLES
\(.498269 \mathrm{~F}+00\)
\(.132155 \mathrm{~F}+01\)
DUAL SLACK
PRIMAL VARIARLES
\(.498269 \mathrm{~F}+00\)
\(.132155 \mathrm{~F}+01\)
PRIMAL VARIARLES
\(.498269 \mathrm{~F}+00\)
\(.132155 \mathrm{~F}+01\)
    0 。
10
29
        \(\begin{array}{ll}0 . & 0 . \\ 0 . & 0 .\end{array}\)
        PRIMAL SLACK
        .185764E+04
    0 .
        -100014E+06
    0 。
        0.818
COST SENSITIVITY
\(\because .185750 \mathrm{E}+03 \quad 0\).
\(0.968817 E+04 \quad 0\) -
        COST SENSITIVITY
```

-.942017E+03 .615227E+03

```
    RESOURCE SENSITIVITY
-. \(968817 E+04\)
0 .
\(-.100000 E+21\)
0.
m. \(119184 E+04\)
\(.116718 E+02\)
\(-.100000 \mathrm{E}+21 \quad .580863 \mathrm{E}+02\)
    RESOURCE SENSITIVITY
-. \(456581 E+04 \quad .100000 E+21\)
\(-.362376 E+03 \quad .100000 E+21\)
\(-.740000 \mathrm{E}+02 \quad .100000 \mathrm{E}+21\)
\(\begin{array}{r}-936607 E+06 \\ -.106716 E+05\end{array} \quad .100000 \mathrm{E}+21\)
\(\begin{array}{ll}-.936607 E+06 & .100000 E+21 \\ -.106716 E+05 & .132568 E+05\end{array}\)

FTTERATIONS＝ 19
SOLIJTION VALUE \(=-.490296 E+04\)
\begin{tabular}{cc} 
& PRIMAL VARIARLES \\
10 & \(.498269 \mathrm{~F}+00\) \\
29 & \(.132155 \mathrm{~F}+01\)
\end{tabular}

DUAL SLACK
0 。
```

DUAL VARIABLES
0.
-.211153F+02
0.
O. .108036F+00
3 1057
5 -.108036F+00

```
1
2
3
3
4
4
4
0 .

PKIMAL SLACK
－106716E＋05
\(.132568 E+05\)

\section*{COST SENSITIVITY}
－． \(119184 E+04\)
\(\begin{array}{ll}\text { M．} 119184 E+04 & .116718 \mathrm{E}+02 \\ \sim \cdot 10000 \mathrm{E}+21 & .580863 \mathrm{E}+02\end{array}\)
RESQURCE SENSITIVITY
\(-.185764 E+04 \quad .100000 \mathrm{E}+21\)
\(=.147436 E+03 \quad .100000 E+21\)
\(0 . \quad .100000 E+21\)
\(-.100014 E+06 \quad .100000 E+21\)
\(=.442491 E+04 \quad .549682 E+04\)

Example 3: A production surface run:
```

CARD 1: 1, 5, 1, 0, 0, 0, 0, 0
CARD 2: -2, 3, 4, 105, -106, -1
CARD(s) 4: DATA
CARD 6: 2, 200.0, 300.0; 400.0

```

The output of this run is shown on the following pages. The resulting portion of the frontier production surface is illustrated below.

```

CONTROL PARAMETERS
NUMBER OF REPLICATIONS = 1
NIJMBER DF CONSTRAINT VARIABLES = 5
NIMMBFR OF EQUALITY CONSTRAINTS = 0
MAXIMUM NUMRER OF INPIUT VARIABLES FOR LEAST=COST ALGORITHM =0
VARIARLE INDEX LIST... -2 3 4 105-106 -1
THIS IS AN ISOQUANT RUN
THIS IS NOT A LEAST-INPUT-COST RUN
VARIABLE MEANS ARE NOT TO BE RFAD FOR EACH REPI.ICATION
NIJMBER OF OBSERVATIONS= 50
VARIABLE MEANS...
-1130.8 278.2 15.9 14.1 -2.7 - 4327.3

```

The listing of the data matrix for this example is exactly the same as the listing for the previous run.


Example 4: A production surface run with variable means:
first
replication
second replication

CARD 1: \(2,5,1,0,0,0,1,0\)
CARD 2: \(-2,3,4,105,-106,-1\)
CARD (s) 4: DATA
CARD 5: \(\quad-1130.8,278.2,15.9,14.1,-2.0\)
CARD 6: \(2,200.0,300.0,400.0\)
CARD 5: \(\quad-1130.8,278.2,15.9,14.1,-4.0\)
CARD 6: \(2,200.0,300.0,400.0\)

The data listing for this run is exactly the same as the listing for example 2. The output of this run is shown on the following pages. The resulting portions of the frontier production surface are illustrated below.

```

CONTROL PARAMETERS
NUMBER OF REPLICATIONS = 2
NUMBER OF CONSTRAINT VARIABLES = 5
NUMBER OF EQUALITY CONSTRAINTS = 0
MAXIMUM NUMRER OF INPIIT VARIABLES FOR LEAST-COST ALGORITHM=0
VARIARLE INDEX LIST... -2 3 4 105-106 -1
THIS IS AN ISOQUANT RUN
THIS IS NOT A LEAST-INPUT-COST RINN
VARIABLE MEANS ARE TO BE READ FOR EACH REPLICATION
NUMBER OF OBSERVATIONS= 50
VARIABLE MEANS...
-1130.8 278.2 15.9 14.1 - - % % 432.7.3

```
```

VARIARIF MEANS FIR THIS REPLICATION
-1130.8 278.2 15.9 14.1 - 2.0 0.0
ISO-RUN VARIABLE INDICATOR AND VALUES
PTERATIONS= 16 200. 300. 400.
SOIUTION VALUE= -.473456E+04

```

－ \(255232 \mathrm{~F}+01\)
DUAL VARIABLES

\section*{0 ．}
－． \(236728 \mathrm{~F}+\mathrm{n} 2\)
0 －
\(-0 \cdot 121122 F+00\)
TTERATIONS： 14
DUAL VARIABLES
    0.
```

PRIMAI．VARIABLES
－382848F＋01
DUAL VARIABLES
0 。
$-.236728 \mathrm{~F}+02$
0 ．
0 。
0 。
TTERATIONS＝ 15
SOL．UTION VALUE $=\quad .946912 \mathrm{E}+04$

```
```

PRIMAI. VARIABLES

```
```

PRIMAI. VARIABLES
.510465F+01

```
    .510465F+01
```

－． $236728 \mathrm{E}+02$
0 。
0 。
0 。

QUAL SLACK
0 •

PRIMAL SLACK

 －279467E＋040 。
$.159000 E+02$
－100118E＋06
－186265F－06

COST SENSITIVITY
－． $100000 \mathrm{E}+$ ？ 1 ． $853993 \mathrm{E}+02$

RESOURCE SENSITIVITY

$-.279467 E+04 \quad .100000 E+21$
－． $228571 \mathrm{E}+03 \quad .100000 \mathrm{E}+21$
$-.159000 E+02 \quad .100000 E+21$
$-.100118 \mathrm{E}+06 \quad .100000 \mathrm{E}+21$
$-.186265 \mathrm{E}=06 \quad .100000 \mathrm{~F}+21$

```
VARIARLE MEANS FOR THIS REPLICATION
    -1130.8 278.2 15.9
14.1
-4.0
0.0
ISO-RUN VARIABLE INOTCATOR AND VALUES
ITEPATIONS= 200. 300. 400.
ITERATIONS= 19
SOLUTION VALUEE -.381129E+04
\begin{tabular}{|c|c|}
\hline & PRIMAL VARIABLES \\
\hline 10 & ． \(774653 \mathrm{E}+00\) \\
\hline & DUAL VARIABLES \\
\hline 1 & 0 ． \\
\hline 2 & －． \(190565 \mathrm{~F}+02\) \\
\hline 3 & 0 ． \\
\hline 4 & 0. \\
\hline 5 & －．975027E－01 \\
\hline ITER & ATINNS 26 \\
\hline
\end{tabular}
```

DUAL SLACK
0 。
PRIMAL SLACK －183767E＋04 0 ．
． $159000 \mathrm{E}+02$
$.105314 \mathrm{E}+05$
0 。

```
SOLUTIUN VALUE \(=\quad \quad .571694 E+04\)
```



```
nUAL SLACK
0 。
PRIMAL SLACK
－．332191E＋04
0.
． \(159000 \mathrm{~F}+02\)
－157971E＋05
0 ．
SOLUTION VALUE \(=\quad . .762259 \mathrm{E}+04\)
```

```
PRIMAL VARIABLES
```

PRIMAL VARIABLES
-154931F+01
-154931F+01
DUAL VARIARLES
DUAL VARIARLES
0.
0.
-.190565F+02
-.190565F+02
0
0
0.
0.
*.975027E-01
*.975027E-01
DUAL SLACK
O.
PRIMAL SLACK
.480614E+04
0.
-1ל9000F+02
..210628E+05
0.

```
14.1
\(-4.0\)
0.0
\(\begin{array}{rrr}\text { VARIARLE MEANS FOR THIS REPLICATION } \\ -1130.8 & 278.2 & 15.9\end{array}\)

300 ． 400 ．

Example 5: A total economic efficiency run:
```

CARD 1: 1, 4, 0, 0, 0, 1, 0, 6
CARD 2: -1, -2, 105, -106, 3, 4
CARD 3: 20.0, 10.0
CARD(s) 4: DATA

```

The output of this run is shown on the following pages for the first 3 firms in the sample. The total economic efficiency indices are:
\begin{tabular}{cccc} 
Firm & \begin{tabular}{c} 
Actual \\
Cost
\end{tabular} & \begin{tabular}{c} 
Frontier \\
Cost
\end{tabular} & \begin{tabular}{c} 
Index
\end{tabular} \\
1 & 3,715 & 3,715 & \begin{tabular}{c} 
(Frontier/Actual)
\end{tabular} \\
2 & 11,940 & 3,677 & 0.000 \\
3 & 4,644 & 3,753 & 0.808
\end{tabular}
```

CONTROL PARAMFTERS
NUMBER OF REPLICATIONS = 1
NUMBFR IF CONSTRAINT VARIABLES = 4
NUMBER TF EQUALITY CONSTRAINTS = 0
MAXIMUM NUMRER OF INPUT VARIABLES FOR LEAST*COST ALGORITHM =6
VARIABLE INDEX LIST... -1 -? 105-106 3
THIS IS NOT AN ISOQUANT RUN
THIS IS A LEAST-INPUT-COST RUN
VARIARLE MEANS ARE NOT TO BE READ FOR EACH REPI.ICATION
INPUT PRICES FOR COST ANALYSIS
20.00 10.0.0
NIIMRER OF DBSERVATIONS= 50
variARLE MEANS...
-4327.3 -1130.8 14.1 -2.7 278.2 15.9

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & 1002 & -2236.0 & -140.0 & 7.5 & -4.0 & 3715.0 \\
\hline 2 & 105 ? & - 3743.0 & -2490.0 & 86.6 & \(-3.0\) & 11740.0 \\
\hline 3 & 1057 & -4009.0 & -1068.0 & 27.8 & -3.0 & 4644.0 \\
\hline 4 & 1089 & -2518.0 & -113.0 & 4.9 & -2.0 & 2230.0 \\
\hline 5 & 1090 & -5202.0 & -937.0 & 12.5 & -3.0 & 5934.0 \\
\hline 6 & 1101 & -3039.0 & -1690.0 & 5.2 & -3.0 & 3440.0 \\
\hline 7 & 1107 & -1716.0 & -166.0 & 4.6 & -2.0 & 2265.0 \\
\hline 8 & 1345 & -2063.0 & -273.0 & 6.4 & -2.0 & 2495.9 \\
\hline 9 & 1353 & -2262.0 & -130.0 & 5.9 & -2.0 & 2200.0 \\
\hline 10 & 1360 & -4920.0 & -3837.0 & 11.3 & -4.0 & 5163.6 \\
\hline 11 & 1365 & -4207.0 & -970.0 & 11.4 & -3.0 & 5765.0 \\
\hline 12 & 1378 & -7324.0 & -2447.0 & 16.2 & -2.0 & 9380.0 \\
\hline 13 & 1380 & -2676.0 & -598.0 & 5.8 & -2.0 & 3675.0 \\
\hline 14 & 1480 & -4024.0 & -317.0 & 18.0 & -4.0 & 5170.0 \\
\hline 15 & 1481 & - 3637.0 & -883.0 & 18.0 & -4.0 & 5112.0 \\
\hline 16 & 1546 & -2176.0 & -536.0 & 3.3 & -2.0 & 2400.0 \\
\hline 17 & 1552 & -1530.0 & -1456.0 & 4.1 & -2.0 & 2760.0 \\
\hline 18 & 1561 & -1985.0 & -1521.0 & 4.8 & -2.0 & 2325.0 \\
\hline 19 & 157 ? & -4895.0 & -314.0 & 11.5 & -4.0 & 6210.0 \\
\hline 20 & 1573 & -1831.0 & -290.0 & 4.6 & -2.0 & 2010.0 \\
\hline 21 & 157 A & -5382.0 & -5466.0 & 31.3 & -2.0 & 14416.0 \\
\hline 22 & 1590 & -2278.0 & -256.0 & 5.6 & -3.0 & 2192.0 \\
\hline 23 & 1599 & -2963.0 & -470.0 & 7.1 & -2.0 & 3994.8 \\
\hline 24 & 1601 & -4192.0 & -589.0 & 10.7 & -2.0 & 5640.0 \\
\hline 25 & 1616 & -4598.0 & -2285.0 & 13.0 & -2.0 & 6400.0 \\
\hline 26 & 1620 & -4049.0 & -730.0 & 17.8 & -3.0 & 5890.0 \\
\hline 27 & 1674 & -7697.0 & -134.0 & 25.8 & -3.0 & 10391.0 \\
\hline 28 & 1759 & -7274.0 & -2378.0 & 37.1 & -3.0 & 12037.8 \\
\hline 29 & 1808 & -1855.0 & -769.0 & 3.5 & -2.0 & 1567.2 \\
\hline 30 & 1817 & -1998.0 & -1722.0 & 4.6 & -1.0 & 2280.0 \\
\hline 31 & 1815 & -2080.0 & -1903.0 & 10.8 & -2.0 & 2300.0 \\
\hline 32 & 1816 & -2115.0 & -1952.0 & 5.6 & -2.0 & 2420.0 \\
\hline 33 & 1890 & -7443.0 & -626.0 & 22.7 & -2.0 & 10127.0 \\
\hline 34 & 1915 & -3903.0 & \(-380.0\) & 9.1 & -2.0 & 4554.5 \\
\hline 35 & 1926 & -3878.0 & -317.0 & 10.5 & -4.0 & 4506.0 \\
\hline 36 & 1927 & -4901.0 & -304.0 & 12.9 & -3.0 & 6320.0 \\
\hline 37 & 1949 & - 3444.0 & -1159.0 & 6.8 & -2.0 & 3780.0 \\
\hline 38 & 1950 & -6946.0 & -4410.0 & 22.4 & -3.0 & 10757.0 \\
\hline 39 & 1963 & -8267.0 & -717.0 & 19.2 & -4.0 & 10030.0 \\
\hline 40 & 1976 & -5056.0 & -486.0 & 17.4 & -4.0 & 5660.0 \\
\hline 41 & 1977 & -5758.0 & -768.0 & 15.5 & -3.0 & 7554.7 \\
\hline 42 & 2002 & -8737.0 & -1067.0 & 21.7 & -3.0 & 9820.0 \\
\hline 43 & 2006 & - 3572.0 & -239.0 & 8.3 & -2.0 & 5160.0 \\
\hline 44 & 2008 & -6380.0 & -624.0 & 18.0 & -4.0 & 8090.0 \\
\hline 45 & 2015 & -8479.0 & -2949.0 & 17.3 & -3.0 & 9729.0 \\
\hline 46 & 2017 & -4453.0 & -645.0 & 9.5 & -3.0 & 5710.0 \\
\hline 47 & 2020 & -6669.0 & -1067.0 & 15.0 & -4.0 & 76RG.2 \\
\hline 48 & 2024 & -4641.0 & -403.0 & 9.9 & -3.0 & 5163.0 \\
\hline 49 & 2031 & -8824.0 & \(-147 \mathrm{n} .0\) & 18.6 & -4.0 & 9700.0 \\
\hline 50 & 2184 & - 3043.0 & n,0 & 6.9. & -2.0 & 4004.0 \\
\hline
\end{tabular}
```

PTERATIONS= 6

```
SOLIITINN VALUE = .371500F+04
\begin{tabular}{ccc} 
& PRIMAI．VARIABLES & DUAL SLACK \\
1 & \(.100000 \mathrm{~F}+01\) & 0. \\
& DUAL VARIABIES & PRIMAL SLACK \\
1 & \(-.166145 F+01\) & 0. \\
2 & \(0.058911 F+00\) & 0. \\
3 & -.5849 & 0. \\
4 & \(-.182437 F+01\) & 0. \\
& & 1
\end{tabular}
ITERATIONS = 9
SOLUTION VALUE \(\quad .367731 E+04\)

Primal Variables － \(356080 F+00\) \(.750044 \mathrm{E}+00\) ． \(288343 \mathrm{E}+00\)

DUAL VARIABIES \(-.633102 \mathrm{E}+00\)
－． \(525145 \mathrm{E}+00\)
0 ．
－．704540F－02
？ 105 ？

DUAL SLACK
0 。
0 ．
0 。
PRIMAL SLACK
0 ．
0 ．
\(.286444 E+06\)
0 。
3.247

TTERATIONS＝ 7
SOLUTION VALUE \(=.375293 \mathrm{E}+04\)
\[
\begin{gathered}
\text { PRIMAL VARIABLES } \\
.363403 \mathrm{E}+00 \\
.119734 \mathrm{E}+01
\end{gathered}
\]

DUAL SLACK
10
29
\[
\begin{aligned}
& \text { DUAL VARIABLES } \\
& =.936127 E+00 \\
& 0 \cdot \\
& 0 \cdot \\
& =.108036 E+00 \\
& 3 \quad 1057
\end{aligned}
\]

0 。
\[
\begin{aligned}
& \text { PRIMAL SLACK } \\
& 0 . \\
& .124531 E+04 \\
& .765550 \mathrm{E}+05 \\
& 0 . \\
& 1.237
\end{aligned}
\]

0 。
```

 COST SENSITIVITY
 -.964082E+03 .100000E+21

```
    RESOURCE SENSITIVITY
\(=.100000 \mathrm{E}+210\).
0 .
                                \(.100000 E+21\)
\(-.100000 E+21\)
-. \(100000 \mathrm{E}+21\)
0 。
```

 COST SENSITIVITY
 -.722502E+02 . 209446E+04
 -.672424E+03 . . 00188E+03
 -.601341E+03 .419511E+02
    ```
    RESOURCE SFESITIVITY
    \(-.572205 \mathrm{E}+03 \quad .796629 \mathrm{E}+03\)
    \(-.673237 E+03 \quad .330179 E+03\)
    \(.286444 \mathrm{E}+06 \quad .100000 \mathrm{E}+21\)
    \(=.171690 \mathrm{E}+04 \quad .365159 \mathrm{E}+0 \mathrm{~A}\)
    \(\begin{array}{cc}\text { COST SENSITIVITY } \\ . & 100693 \mathrm{E}+04 \\ .0213440 \mathrm{E}+04 & .212791 \mathrm{E}+03 \\ . & .820369 \mathrm{E}+02\end{array}\)
    \(\begin{array}{ll}\text { COST SENSITIVITY } \\ . & .100693 \mathrm{E}+04 \\ -.313440 \mathrm{E}+04 & .212791 \mathrm{E}+03 \\ - & .820369 \mathrm{E}+02\end{array}\)
    \(\begin{array}{ll}\text { COST SENSITIVITY } \\ . & .100693 \mathrm{E}+04 \\ -.313440 \mathrm{E}+04 & .212791 \mathrm{E}+03 \\ - & .820369 \mathrm{E}+02\end{array}\)
    RESOURCE SENSITIVITY
    \(-100000 E+21 \quad .215814 E+04\)
    \(-.124531 E+04 \quad .100000 E+21\)
    \(-.765550 \mathrm{E}+05 \quad .100000 \mathrm{E}+21\)
    \(-.420749 E+04 \quad .338701 E+04\)

Example 6: A cost surface run:

CARD 1: \(\quad 1,4,1,0,0,1,0,6\)
CARD 2: \(-1,-2,105,-106,3,4\),
CARD 3: 20.0, 10.0
CARD (s) 4: DATA
CARD 6: \(\quad 1,-2000.0,-4000.0,-6000.0\)

The output of this run is shown on the following pages. The data listing for this run is identical to the listing for example 5. The resulting portion of the frontier cost surface is illustrated below.

```

CONTROL PARAMETERS
NUMBER OF REPLICATIONS = 1
NUMBER OF CONSTRAINT VARIABLES = 4
NUMBER DF EQUALITY CONSTRAINTS = 0
MAXIMUM NUMBER OF INPUT VARIABLES FDR LEAST=COST ALGORITHM =6
VARIABLF INDEX LIST... -1 -2 105-106 3
THIS IS AN ISOQUANT RUN
THIS IS A LEAST-INPUT-COST RUN
VARIABLE MEANS ARE NOT TO RE RFAD FOR EACH REPLICATION
INPUT PRICES FOR COST ANALYSIS
20.00 10.00
NUMBER OF OBSERVATIONS= 50
VARIABLE MEANS...
-4327.3 - 1130.8 14.1 -2.7 278.2 15.9

```
\begin{tabular}{|c|c|c|c|c|}
\hline & 1 & － 20000 & －4000． & －6000． \\
\hline PTERATITNS \(=\) & 11 & & & \\
\hline
\end{tabular}

SOLUTION VALIJE \(=\quad .185662 \mathrm{~F}+04\)

PRIMAI VARIARLES
DUAL SLACK
\(.133037 F+00\)
\(.657227 F+00\)

31 •6n7つ31F＝01 0
0 。
\begin{tabular}{lll}
10 & \(.133037 F+00\) & 0. \\
29 & \(.657227 F+00\) & 0.
\end{tabular}
\[
\begin{aligned}
& \text { DUAI VARIARIES } \\
& =.631945 \mathrm{~F}+00 \\
& =.524185 \mathrm{~F}+00
\end{aligned}
\]

PRIMAL SLACK 0 。
0 ．
\(.132644 \mathrm{~F}+105\)
0 ．
0.

0 。

COST SFNSITIVITY
\begin{tabular}{ll}
\(=.722502 \mathrm{E}+02\) & \(.198539 \mathrm{E}+04\) \\
\(-.663057 \mathrm{E}+03\) & \(.100188 \mathrm{E}+03\) \\
\(-.594911 \mathrm{E}+03\) & \(.419511 \mathrm{~F}+02\)
\end{tabular}

RESOURCE SFNSITIVITY
－． \(127484 \mathrm{E}+03 \quad .689584 \mathrm{E}+03\)
－． \(595043 \mathrm{E}+03 \quad .677578 \mathrm{E}+02\)
\(-.132644 E+05 \quad .100000 E+21\)
－． \(362232 \mathrm{E}+\) ก3－136678E＋04
sOLUTION VAIUE \(=.364220 E+04\)
\begin{tabular}{lc} 
& PRIMAL VARIABLFS \\
10 & \(.260983 F+00\) \\
29 & \(.146413 E+01\)
\end{tabular}

DUAL SLACK
0 ．
\(.146413 E+01\)
0 。
```

DUAL VARIARIES
=.910550F+00
0.
TTFRATIONS＝ 10

```

RIMAL SLACK
0 。
－995244F＋の3
－980172F＋05
0.
solution value＝． \(546330 \mathrm{E}+04\)
```

PRTMAL VARIABLES DUAL SLACK
.391475F+00
. 219620F+01
DUAL VARIABIES
-.910550F+00
? 0.
0.
-. 105085F+00
DUAL SLACK
－ $219620 \mathrm{~F}+01$
DUAL VARIABIES
$-.910550 \mathrm{~F}+00$
20
0．
$-.105085 \mathrm{~F}+00$
0 。
0 ．
PRIMAL SLACK
0 。
－ $205825 E+04$
． $420258 E+05$
0 。

```

COST SENSITIVITY
10
29
COST SENSITIVITY
－． \(100693 \mathrm{E}+04 \quad .205789 \mathrm{E}+03\)
－． \(248762 \mathrm{E}+04 \quad .802694 \mathrm{~F}+0\) ？
RFSOURCE SFNSITIVITY
\(-100000 \mathrm{E}+21\) ．187252E＋04
\(-.995244 \mathrm{E}+03 \quad .100000 \mathrm{E}+21\)
\(-.280172 \mathrm{E}+05 \quad .100000 \mathrm{E}+21\)
\(-.528954 E+04 \quad .250076 \mathrm{E}+04\)
\(-.100693 E+04 \quad .205789 \mathrm{E}+03\)
－． \(248762 \mathrm{E}+04 \mathrm{C}\) ． \(802694 \mathrm{E}+02\)
RFSOURCE SENSITIVITY
－． \(100000 \mathrm{E}+\) ？ 1 ． \(387252 \mathrm{E}+04\)
－．205825E＋04 ． \(100000 \mathrm{E}+21\)
\(-.420258 \mathrm{~F}+05 \quad .100000 \mathrm{E}+21\)
－． \(793431 E+04 \quad .375114 E+04\)

\section*{The Computer Program}

The computer program for this algorithm is listed on the following pages. The program is written in FøRTPAM and it should be compatible with most computer systems. The author has rum the program on a Burroughs 6700, an IBM \(360 / 165\), and a CDC 6400. A card deck for the program along with the sample data and control cards for the six illustrative examples are available upon request from the author.
```

 COMMON V(51,200),K(400),T(200),J(200),TS(200),F1(50),
 IF(4OO),PYM,ZL,M,M1,M2,N,N1,N2,LH,INP,IX2,NO,NS,
 2IT,IS,ITC,NSI,NL,KAME,INVT
 MIMFNSION TNDFX(20),VMEAN(20),IDENT(200),VST(?1,200),
 IVRNE(10),VMST(20),COST(20)
 RFA!(5,10) NRFP,NVAR,ISO,IFF,NEQ,ICST,TVM,ICN
 FMRMAT(AI5)
 KVAR=NVAR+1
 RFAD(5,20) (INDEX(II),II=1,20)
 20 FORMAT(2014)
 ICX = ICN - KVAR + I
 TF(ICST.EO.1) READ(5,30) (COST(II),II=1,ICX)
 30 FORMAT(8F1O.?)
 WRTTF(6,40) NRFP,NVAR,NEQ,ICN,
 I(INDFX(II),II=1,KVAK)
 40 FORMAT(1H1,'CONTROL PARAMETERS',I,10X,'NIIMRFR OF ',
 1'REPLICATIONS =',IA,/,10X,'NUMRER OF CONSTRAINT ,,
 2'VARTABLES = ',IA,/,10X,'NUMBER OF FQUALITY ',
 3'cONSTRAINTS =',I4,/.10X,'mAXIMUM NUMBFR OF INPIJT VARIABLFS ',
 A'FOR IEAST-COST ALGORITHM = , Iq,/,/,1X,'VARTABLE .,
 5'INDFX LIST...',5X,20I5,/)
 IF(ISO.EQ.0) WRITF(G,50)
 TF(ISO.FQ.1) WRITE(5.60)
 IF(ICST.EQ.0) WRITE(6.70)
 IF(ICST.EQ.1) WRITE(U0,80)
 TF(IVM.EQ.0) WRITE(6,90)
 IF(IVM.FQ.1) WRITE(G,100)
 50 FORMAT(IX,'THIS IS NTT AN ISOQUANT RUN,,1)
 GO FORMAT(IX,'THIS IS AN ISCQIIANT RUN',/)
 70 FORMAT(IX,'THIS IS NOT A LEAST-INPUT-COST RUNO,/)
 8O FORMAT(IX,'THIS IS A LEAST-INPUT-COST RINN',1)
 9O FORMATCIX,'VARIABLF MEANG ARF NOT TO RE RFAO FOR FACH ,,
 1'RFP(ICATICN',1)
 10n FORMAT(1X,'VARTARLE MEANS ARE TO RE READ FOR FACH REPLICATION', 1')

```

```

110 FMRMAT(IX,'INPUT PRICES FOR COST ANALYSTS',/,
15x,10F10.7,/,5x,10F10.2,1)
nत 170 II=1,?1
nn 100 JJ=1,20n
170 V(II,JJ)=0.0
nत 130 II=1,2n
130 VMFAN(II)=0.0
IF(IFF.EQ.1) KVAR = KVAK - 1
NN=0
IF(ICST.EQ.1) KVAR=ICN
17n NN=NN+1
RFAD (5,140) INENT(NN),(VST(II,NN),IT=1,6)
14!: FחRMAT (IG.4X,2F10.0,1,10X,2F10.2.1,60X,F10.6.1,30X,F10.0.1)
IF(IDFNT(NN).GT.990978) GO TO 150
n\# 1GO II=1,KVAK
KK=IABS(IN\capF.X(TI))
IF(KK.GT.1\capO) KK=KK=100
SiN=1.0
IF(INDEX(IT).|T.0) SGN=-1.0
VSTI,NN)=SGN*VST(KK,NN)
VMFAN(IT)=VMFAN(II)+V(II.NN)
1GO CINTINUE
gn in 170
150 KNT=NN-1
WRTTF(%,18\cap) KNT

```
```

 180 FORMAT(1X,PNUMAER OF DBSFRVATIONS=',IG,I)
 n# 190 II=1.KVAR
 190 VMEAN(II)=VMEAN(II)/FLOAT(KNT)
 WRITE(6,200) (VMEAN(II),II=1,KVAR)
 OON FORMAT(1X,'VARIABLE MEANS...',/,5X,10F10.1,/,
 15x,10F10.1.1)
 IF(IFF.EQ.1) KVAR = KVAR + 1
 IF(ICST.EQ.1) KVAR=NVAR+1
 M=KVAR
 y IF(ICST.EQ.0) GO TO 210
nח 200 II=I,KNT
HOLD=0.0
KK=0
Dn 230 JJ=KVAR,ICN
KK=KK+l
230 HOLD = HOI.n + (COST(KK)*V(JJ,II))
V(KVAR,II)=HOLI
220 CINTINUE.
210 N=KNT+1
M2=NEQ
N2=0
NL=0
KAME=0
IDP=0
INVT=0
NST=0
71=1.0E-8
WRITE(6,24n)
240 FORMAT(1H1,'LISTING ifF MATA MATRIX',1,1)
nत 250 II=1,KNT
IF(IFF.FG.1)V(M,II)=-1.0
WRITF(6,260) IT,IDFNT(II)P(V(JJ,II),JJ=1,KVAR)
26\cap FORM\&T(1X,13,18,?X,11)F10.1,1,14X,10F10.1,1)
250 CONTINUE
nก 270 II=1,M
DO 270 JJ=1,N
270 VST(II,JJ)=V(II,JJ)
nत 2R0 II=1,KVAR
280 VMST(II)=909.9
DO 290 NR=1,NRFP
KNTA=KNT
IF(ISO.FQ.O) GO TO 30OO %**CHANGED FROM 300 TO 30nn
KNTA=3
IF(IVM.FQ.1) READ(5,310) (VMST(II),II=1,KVAR)
310 FORMAT(10FR.0)
TF(IVM.FQ.1) WRITE(6,315) (VMST(II),II=1,KVAR)
315 FORMATCIHO,'VARIABLE MEANS FOR THIS REPLICATION,,1,10(5X,10F10.1,1
\&))
RFAD(5,320) IFRST,(VONE(II),II=1,3)
320 FORMAT(15,5X,3F10.0)
WRITF(6,330) IFRST,(VONE(II),II=1,3)
330 FORMAT(IHO,'ISN-RUN VARIABI.E INOICATOR AND VALUES',I,
110X,I5,5X,10F10.0.1)
n\# 340 II=1,KVAR
IF(VMST(II).NF.999.9) VMFAN(II)=VMST(II)
340 CONTINUE
3000 OO 350 NA=1,KNTA %** CHANGED TRUM 300 TO 3000
IF(ISO.FQ.0) GO TO 360
VHOLD=VMEAN(IFRST)
VMEAN(IFRST)=VONE(NA)

```
```

 360 DO 370 II=1,M
 DO 370 JJ=1,N
 370 V(II,JJ)=VST(II,JJ)
 ON 380 II=1,NVAR
 V(II,N)=VST(II,NA)
 IF(ISO.EQ.1) V(II,N)=VMEAN(II)
 KK=IABS(INDEX(II))
 IF(KK.LT.100) GO TO 380
 V(II,N)=0.0
 On 390 JJ=1,KNT
 XA=VST(II,JJ)*VST(KVAR,JJ)
 XR=VMEAN(IT)*VST(KVAR,JJ)
 IF(ISO.EQ.O) XB=VST(II,NA)*VST(KVAR,JJ)
 SGN=1.0
 IF(INDEX(II).LT.0) SGN=-1.0
 V(II,JJ)=SGN*(ABS(XA)-ABS(XB))
 390 CONTINUE
 3HO CONTINUE
 V(KVAR,N)=0.0
 CALL LINEAR
 IF(ISO.FQ.1) VMEAN(IFRST)=VHOLD
 IF(ISO.EQ.1) GO TO 350
 FFF=999.0
 VL=V(M,N)
 IF(VL.NE.0.0) EFF=ABS(VST(KVAR,NA))/ABS(VL)
 WRITE(6,400) NA,IDENT(NA),EFF
 400 FORMAT(/,2X,2I10,F15.3,/,/)
 350 CONTINUE
 290 CONTINUE
 STOP
 FND
 SURROUTINE LINFAR
 COMMON V(21,200),K(400),I(200),J(200),IS(200),F1(20),
 1F(400),PYM,ZL,M,M1,M2,N,N1,N2,LH,IOP,IX2,NO,NS,
 2IT,LS,ITC,NSI,NL,KAME,INVT
 CONTROL PROGRAM AND INDEX SELECTION
 4 CALL READIN
 Gn TO 13
 C EXECUTE PIVOT TRANSFIRMATION
8 ITC=ITC+1
IF(ARS(V(LT,LS)).GT.ZL)GO TO 9
801 V(LT,LS)=0.0
NO=NO+1
gn TO 13
9 ~ C A L L ~ T R A N S
c intErmEDIATE tablEaU pRINT OUT
IF(IDP.EQ.1)CALL PRINT
C INDEX SELFCTION
C TAKE CARE DF ZL WIPEOUT
13 TF(NO.LT.?)GO TO 12,
KC=NO=(2*(NO/2))
LI=K(NO-KC)
L?=K(NO-1+KC)
IF(V(L1,L2),F,Q,O.)NO=NO-1
12 IF (NO.GT.O) GO TO 47
IF (NO.EQ.?) GO TO 27
C
NO IS ONE

```
```

 15 Nn = ?
 NOX1=N1+1
 Tnx?= " - 1
 \!) 21 IR=I7\times1,TMX?
 1a IF (V(IR,N).I.T.|.) B.l 「! 24
 IF (V(IR,V).FO.O.) {\ TU 21
 19 IF (IR.LE.:H) rin T\ ?l
 20 1: (T(IR).f.MO) (G) 「J ?a
 O EONTINME.
 k(?) = M
 G! |n 21
 24 K(つ) = TR
 NNTS PNO
 >TR=K(%)
 TinX1 = M1 + 1
 TOX2 = N - 1
 HST=O
 กก 30 [C=17\times1, T0\times2
 31 TF (V(TRPIC).GT.O.) in in 34
 If (v(Iq.Ir).f0.0.) in tn 30
 3? TF (rR.FO.") Gח TO 44.
 33 IF (V(IGON),FF.O.) GOTO TO
 GOTO 44
 3^ IF (IR.F口.") ©, if, 3;
 35 TF (V(IR,N),GT.O.) (G] 10 44
 36 TF (TC.OE.I.H) GOCTM TM
 37 TF (.J(IC).fT.Nつ) (;n r! 30
 44 TF(ARS(V(TR,IC)).LF.QST)GU TO }3
 45 HST=ARS(V(IK.IC))
 K(3)=TC
 3 9 \text { CONTINJE}
 IF(EST.GT.C..)GR TO 4:
 C. FINAI PRINT IIT
IF (K(?).NF.M) (GO Ti] 4?
GO In 43
4) FORMAT(CO TNGONSISTENT CONSTRATNTS'/(2O!K))
4) WRITF (G,4!) I(IR).(I(IT),IT=1,LH)
43 1NP=0
CAII. PRINT
RFTURN
4^ NT = 3
r. NM AT i.fAgT thPFE
47 k! = NG) - (? * (NO / 2))
IF (KC.FQ.n) Gח TO 1?!
r
NO rine
r. SFT SCANIIING SFGUFNCF
51 InX1 = N1 + 1
InX% = NO-4
TnX3 = 4 - 1
If (IOXP.GT.0) GO T0 לa
55 NS = In\times3-N1
\#ח 57 TR=1,NS
57 IS(IR)=IR +N1
rin ln 64
59 NS = 0
nn at IR=1nx1, 10x3
nn 64 TC=1,10x`,?
|nxCn|=kiIC)

```

```

 GA CONTIN:IF
    ```
```

 NS = NS + 1
 IS(NS) = IR
 G7 CONTINUE
 DETERMINE TRANSFORMATION
 69 LS = K(NO)
 1.1 = K(NO-1)
 I? = K(NO-?)
 IF (I.I.NE.M) GO TO 77
 73 FXTREM=1.0F20
 IF (V(LI,1.S).lE.O.) fo Tn 7%
 75 FXTREM = -FXTREM
 GO Tח 78
 77 FXTREM = V(LI,1.2) / V(LI,LS)
 7R 1T = 11
 n# 109IR=1,NS
 IOXR = IS(IR)
 IF (V(IOXR,LS).EQ.O.) GU TO 109
 82 RATIO = V(IDXR,I.2) / V(IDXR,LS)
 C DECISIDN NFT
If (RATIO.lT.O.) GO TO 105
IF (RATIO.GT.O.) GO TO 102
85 IF (IS.LE.IH) GO TO 97
86 IF (J(LS).LE.N?) GO TO 90
87 IF (IDXR.LF.LH) GO TI }9
88 IF (I(IDXR).GT.M2) Gח TO 94
C
SFT TRANSFIRMATION
90 LT = IDXR
gn in 11%
C TFST FOR DFGENFRACY
94 IF (V(INXP,LS).LE.O.) GO TO 109
97 Nn = NO + 1
K(NO) = IDXR
Gn Tח 13
c. TFST FOR EXTREME
c. RATIN POSITIVE
102 IF (FXTREM.LE.O.) GO TO 100
103 IF (EXTREM.LE.RATIO) GO TO 109
go TO 107
c. RATIN NFGATIVE
105 TF (FXTREM.GE.O.) GU TO 109
106 IF (RATIO.LE.EXTREM) GO TD }10
107 LT = IDXR
108 EXTREM = QATIO
109 CONTTNUE
C
IINROUNDED TARLEEAU PRINT GUT
IF (LT.NE.M) GO TO 115
Gn TO 112
111 FORMAT('OEXTRFME UNBOUNDFD'I4)
11? WRITF (G,111) J(LS)
GO TO 43
115 IF (IT.NE.L1) GO TO 117
116 NO = NO-1
117 NO = NO - 1
gn TM 8
c. NOEVFN
C SFT SCANNING SFAUENCE
101 InX1 = M1 + 1
IDX2 = NO - 4
TOX3=N-1
IF (IDX2.GT.0) GO TU 12%

```
```

 175 NS = IDX3 - 41
 #ก 127 IC=1,NS
 177 TS(IC) = IC + M1
 go TO 139
 nก 137 IC=TDXI.IDX3
 Oח 134 IR=2,IDX2,2
 IOXR = K(IR)
 IF (V(InXR,IC).NE.0.) GO Tח\ 137
 134 CONTINUE
 NS = NS + 1
 TS(NS) = IS
 137 CONTINUE
 DFTERMINE TRANSFORMATION
 139 LT = K(NO)
 11 = K(ND-1)
 L2 = K(NO-?)
 FXTRFM = V(L?,LI) / V(LT,LI)
 IS = LI
 OM 171 IC=1,NS
 InXCOL = IS(IC)
 IF (V(LT,IOXCOL).EQ.O.) GO TO 171
 147 RATIO = V(I.2,InXCOL) / V(LT,IDXCOL)
 DECISION NFT
 170 NS = 0
 IF (RATIO.IT.O.) GO TO 167
 IF (RATIO.GT.O.) GI) TIJ 164
 150 TF (IDXCOL.LE.LH) GO TO }15
 151 iF (J(IDXCOL).GT.N2) GO TO 156
 c. SFT TRANSFIRMATION
153 1S = IOXCOL
GO TO 174
C TEST FDR DFGENERACY
156 IF (V(LT,INXCOI).GF.00.) GU TO 171
150NH = NO + 1
K(NO) = IDYCOL
gח\# % 13
c. TFST FOR EXTRFME
C RATIC POSTIVE
164 IF (FXTREM.LE.O.) GO TO 171
165 IF (FXTREM.LE.RATID) GO TO 171
GO TO 169
C RATIO NEGATIVF
167 IF (EXTREM.GE.O.) GO TO 171
168 IF (RATIO.I.E.EXTREM) GO TU 171
169 IS = IDXCOI
FXTHFN = RATIO
171 CONTINUE
IF (LS.NE.I 1) GO TN 174
173 Nn = NO-1
174 NO=Nח=1
GO TH \&
FNH

```
        SURROUTINE TRANS
        C.CMM NN V (21,200),K(400), I(200), J(200),IS(200),F1(20),
        \(1 F(400), P Y M, Z_{L}, M, M 1, M 2, N, N 1, N 2, L H, I D P, I X 2, N H, N S\),
        21 T,LS, ITC,NSI,NL,KAME, INVT
C THIS TRANSFORMATINN SUBROUTINE MODIFIEN TO ZERO NFAR=7ERO FLEMENTS
```

r FIRST STAGF
7=71*.01
NiV=V(I.T,lS)
v(1T.lS)=1.0
MS=0
nत\& |C=1,N
V(IT,Tr)=V(LT,Tr)/人I.

```

```

 U(1T,TC)=0.
 rir: in O
 ת N:S=NS+1
 TS(NS)=IC
 a comtinue
 #N 15 IR=1,M
 IF (TG.FO.1T) GOM TH: }1
 :1 x=V(TH,LS)
 if (x.E.O.O.) fin TO la
 :? \because(JK,lS)=0.
 n! 14 IP=j0ns
 IC=IC(IP)
 V(TR,TC)=V(IR,TC)-x*Ij(LT,IR)
 If(ARS(y(IF,TC)).|F.,\\\(JP,IC)=O.
 :4 rfuttrue
 :5 ronitnulf.
 IF (1T.1E.| H) GOO TH 1?
 !7 Tf (IS.lF.|N) ron tr or:
 r.r in 4Fi
    ```

```

 gir in 2f
 C ROW INTFRCHAligF
2O ITFMP = I(IS)
I(1S)=T(|I)
I(IT) = ITFMP
If (I(l.S).f.T.M?) (:r il in
24 CAIL INRHC. (IS,N1+1,1)
M1 = N1 + 1
3A FFTURN
CMLGMN INTFHCHANGF
OR |T[ME = U(|S)
J(IS) = i(1I)
\therefore(1T) = ITTMP
if (.J(I.T).GT.N゙つ) GO T0 3. 30
3f rall. INCHF(IT,N1+!,1)
N1=N1+1
30 RETURN
AON ROW ANT CCIIIMN
4O CALL INCHRCIT,1H+1,0)
CAIL INCHC(LS,IF+1.0`

```

```

 |5 CAIL INCHC (LH: + . H1 + 1,1)
 M1 = M1 + 1
 47 IF (J(I.H+1).OT.NO) (iC TO b(
 UR CALI INCHK (IH + 1,NI + 1, 1)
 N1 = N! + 1
 5r 1H = IH+1
 RFTURN
 c. DELETE RIIW AND COLIMMN
5% CAIL INCHR(LT,IH,1)
CAIL TNCHCRLS,1H,1)
1H=1H-1

```

RFTURN
ENT
```

 SURRCUTINE INCHR(LR1,LRZ.LR3)
 COMMON V (21,200),K(400), (1 200),J(200),IS(200),F1(20),
 1E(400),PYM,ZL,M,M1,M2,N,N1,N2,LH,IDP,IX2,NO,NS,
 2LT,LS,ITC,NSI,NL,NAME,INVT
 DO 7 IC=1,N
 TFMP = V(LR1,IC)
 V(LR1,IC) = V(I.R2,IC)
 7 V(LRO,IC) = TEMP
IF (LR3.GT.0) go in 11
8 ITEMP = I(IR1)
I(L.RI) = I(LRZ)
I(LRO) = LTEMF
GO TO 1?
11 LTFMP = J(I.R1)
J(LR1) = J(LRD)
J(LR2) = LTEMP
1? DO 13 IR=2,NO,?
IF (L.R2.EQ.K(IR)) GO TO 15
13 continue
GO TO 16
15 K(IR) = LR1
16 RETURN
FNT

```
    SURROUTINE INCHC(LCI,LC2,L(3)
    COMMON V (21,200),K(400), \(\mathrm{F}(200), \mathrm{J}(200), \operatorname{TS}(200), F_{1}(20)\),
    \(1 F(400), P Y M, Z L, M, M 1, M\) P, N, N1,N2,LH,IDP,IX?,Nח,NS,
    2IT,LS,ITC,NST,NL,KAME,INVT
    חก 7 PR=1, M
    TFMP \(=V(I R, L C 1)\)
    \(V(I R, L C 1)=V(I R, L C 2)\)
\(7 \mathrm{~V}(I R, L C 2)=T F M P\)
    if (IC3.GT.0) GO TO 11
R LTEMP \(=\mathrm{J}(\mathrm{IC1})\)
    \(J(1 C 1)=J(L C P)\)
    \(J(L C 己)=\) LTEMP
    GOTO 12
11 LTEMP \(=I(1 C 1)\)
    \(I(L C 1)=I(L C 2)\)
    \(I(\) LC2 \()=\) LTEMP
1? DO 13 IC=1,NO,?
    IF (LCR.EQ.K(IC)) GO TO 15
13 CONTINUE
    Gח TO 16
\(15 \mathrm{~K}(I C)=\angle C)\)
16 RETURN
    FNO
    subroutine reanin
    COMMON V (21,200), K(400), I(200), J(200), IS(200),F1(20),
    \(1 F(A O \cap), P Y M, Z L, M, M 1, M 2, N, N 1, N 2, L H, I \cap P, I X 2, N D, N S\),
```

 2.1T,IS,ITC,NSI,NI,KAME,INVT
 71=1.01)= &
 IF(KANE .FO.O.) GO TO 19
 n\cap 14 IR=1.M
 14 V(IR,N+1)=1.0
 nO 15 IC=1.N
 15V(M+1,IC)=-1.0
 C TRANSIATE TO FOSITIVF PAYGIFF
PYM=0.0
nO 1G IR=1,M
0n 16 IC=1,N
IF(V(IR,IC) .GE. PYM) GO TO 16
PYM=V(IR,IC)
16. CONTINJE
IF(PYM.GE. O.O) GO TO 18
nO 17 IR=1,M
nO 17 IC=1,N
17 V(IR,IC)=V(IR,IC) - PYM
18 M=M+1
N=N+1
V(M,N) =O.
19 IF(INVT •FO. n) GO TH 33
TRANSPOSE TO DIIAL
| TEMP=M
M = N
N=1TEMP
ITFMP = MP
M% = N?
N% = LTFMP
IF (N.GF.N) GO TO 22
20 r|\1=N
GO Tח ? 3
?? IDX1=M
23 nn 27 IR=1,InXI
\#\# 27 IC=IR,IOXI
TFMP=-V(IR,IC)
V(IR,IC)=-V(IC,IR)
27 V(IC,IR)=TFMP
On 29 IC=1,N
27 V(M,TC) = -V (H,IC)
Mก 31 IR=1,M
31 V(IR,N) = -V(IR,N)
COMPIFTE STEP SETUP
33 LH=O
M1 = 0
N1 = 0
NS = 0
IT = 0
IS = 0
TTC=0
is (1) =0
n\cap 3a IR=1,M
34 T(TR)=IR
n\# 3n IC=1,N
36.J(IC)=IC
NO=1
K(1)=N
c INITTAL TARLFAII PRINT OUT
42 RFTURN

```

FN:
```

 SURRIUTINF PRINT
 COMMON V(21,200),K(400),T(200),J(200),IS(200),FI(20),
 IF(40n),PYM,ZL,M,M1,M2,N,N1,N2,LH,IDP,IX2,NO,NS,
 2IT,LS,ITC,NSI,NI,KAME,INVT
 #TMENSION VT(300),SL(300),RL(300),RU(300)
 DATA AEQ,ATQ,AFV,ANV,RHS,WW/2HEC,2HIC,?HFV,OHNV,2HRS,?HBR/
 IF(InP.FO.O)GO TO }3
 C
TARLEAU PRTNT חUT
IF(ITC.FQ.O)GO TO 10
4 FORMAT(7H PIVOT(I3,1H,I3,1H))
WRTTE(6,4)I.T,LS
9 FORMAT('O'//1 ITERATION=',I4)
10 WRITF(6,9)TTC
11 FORMAT(21H EQUATIONS IN KERNEL=I3)
WRITF(6,11)M1
13 FORMAT(OGH FREE VARIABLES IN KERNEL=I3)
WRITF(5,13)NI
15 FORMAT(25H CIJRRENT CINTROL SEQUENCE)
WRTTF(6,15)
17 FחRMAT(7H K(NO)=28I4/(1H 3nI4))
WRITF(6,17)(K(IR),TR=1,N隹
19 FIRMAT(21H CUPRFNT KFRNEI SIZF=I3)
NRTTF(5,19)LH
21 FORMAT(21H BASTC TAHIEAU V(M,N))
WRTTF(6,21)
NO 2? JC=1,N
iF (JC.LE.LH)IS(JC)=I(JC)
IF(JC.GT.LH)IS(JC)=J(JC)
IF((.IC.LE.IH).AND.(JC,LE.MI))VT(JC)=AEO
TF((JC.LE.IH).AND.(JC,GT.M1))VT(JC)=AIO
IF((JC.GT,IH).AND.(J(JC).LE.N2))VT(JC)=AFV
2? TF((JC.GT,IH),AND.(J(JC),GT,N2))VT(JC)=ANV
VT(N)=?HS
24 FORMAT (R(I13,A2))
WRTTE(B,?4)(IS(IC),VT(IC),IC=1,N)
26 FORMAT(1H,I3,\Delta?,8E15.6/(6H ,8E15.K))
\#त 2\& IR=1,M
TF(IR.LF.L.H)IS(IR)=J(IR)
IF(IR.GT,LH)IS(IR)=I(IR)
IF((IR.LE.IH).AND.(IR.LE.N1))VT(IR)=AFV
IF((IR.LE.IH).AND.(IR.GT.NI))VF(IR)=ANV
TF((IR.GT,LH),AND.(I(IR).LF,M2))VT(IR)=AFQ
IF((IR.GT.IH).AND.(I(IR).GT.M2))VT(IR)=\DeltaIQ
IF(IR.EG.M)VT(IR)=WW
OR WRITF(G,2G)IS(IR),VT(IR),(V(IR,IC),IC=1,N)
PFTURN
rINAL PRINT OUT
35 FORMAT(' ITERATIONS=',I4)
3A TF(HAME.GE.1)GO TO 118
WRITF(6,35) ITC
44 FOPMAT(1GHOSOI ITION VALUF=F15.6)
VI=-V(M,N)
WRITE(6,44)VL
47 FORMAT(1HO,5X,16HPRIMAL VARIABLES,7X,1OHDUAL SLACK,12X,16HCOST SFN
1STTIVITY)
WRITF(6,47)

```
```

c
NF=N-
NO 5R JC=1,NF
|M=J(.Je)
IF(JC.GT.LH)GO TO 56
VT(JLM) =V (JC,N)
SI (JLM)=0.0
GO TO 58
56 SL(JIN)=V(M,JC)
VT(J.N)=0.0
5% CONTTNUF
M. = = 1 1+1
On 7a J1=1,NF
LIM=J(J1)
IF(JI.GT.LH)GOTO }7
RGII=1.0F20
RGI=-1.0E20
nn 70 J2= M3,NF
IF(V(J1,J2).EQ.O.)GO TD 70
RATIN= V(M,J2)/V(J1,.J2)
JF(RATTO.LT.O.)GO TO 68
IF(RATIOGGF.RGU)GO TO 70
RGII=RATIO
gn Tn 70
GR IF(RATID.LF.RGI)GO TO 70
RGI=RATID
70 CONTINUE
RL(LIM)=RGI
RU(LIM)=RG|!
Gn Tח 76
74 RL(LI.M) =-V(M,J1)
RU(LIM)=1.nE.20
76 CONTINUE
77 FORNAT(1H T3,E17.6,E20.6,E18.6.E18.6)
\#ก 79 JC=1,NF
IF(VT(JC).FQ.0.0) GO TO 79
WRITF(G,77)(JC,VT(JC),SL(JC),RL(JC),RU(JC))
79 CONTTNUE
c. SFT DUAL PRINT VECTORS
R1 FORMAT(1H05X,14HDUAL VARIARLES,7X,12HPRTMAL SLACK,10X,2OHRESOURCE
1SFNSITIVITY)
WRITF(6,81)
MF=M=1
nO 92 IC=1,MF
MLM=I(IC)
IF(IC.GT.LH)GO TO 90
VT(ML.M)=-V(M,IC)
SL (MLM)=0.0
GO TO 92
90 SL(MIN)=V(IC,N)
VT(MI.M)=0.0
92 CGNTINUE
N3=N1+1
ON 112 I 1=1,MF
NIM=T(I1)
IF(I).GT.LH)gO TO 110
RGU=1.0E20
RGL=-1.0E2O
nn 10t I2=N3,MF
IF(V(I2.I1).EQ.O.)gO TO IOG

```
```

 RATIO=-V(I7,N)/V(I7,il)
 IF(KATIO.LT.O.)GOTO 104
 IF(FATIO.GF.RGII)GO TF 1GG
 RGII=RATIO
 git Tr 106
 104 IF(RATIN.LF.RGI)(FO TH. ICA
 RGI= RATIO
 gon remNTINUE
 RI(N|N)=RG,I
 RU(N|N)=RGI|
 gM TH 112
 110 RL(NIN)=-V(I1,N)
 RU(N.IN)=1.OFPO
 11? continue
 HIN 114 IC=1,MF
 11" WPTTF(G,77)(IC,VT(ICY,SI(IR),FI(IC),RI;(IC))
 RETIRN
 gamf thfingy militplit
 117 FGRMAT(12HOGAMF VAILGF=F15.0.)
 118 Giv=(1.O/V(N,N))+FYM
 WRTIF(G,117)G,V
 MF=N-1
 n# 122 IC=1,MF
 12? VT(IC)=0.0
 IF(I.H.FQ.O)GOR TO 127
 กח़ 105 TC=1.1H
 MIN=T(IC)
 125 VT(M1M)=V(N,IC.)/V(N,N)
 12A FOPNAT(11HCROIN PIAYE.F)
 127 WRTTF(G,12K)
 17R FOPNAT(I3.F11.R)
 WRTTF(6,17昌)((TC,VT(TC),T(:=1,NF))
 NF=N-1
 ON 1子2 JC=1,NF
 132 VT(je)=0.0
 TF(LH.FQ.O)GOT TO 13%
 NO 135 .jC=1.1H
 if M=, (JC,)
 135 VT(JIN)=V(,C,N)/V(M,N)
 136 FOPMAT(14FOCOIIMN PLAYER)
 1.37 WATTF(6,136)
 WRTTF(b,12a)((,Ir,VT(JC)),\thereforer=1,NF)
 13G RETIFRN
 FNO
    ```

\section*{REFERENCES}
[1] Aigner, D. and S. Chu, "On Estimating the Industry Production Function," American Economic Review, September 1968, pp. 826-837.
[2] Boles, J., "Efficiency Squared . . . Efficient Computation of Efficiency Indexes", Western Farm Econ. Assoc., 1966 Proceedings, Pullman, Washington, January 1967, pp. 137-142.
\(\qquad\) , "The 1130 Farrell Efficiency System - Multiple Products, Multiple Factors," Giannini Foundation of Agricultural Economics, February 1971.
\(\qquad\) , "The Measurement of Productive Efficiency: The Farrell Approach," U.C. Berkeley, unpublished manuscript, 1972.

Carlson, D., "The Production and Cost Behavior of Higher Education Institutions," Paper P-36, Ford Foundation Program for Research in University Administration, December 1972.
\(\qquad\) , "Examining Efficient Joint Production Processes", Measuring and Increasing Academic Productivity, Robert Wallhaus (ed.), Jossey-Bass, San Francisco, Winter 1975.
[7] Dan , S., Industrial Production Models, Springer-Verlag, New York, 1966.
[3] Farre11, M., "The Measurement of Productive Efficiency," Journal of the Royal Statistical Society, Series A, Part III, 1957, pp. 253-290.

Farrell, M. and M. Fieldhouse, "Estimating Efficiency Production Functions Under Increasing Returns to Scale," Journal of the Royal Statistical Society, Series A, Part II, 1962, pp. 252-267.
[10] Henderson, J. and R. Quandt, Microeconomic Theory: A Mathematical Approach, Second Edition, McGraw-Hill, 1971.
[11] Seitz, W., "Productive Efficiency in the Steam-Electric Generating Industry," Journal of Political Economy, July/August 1971, pp. 878-886.
[12] Sitorus, B., "Productive Efficiency and Redundant Factors of Production in Traditional Agriculture of Underdeveloped Countries," Proceedings, 39th Annual Meeting, Western Farm Economics Association, 1966.
[13] Timmer, C., "Using a Probabilistic Frontier Production Function to Measure Technical Efficiency," Journal of Political Economy, July/August 1971, pp. 776-794.```

