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Calculating Efficient Multi-Product, Multi-Factor
Production and Cost Relationships
- A Computerized Algorithm -

When estimating relationships between inputs and outputs of pro-

duction processes, it is often desirable to estimate the efficient or

frontier relationship rather than the average. Least-squares re-

gression methods are usually used for estimating average production

and cost functions. Extensive literature exists on functional form

problems, multiple product specification difficulties, and multicol-

linearity problems associated with standard regression approaches.

Much less attention has been given to the problem of estimating effi-

cient production and cost relationships although, from a theoretical

point of view, the efficient production function is of considerable

interest.

Two methods for calculating efficient production and cost rela-

tionships have been developed. Constrained-residuals regression was

originally suggested by D. Aigner and S. Chu (1968) and has been im-

plemented by C. Timmer (1971). This method consists of constraining

all of the regression residuals to have the same sign and as a result

the estimated function is forced to the "frontier" of the observations.

For production function estimation with the residuals equal to the

predicted output minus the actual output, the residuals would be con-

strained to be nonnegative. The term "frontier" will be used in this

paper rather than "efficient" to denote those firms that use the mini-

mum levels of inputs for given levels of outputs and for other given

firm characteristics. Since the frontier relationships are only effi-

cient relative to the observed firms, the underlying, truly efficient

relationships cannot be determined from cross-sectional data.



-2-

The other production frontier computational approach was origin-

ated by M. Farrell (1957, 1962), extended by J. Boles (1967, 1972),

and applied by W. Seitz (1971), B. Sitorus (1966), and D. Carlson

(1972, 1975). Essentially, Farrell's method is to plot the observa-

tions (firms) as points in a space of as many dimensions as there are

variables included in the analysis, to form the convex hull of this

set of points, and to take the appropriate part of the surface of the

convex hull as the estimate of the frontier relationship between all

of the variables. The work by Farrell, Boles, and Seitz has concen-

trated on the development of the method to compute efficiency indices

for each observed firm within a given sample.

The purpose of this paper is to further describe and extend

Farrell's technique following the linear programming approach developed

by J. Boles, to describe the procedures for using a computer program

that calculates efficiency indices and frontier production and cost

relationships, and to illustrate the use of the program with several

examples. The computerized algorithm described in this paper differs

from the algorithm developed by J. Boles (1971) in one important

dimension. The procedure has been generalized to handle several "qual-

itative" factors in addition to the inputs and outputs of.the pro-

duction process. This capability is extremely useful for exploratory

work with poorly defined production processes. Also the computer

program described in the paper is much simpler to operate for an in-

dividual unfamiliar with linear programming.

Concepts of Economic Efficiency:

Defining measures of efficiency is an extremely difficult task

for production processes involving more than one input and one output.
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The problem is further complicated when scale and output quality is

included into the specification of the production process. Following

• the approach by S. Dangi (1966) and J. Henderson and R. Quandt (1971),

the general implicit production function is written as

F(X X • Y1, Y; ,
' I' J 1

• • • 0 • = 0

where: X
i 
is input i

Y. is output j

qk is 
quality factor k

S is a measure of the scale of the production process.

For the case where there are I inputs, one output, no quality

factors and constant returns to scale the production function, Y1 =

f(Xl, 11.0, XI), is defined as the locus of the maximum output levels

for alternative combinations of inputs. From the definition of the

production function in this simple case, the measure of technical

efficiency for firm n is given by:

Yln
TE
n 
-  
f(Xln' XIn)

Similarly, if input prices, C are specified, the total economic

efficiency of firm n can be measured by:

min
Xi, ..., XI

I v

f(X
' 

X
I
) = Y 
[

ln 
1=1 Yln

EE =
 
=  

I X.
in

.0
. Y i
1=1 ln

This definition of economic efficiency is based on the assumption

that all firms face the same input prices. This definition can be

generalized by replacing Ci in the above equation with Cin. However if

input prices are different across firms, the resulting measure of
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economic efficiency indicates something other than production effi-

ciency. Such a measure combines the efficiency of the firm's ability

to obtain inexpensive inputs with production efficiency.

Since total economic efficiency (EE) is equal to the product of

the technical efficiency measure (TE) and a measure of price or allo-

cative efficiency (AE), the latter efficiency measure can be calculated

for firm n as follows:

AE
n 
= EE/TE

n n

The above three definitions provide measures of the standard

types of efficiency for a production process with I inputs, one out-

put,and constant returns to scale. These measures assume that the

production function, Y1 = f(Xl, ..., XI), is known or can be estimated.

If the production process is extended to allow for nonconstant

returns to scale, the production function, Y1 = f(XI, ..., XI; S),

is defined as the locus of the maximum output levels for alternative

combinations of inputs and for different scales of operation

(Henderson and Quandt, 1971). In other words, there are a family of

production functions; one for each size of firm. To illustrate,

Figure 1 shows an isoquant for two of the inputs and several levels

of scale (S).

Figure 1: Isoquants for Alternative Scales of Operation

X
2

-§ > >
1

(increasing returns to scale)
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For this production situation, the measure of short-run technical

efficiency for firm n, TE:, follows directly from the constant returns

case:
Y
ln 

TE
s 
-

n X1 , ; S ) •X1 
n

And similarly for the measure of short-run economic efficiency,

EE min 
n
: I XX

1' •••' E .c.
foci, 1 -ln I..., Xi; Sn) 

= Yln
i=

EE
n 
=

I X.
"

.0
i=1 

Y
ln 

i

These definitions of short-run efficiency are based on the

assumption that in the short-run the firm can not change its scale of

operation. For the case of nonconstant returns to scale, the long-run

measures of technical and economic efficiency are the same as the

measures for the constant returns to scale situation. In the long

run it is possible for the firm to adjust its scale of operation and

therefore its efficiency should be measured relative to the optimal

scale of operation.

Following the approach of S. Dan6 (1966), quality parameters can

be included into the production function in the same manner as

Henderson and Quandt include the scale parameter. As illustrated in

Figure 1, a firm's efficiency should be determined relative to the

production function for that firm's scale of operation. Similarly, a

firm's efficiency should be determined relative to a production func-

tion with the same qualitative characteristics as that of the particu-

lar firm. The measures of short-run technical and economic efficiency

are given by:

Y
ln TES -

n f (X . . . X ; Q . . . , 0 • Sln' In ln' •Kn' n
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min
I X.

Xi, ..., Xn 1

EE
n

E  .C-i.]
f (X

1' 
.. . X

I' 
• 
gin' 

.. . 0 • S ) = 7 
ln 

i=1 
Yin

s 
= 

' 'kn' n 
I X
z in .c
. 7 i
1=1 ln-

The above definitions and measures of efficiency span all cases ex-

cept those production processes with several outputs and several inputs.

Ignoring for a moment nonconstant returns to scale and quality parameters,

it is still difficult to define general measures of technical and eco-

nomic efficiency for a multiple output, multiple input production process.

Several approaches have been suggested but none are very appropriate for

many applications. One procedure is to construct an output index, 7*,

by applying weights to each of the individual outputs. The usual approach

is to use output prices to generate a total revenue variable to be used

as an index. This procedure assumes that all firms face the same output

prices and makes it impossible to separate technical efficiency from eco-

nomic efficiency with respect to the mix of outputs produced. That is,

if a firm is shown to be inefficient with this measure, it might be the

case that the firm is efficiently producing its set of outputs but that

the firm is producing the wrong mix of outputs given the prices of the

outputs.

A second procedure for dealing with the multiple output, multiple

input case is to construct an input index, X*, by applying weights to each

of the individual inputs. This approach is the input complement to the

above procedure and it suffers from the same problem.

A third technique is to base the efficiency measure on one of the

outputs with all the other outputs fixed at specified levels. This ap-

proach is useful in situations where one particular output is of primary
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interest. The resulting measure of technical efficiency with respect

to an output r for firm n, TEr, is given by:

Y
rn 

TE
r 
=

n f(X ..., X
In' 

• Y
ln, 

Y
r-1,n' Yr

4.
1,n' "" YJ) •in' 

Similarly, the measure of economic efficiency is:

min
Xi, ..., 4, v,I

Y1' '' Yr-1' Yr-4-1' "" YJ 
[ I X. 1

'' 7, .C4 1

EE
r . 

f(X
l
, ..., X • Y

rn 
rn '

I 

'
, Y

i

n 
-

X.
In

.0
. Y •i
1=1 rn

The difficulty with the above efficiency measures is that each

firm will quite likely have different relative measures of efficiency

depending upon the output chosen as the basis.

A fourth approach to this multiple input, output problem is one of

decomposition. If the production process under study is not truly a

joint production process, then it may be possible to separate the

problem into an analysis of each output relative to the inputs used

for that output alone. In this manner, the problem reduces into a

form that can be handled with the single output measures discussed

earlier. A firm's efficiency would then be determined for the pro-

duction of each output separately.

The most general and satisfactory method for computing efficiency

measures for joint, multiple input-output processes has been developed

by M. Farrell (1957) but has been surprisingly neglected in empirical

applications. His measures of efficiency completely generalize to the

multiple input, multiple output, nonconstant returns to scale production
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process with quality dimensions. The next section presents a graphi-

cal description of Farrell's approach and the fourth section describes

the computational algorithm required to implement his technique.

A Graphic Approach

Since Farrell's approach is not based on a statistically estimated

equation but rather operates directly on the basic data, it is helpful

to describe the technique from a graphical perspective. If the pro-

duction process involves one input and one output, the production

function can be drawn as shown in Figure 2.

Output

Figure 2: The Farrell Production Function

Input

Each plotted point represents a firm and the production function,

as determined by Farrell's method, is given by the curve OABCD. That

is, the points on this curve represent the maximum output observed for
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a given level of input or, alternatively, the minimum amount of input

observed for a given level of output. To define the curve OABCD as

the production function, it is necessary to assume that the producton

function is convex. This assumption implies that if two points are

attainable in practice (for example, B and C), then so is any point

representing a weighted average of them (points on the line connecting

B and C). It must also be assumed that the production process is non-

stochastic and that the variables are measured with no error. Cal-

culation of the production function in this manner is obviously sensitive

to the accuracy of the data. Since by definition of the production

function, the desired relationship is to be at the extremes of the

data, it is difficult to avoid this problem. Extreme caution must be

taken with the data used in an analysis of this type.

This graphical approach of determining the production function

has one very important advantage over statistical techniques. In order

to estimate a production function with regression techniques, it is

necessary that a functional form be specified. With the graphical

method this requirement is not necessary as the data determines the

shape of the relationships between all of the inputs and outputs.

The production function relationships between different inputs

and alternative outputs may be desired, so a consistent method of

constructing the production surface is needed. In order to accomplish

this graphically as well as computationally, it is necessary to treat

the input variables as positive and the output variables as negative.

These relationships are illustrated in Figure 3.

Note that for all of the relationships, input versus input, input

versus output, and output versus output, the desired production curve



-10-

is the southwest portion of the outer ring circumscribing the scatter

of points. The familiar isoquant relationship between two inputs

(these inputs must be scaled by output to be true isoquants) of the

production process appears in quadrant I of the graph in Figure 3.

Productivity curves are shown in quadrants II and IV and the output

transformation curve appears in the third quadrant. Since the outputs

are specified as negative, the transformation curve as drawn in Figure

3 is inverted from the standard form.

Figure 3: The Multiple Input-Output Graphic Approach

Input
X
2

- Output Yi

•

- Output

2

Input X1

For a two input, one output production process, the measures of

technical, economic, and allocative efficiency are drawn in Figure 4

and calculated as below:
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X
2

1

OB
TE = — < 1

OC —

OA
EE = — < 1

OC

EE OA OC OA 
AE = = • e - 1.

TE OC OB OB

Figure 4: Graphical Efficiency Measures

0 xi

1

Although this graphical procedure can be completely generalized

to several outputs and several inputs by expanding the number of di-

mensions of the graph, it is obviously not possible to draw the rela-

tionships. It is at this point that Farrell's computational method

must be introduced. His procedure makes it possible to calculate

portions (or slices) of the multi-dimensional production surface which

can be graphed in two dimensions.

The "Farrell" Approach

For the case of many variables, the computational method by M.

Farrell (1957, 1962) provides an efficient procedure for generating
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relationships like those illustrated in Figures 2-4. To determine the

frontier relationships with Farrell's basic approach, J. Boles

(1971, 1972) greatly simplified the computations required by formu-

lating the procedure in terms of a linear programming problem. The

link between the graphic approach illustrated above and the linear

programming approach can best be made for the case of one output

variable and two inputs. The desired relationship is illustrated in

Figure 5.

Figure : Illustration of the Computational Approach

A

1

.0"

•

X
2

1

To interpret the input isoquant graphically, the two input

variables should be scaled by the output variable. The relationship

between the two input variables with all the other variables held

constant is desired. To locate the observed firms that determine the

frontier relationship between the two input variables, each scaled by
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the output variable, the procedure is to express the coordinates of

each firm as a linear function of the coordinates of the other firms

that lie closest to the origin of the graph in Figure 5. That is,

find two firms (a and b) for each firm, s, in the sample such that:

la 
X
lb 

X
ls

z
a Y 

+ z
b Y Y

lsla lb

X
2a2b 

X
2s

z
a Y 

+ z
b Y Y

lsla lb

and (z
a 
+ zb) is a maximum over all possible pairs of firms a and b.

The two firms that satisfy the above maximization problem lie on

curve CC' in Figure 5. To force (z
a 
+ z

b
) to the maximum, it i-S

necessary that the two observations closest to the origin of Figure

5 be selected as firms a and b. It is also necessary that the two

observations span firm s. That is, point s must lie between rays OA

and OB in Figure 5. If firm s lies on the curve, the solution to the

above problem is with zs = 1.0 and the rest of the z's equal to zero.

This solution follows since if firm s is on the frontier there will

not exist any observations between the origin and point s or any

weighted average of points between s and the origin unless there are

identical observations or weighted averages of observations that are

identical to s.

By defining the variables,

X = the quantity of the ith input used by the t
th 

firmit

= the quantity of output of the t
th 

firm

the above maximization problem for T firms can be written in a linear

programming framework as:
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Maximize E z
t

t=1

X X
is

Subject to E zt y

it

t=1 t 
y
s

z >t-

i = 1,2

t = 1, ..., T.

The procedure for determining those firms that are on the pro-

duction surface CC' (as drawn in Figure 5) is to solve the above LP

problem once for each firm in the analysis. Each time that the LP is

solved a different firm is placed on the right-hand side of the con-

straints. All firms (including the one on the right-hand side) are

included on the left-hand side of the constraints. If the solution

with a particular firm on the right-hand side specifies a z value of

one for that firm and a z value of zero for all of the other firms,

that firm is on the production surface. In this manner, all of the

firms that lie on the production surface can be identified. By

definition, these firms are the technically efficient firms.

This simple, three-variable model can be generalized to include

several input variables, other output variables, quality dimensions,

and a scale parameter. These latter variables allow other aspects

of the production process (besides inputs and outputs) to be included

into the production or cost function specification. Let

Y
rt 

= the quantity of output r of the t
th 

firm

th
tt0 = the k

th 
quality factor for the t firm

i 

= the scale parameter for the t
th 

firm,

then the general linear programming model for T firms, I input

variables, J output variables, and K quality variables is written as:
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Maximize E z
t

t=1

Subject to:

[1] Input constraints

E z X <X 
t it - i

t=1 
s

[2] Output constraints

EzY >Y
t=1

t jt - js

[31 Quality constraints

E z
t kt

t=1
>0
-ks

E z
t

t=1

[4] Scale constraint

T
E z

t 
S
t 
{-;

t=1  - 
S
sT

E z
t LJ

t=1

[5] Nbnnegative constraint

z > 0t -

i = 1, ..., I

k = 1, ..., K

t = 1, ..., T.

The input constraints and the output constraints are identical ex-

cept that the inequality sign is reversed. This reversal is consis-

tent with the differences in sign used in the graphic illustration

shown in Figure 3. The constraints for the quality variables are

considerably different from the input and output variable constraints.

The input and output constraints are structured in a form that allows

large firms to have nonzero z solution values when a small firm is on
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the right-hand side of the constraints and vice versa. It is the

ratios between all the inputs and all the outputs that are important

and not the actual levels of the inputs and outputs. The magnitudes

of the z's will adjust for the differences in the input and output

levels. The quality and scale constraints, however, must be of a

different form to correctly construct the production surface. If a

high quality firm is on the right-hand side of the constraints, only

high quality firms (on the average) should have nonzero z's in the

solution. Since the magnitude of the z's will depend on the input

and output levels of the firms, the weighted average form of the

quality and scale constraints is necessary. For inputs and outputs,

the ratios of the variables are important in the determination of the

production surface and not their levels. For the quality and scale

variables, it is the levels and not the ratios with the inputs and

outputs that are important.

The quality dimensions are defined in such a way that they are

like outputs in the sense that they use resources. That is, a firm

producing a higher quality output will need to use more (or at least

as much) of the inputs. Therefore, the inequality signs for the

quality constraints are of the same direction as the output constraints.

Because of the existence of diseconomies as well as economies of

scale, it is possible to specify the scale constraint with the in-

equality in either direction. The economies of scale portion of the

relationship shown in Figure 6,as an illustration can be determined

with the scale constraint specified with a < inequality. The dis-

economies of scale portion can be determined with the > scale constraint.

It is also possible to use a strict equality constraint to force the
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scale to be exactly the same (on the average) as the scale of the

firm on the right-hand side. If the convexity assumption mentioned

earlier is not restrictive, it is better to use the inequality con-

straints for determining the production surface. With the inequality

constraints the surface will obviously be convex and therefore the

relationships, such as shown in Figure 6, will be smooth curves

ranging from a straight line (no economies or diseconomies of scale)

to a "U" shaped curve (both economies and diseconomies of scale).

Figure 6: Illustration of the Scale Constraint

Economies
of

Scale
(‹) /

/
Diseconomies

of
Scale

(>)
•••••

Scale

The linear programming model specified above yields a direct

measure of technical efficiency for multiple input-output production

processes. The measure of short-run technical efficiency for firm n

is given by -1.0/E z
t 

when the LP model is solved with firm n on the
t=1

right-hand side of the constraints and the scale constraint is included.

If E z
t 
= 1.0, firm n is technically efficient. If firm n is in-

t=1
efficient, then E z

t will be greater than 1.0. The measure of
t=1

long-run technical efficiency for firm n is exactly the same but the
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LP should be solved with the scale constraint omitted. The appro-

priate measure of economic efficiency will be developed in the

following section.

This computational methodology is useful for determining portions

of the production surface in addition to calculating efficiency in-

dices for individual firms. A slight change in the formulation of

the above LP is useful for easily calculating the production function

relationships between alternative input, output, quality, and scale

variables. The required modification is to place one of the input

or output variables into the objective function. To keep the quality

and scale constraints in a proper form it is also necessary to multiply

both sides of those constraints by the variable included in the objec-

tive function. .The input and output constraints remain in the same

form as in the previous model. An illustration of the resulting, re-

formulated model is shown in Figure 7 with one of the output variables

in the objective function.

It should be noted that the choice of the variable appearing in

the linear programming objective function (Yrt in the example in

Figure 7) depends on the information that is desired. The distance

being maximized (or minimized in the case of an input variable) is

parallel to the axis of the variable in the objective function. It

should be stressed that this is not comparable to the choice of the

dependent variable in a regression equation, where the results can

be drastically different depending on the variable selected. With

the linear programming approach, the results are always consistent

regardless of the direction towards the frontier surface that the

results are generated.
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In addition to using observed firms on the right-hand side of

the constraints, hypothetical firms can be constructed and used in

the LP model as well. This procedure makes it possible to more

systematically analyze the frontier relationships between different

variables. If an output variable is in the objective function and

the right-hand side value of an input constraint is varied, a frontier

productivity curve is traced out. A frontier transformation curve

results if an output constraint is varied with an output variable in

the objective function. With an input variable in the objective

function and varying an input constraint, a frontier isoquant is

computed. If an input variable is used in the objective function, the

problem is then one of minimization rather than maximization as

shown in Figure 7.

Figure 7: The LP Computational Model

Maximize E z
t
Y
rt

t=1

Subject to: EzX < X i = 1, ..., It it - is
t=1

T
E z Y. > Y j = 1, ..., Jj
t=1 

s

T
E z

t
Y
rt (gkt-gks) 

> 0 k = 1, ..., K_
t=1

T
E z Y (S S

s
) f. 0

t rt t
-t=1 

5

z
t 
> 0 t = 1, T.
-

Least-Cost Modification

The basic computational algorithm as described above can be

modified to-find the least-cost method of producing given levels of
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outputs with specified firm characteristics from the observed data.

Letting Ci = the unit price of input i, the least-cost algorithm is:

Minimize E z
t 

C
i
X
it

t=1 1=1

Subject to: E z Y > Y

t=1 
jt t - js

E z
t 

E C X (0 -Q ) > 0 k = 1, K
t=1

i it *kt -ks -
i=1

T I
E
, 
z
t 

E 
1 it t s 
C.X (S -S )

t=1 i=1
•

z > 0
t -

0

t = 1, ..., T.

Verbally, the problem is to minimize the total cost of production

subject to the constraints that the constructed firm has at least as

much of each specified output and equals or exceeds the various firm

quality constraints.

From the solution values of the z
t
's, the cost-minimizing level of

each input is given by X. = E ztXit. If certain inputs are considered
1

t=1
fixed, they can be included as constraints in the LP model, either as

equalities or inequalities if idle capacity is allowed, and enter the

objective function only as fixed constants.

This procedure allows the computation of least-cost methods of

producing various output combinations with specified firm quality

factors, given input prices, and the production relationships observed

from the cross-section of firms. Instead of minimizing with respect

to one input (or maximizing with respect to one output) as done in

the basic computational approach, all the inputs are weighted by
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their unit prices, and their weighted sum is minimized. A measure of

total economic efficiency results from the solution of the model in

this formulation. For firm n the measure of economic efficiency would

be:

E z
t 

E C
i
X
it

t=1 i=1 
EE
n 
=

E C.X
in

i=1

Alternatively, the quantity E CiXit in the above formulation
i=1

can be replaced by the actual total expenditures of the t
th 

firm.

This approach also yields information about the cost-minimizing_be-

havior observed for the sample of firms. These procedures make the

appropriate link between the production relationships and the cost

relationships for this type of frontier analysis. Revenue maximiza-

tion problems with given levels of inputs can also be formulated and

solved by this algorithm. The same procedure as outlined above could

be used with unit prices of the outputs used instead of input prices.

The Linear-Programming Computer Program:

As shown in Figure 7, the computational procedure for calculating

efficiency measures and frontier multi-product, multi-factor production

and cost relationships results in a very simple linear programming

problem. Since most empirical applications of the frontier technique

involve solving a large number of linear programs, it is desirable to

have a general computer program that reads the production and cost

data for each firm, reads several control parameters describing a

specific application, processes all of this input information, sets
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up the linear programming problems, and uses an LP algorithm as a

subroutine to generate the desired solutions.

The remaining sections of this paper describe and illustrate the

use of the computer program developed for calculating efficiency

measures and frontier production and cost relationships. The FORTRAN

computer program is listed in the final section of this paper. The

alternative modes of operating the program are described, the control

parameters are defined, the input deck structure is laid out, and

several illustrative runs of the program are presented in the follow-

ing sections.

Modes of Operation:

Given the large number of alternative measures of efficiency that

have been defined and the alternative portions of the production surface

that can be calculated, there are several different ways in which the

computer program can be run. Each of the available options are

.described below.

General efficiency option: This option calculates the general

multi-product, multi-factor technical efficiency index for each firm

in the sample. The LP solution value yields the information required

to directly calculate the efficiency index. The LP solution value will

equal -1.0 for firms on the production frontier surface and will be

less than -1.0 for firms not on the surface. Since the LP activities

are firms in the sample, the primal solution also indicates which

frontier firms, when added together with the optimal coefficients of the

primal variables as weights, dominate each of the nonfrontier firms.

Specific efficiency option: This option calculates the technical

efficiency index relative to a specified variable for each firm in the
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sample. The LP solution value yields the optimal value of the specified

variable (minimum value for inputs, maximum value for outputs) with all

of the other variables constrained for the particular firm. For input

variables, the technical efficiency index is calculated by dividing

the firm's actual value for the specified input by the LP solution

value. For input variables, the technical efficiency index is cal-

culated by dividing the LP solution value by the firm's actual value

for the specified output.

Production surface option: This option calculates points on a

portion of the production frontier surface. For example, if the

frontier relationship between one input and one output is desired the

procedure would be to specify the output variable in the objective

function and to solve the LP for alternative values on the RHS of the

input constraint. As illustrated in Figure 8, the program computes

the maximum amount of output 1 for each of the levels of input 1

(Ii, 12, and 13) with all the other outputs, inputs, and qualitative

Output 1

Figure 8: Calculation of the Production Surface

0

0

0

3

2

1

• All other outputs
constant

• All other inputs
constant

• Scale constant
• All qualitative

variables constant

Ii 1
2 

1
3

Input 1
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factors held constant. The three points on the frontier production

surface (01' 
0
2' 

and 0
3
) are calculated in one replication of the

program although the replication requires three linear programming

problems to be solved. If an input is specified in the objective

function and the RHS of an input constraint is varied, an isoquant will

be traced out. If an output is specified in the objective function

and the RHS of an output constraint is varied, a product transformation

curve will be traced out. If an output (input) is specified in the

objective function and the RHS of an input (output) constraint is

varied, a marginal productivity curve is traced out. Similarly, out-

puts or inputs can be specified in the objective function and the RHS

of a quality factor or a scale constraint varied to yield frontier

relationships for the quality and scale factors.

Variable mean option: This option is designed to enable the user

to specify the point at which the production surface is to be cal-

culated. If this option is not used, the RHS of all of the constraints

are set equal to the mean value for each of the respective variables.

The production surface option enables the user to then vary one of the

constraint RHS's. With this variable mean option, it is possible to

change all or several of the constraint variables in order to trace

out different portions of the multi-dimensional production surface.

Least-cost option: This option is designed to trace out a portion

of the frontier cost surface using the per unit cost approach rather

than total expenditures directly. Per unit costs must be inputted for

each input variable that is to be included in total cost for the

objective function. Except for the additional data requirement, this

option has the same procedures and capabilities as the production
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surface option. It is also possible to use this option along with

the specific efficiency option to calculate indices of total economic

efficiency for each firm in the sample.

Control Parameters:

For any run of the computer program, the user must specify several

parameters that control the way the LP problem is to be set up. These

parameters allow the user considerable flexibility in using the program

under the alternative options described above. The control parameters

are listed and defined below:

NVAR = Number of constraint variables in the problem.

ISO = 1 if a production surface run; = 0 if an efficiency

run.

IEF = 1 if a general efficiency run; = 0 if a specific

efficiency run.

IVM = 1 if different variable means are to be read in for

each replication; = 0 otherwise.

ICST = 1 if a "least-cost" run is desired; = 0 otherwise.

ICN = Number of total variables for "least-cost" run;

= 0 if ICST = O.

NREP = Number of replications; = 1 if ISO = O.

NEQ = Number of equality constraints. The equality con-

straint variables must be specified first in INDEX

(*).

INDEX (-) = Index numbers for variables; objective function

variable listed last.

COST (-) = Per unit costs of inputs for "least-cost" option;

omit if ICST = 0.
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VMST (*) = Variable means; listed in same order as INDEX; omit

if IVM = 0.

IFRST = Index number of "isoquant" variable; omit if ISO = 0.

VONE (.) = Three alternative values of "isoquant" variables;

omit if ISO = O.

Input Deck Structure:

The sequence of control parameter cards and data cards are

described below:

CARD 1: NREP, NVAR, ISO, IEF, NEO, ICST, IVM, ICN (Mandatory)

.. 11,1,1311,11111,1.011,L0I.I.0.L.00i l ..j i....1
5 1-0 15 20 25 30 35 40 45 ' 50

The format for Card 1 is 815.

CARD 2: INDEX (.) (Mandatory)

4 -2 103 -1-105
Itiiillijil l i t il 1 1 1 1 1 1 1 L i 1 Lit 1 I I 1 t 1 1 1 1 I I I 1 1 t 1 I i 1 1 1 I 

5 10 15 20 25 30 35 40 '+5 ' 50

The index indicates the position of the desired variable in VST, the

input data matrix (see below). A minus sign indicates that the variable

is used in a > constraint and a positive sign indicates that the variable

is used in a < constraint. Qualitative variables are specified by

adding 100 to the basic index and therefore 103 represents a quality

variable that appears in the 3
rd 

position of VST. The format for Card

2 is 2014.

CARD 3: COST (-) (Optional)

, 1.25  , ,1 0 . 00, 1,12 .0 3,

5 10 15 20 25 30 35

I I'll 11111)11

40 45 50

This card(s) should be included only if ICST = 1. The format is 8F10.2

and if there are more than 8 inputs, use more than one card.
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CARD 4: IDENT (.), (VST(I,.), I = 1, 20). (Mandatory)

140150 697.0 76.6 81 . 2, 24 59. 6 . 0 , 39.0

.5 10 15 • 20 25 30 35 40 45 '50

These cards should be set up in a format most convenient for reading

in the data to be used in the analysis and the READ and FORMAT state-

ment in the program should be appropriately modified. IDENT (.) should

contain an identification number (integer) for each firm included in

the analysis and VST (I,-) should contain a value (real number) for

each of the I variables and for each firm. The program is currently

set up so that an IDENT code of '999999' indicates that all of the data

has been read in. The current format is 16, 9F10.0.

CARD 5: VMST (.) (Optional)

-545.6jiii, 1 11 1 1-1215;121111- 1918,.131113151010i.1011,i-1910.141iiiiiii

5 10 15 20 25 30 35 40 45 50

This card(s) should be included only if IVM = 1. The format is 10F8.0

and if NVAR > 10 more than one card must be used. Note that the sign

of the mean values must correspond to the sign of the appropriate

variable in INDEX (.).

CARD 6: IFRST, (VONE(I), I = 1, 3) (Optional)

5, -500. 0 , ,-546. 0 , -600. 0
IJ IL IL 1 11 till 

5 10 15 20 25 30 35 40 45 50

This card(s) should be included only if ISO = 1. The format is (15,

5X, 3F10.0) and there should be NREP of these cards if ISO = 1. The

first integer on the card refers to the position in INDEX of the

variable to be varied over three values and the following three real

numbers are the values.
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Illustrative Uses of the Program:

To better illustrate the alternative uses of this computer pro-

gram, several runs are described, the input cards laid out, and the

output presented in this section. For these examples, variables 1

and 2 are outputs, variables I and 4 are inputs, variable 5 is a scale

measure, and variable 6 is a qualitative factor. There are 50 firms

in the sample.
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Example 1: A general efficiency run:

CARD 1: 1, 6, 0, 1, 6, 0, 0, 0

CARD 2: -1, -2, 3, 4, 105, -106

CARD(s) 4: DATA

The output of this run is shown on the following pages for the first 3 firms in

the sample. The general technical efficiency indices calculated from the results are:

Firm Solution

1 -1.00

2 -4.78

3 -1.97

Index (-1.0/Solution)

1.000

0.209

0.507

CONTROL PARAMETERS
NUMBER OF REPLICATIONS =
NUMPER OF CONSTRAINT vARTABLES = 6
NUMBER OF EQUALITY CONSTRAINTS = 0
MAxIHUm NumRER OF INPUT VARIABLES FOP LEAST-COST AlA1)RIT104 =

VARIABLE INDEX LIST,
THIS Is NUT AN TSOQUANT RUN

3 4 105 "106 0

THIS IS NOT A LEAST-INPUT..COST RUN

VARIABLE MEANS ARE NOT TO BE READ FOR EACH REPLICATION

NUMBER OF OBSERVATIONS= 50

VARIABLE MEANS...
-4327.3 "1130.8 278.2 15.9 14.1 -2.7
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isTRG nE RATA p4ATpTX

1 1002 "140.0 18c.8 0.0 7.5 -4.0 -2236.0
7 105? -2490.0 560.0 74.0 86.6 -3.0 -3743.0
3 1057 -1068.0 232.2 0.0 77.8 -3.0 -4009.0
4 108Q "111.0 111.5 0.0 4.9 -2.0 -2518.0
5 1090 -937.0 281.5 30.4 12.5 -3.0 -5202.0
6 1101 -1699.0 177.0 0.0 5.2 -3.0 -3039.0
7 1107 "166.0 113.3 0.0 4.6 -2.0 -1716.0
8 1345 '273.0 122.1 5.3 6.4 -2.0 -2063.0
9 1153 -139.0 110.0 0.0 9.9 -2.0 -2262.0
10 1360 -3932.0 256.2 0.0 11.3 -4.0 -4920.0
11 1365 -970.0 280.3 0.0 11.4 -3.0 -4207.0
12 1378 -2447.0 469.0 0.0 16.2 -2.0 0.7324.0
13. 1380 -596.0 183.8 0.0 5.8 -2.0 -2676.0
14 ilHn -117.0 256.0 0.0 18.0 -4.0 -4024.0

15 146 1 -883.0 246.6 14.0 18.0 -4.0 -3637.0

16 1546 -536.0 120.0 0.0 3.3 -2.0 -2176.0
17 1552 -1456.0 113.0 0.0 4.1 m2.0 -1530.0
18 1561 -1521.0 116.3 0.0 4.8 .2.0 -1985.0

1 9 1572 -114.0 302.0 17.0 11.5 -4.0 -4895.0
20 1573 "290.0 100.5 0.0 4.6 -2.0 -1831.0
21 1574 -5466.0 70c.7 40.2 31.3 -2.0 -5382.0
22 1590 -256.0 109.6 0.0 . 5.6 -1.0 -7278.0
23 i599 -470.0 198.2 1.0 7.1 -2.0 -2963.0
24 1601 -589.0 262.0 0.0 10.7 -2.0 -4192.0
25 1616 -228C.0 320.0 0.0 13.0 -2.0 -4598.0-
26 1620, -730.0 275.0 39.0 17.8 -3.0 -4049.0
27 1674 -134.0 507.0 25.1 25.8 -3.0 -7692.0
28 1759 -2376.0 553.4 97.0 37.1 -3.0 -7274.0
29 1806 -769.0 7r.4 0.0 3.5 -2.0 -1655.0
30 1812 -1722.0 114.0 0.0 4.6 -1.0 -1998.0
31 1815 -1903.0 115.0 0.0 10.8 -2.0 -2080.0
32 01 16 -1952.0 121.0 0.0 5.6 -2.0 -2115.0
37$ 1890 -626.0 499.9 12.9 22.7 -2.0 -7443.0
31; 1915 -380.0 222.7 10.1 9.1 -2.0 -3903.0
3':: 1926 -317.0 221.c 7.6 10.5 -4.0 -3878.0
36 1927 "104.0 311.5 9.0 12.9 -3.0 .-4901.0
37 1 949 -1159.0 186.0 2.0 6.8 -2.0 -3444.0
38 195n -4410.0 537.9 0.0 22.4 -3.0 -6946.n
39 1961 -717.0 471i.0 55.0 19.2 -4.0 -6267.0
40 1976 -466.0 266.0 30.0 17.4 •4.0 "5056.0
41 077 -768.0 363.6 28.3 15.5 -3.0 -5758.0
42 2002 -1067.0 4/0.0 42.0 21.7 -3.0 -8737.0
43 2006 -239.0 256.0 0.0 8.3 -2.0 -3572.0
411 2008 -624.0 370.0 69.0 18.0 -4.0 -6380.0
45 2015 -2949.0 449.9 73.1 17.3 -3.0 -8479.0
46 2017 -645.0 285.5 0.0 9.5 -3.0 -4453.0
47 2020 -1067.0 350.7 67.2 15.0 -4.0 -6669.0

-463.0 252.6 11.1 9:9 .3.0 -4641.0
49 2n31 1474.0 470.n 30.0 1.8.6 -4.0 -e824.0

50 2184 0.0 200.0 o.5 6.9 -2.0 -3043.0
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TTFPATTONS= 12

sntuTioN vAtuE= -.100000F+01

1

PRTmAL VARTAFIL1S

.100000F+01

DHAI V4RIPP1 Es

DUAL SLACK cnST sFNUTIvITy
O. -.3188721+00 .1614001+00

pRIf,AL SLACK RrSfIDRCF SrNS1TTVITY

1 n• 0.
2 0. 0.
3 -.518358r"02 0.
4 0. 0.
5 n. 0.
6 -.40Y960r+0C 0.

1 1002
,

TTFPATInNS= 12

sniuTtnN v4101= -.477778F+01

VARIAHLEs
10 .109828F+0C
22 .415812r+n1
29 .1n98?8r+00

toolt VARIAniEs

1 . 000

SI ACK

n.

0.
-.1P5750F+03
0.
n.
-.10000(T+91

.1000001+21

.1000001+21
n.

.100000F+21

.1000001+21
0.

cnST siNcITIVITY
-.107n62E+01 .1458351+00
-.7q6527F-01 .1507311+00
-.154967E+00 .3143851-01

PplmAL SLACK qrsnURcE SENsITTVITy
1 0. .7828291+04 -.7;129291+04 .1000001+21

2 -.280640r-03 0. -.516603E+04 .1181971+04
3 -.9779601-02 0. -.3742141+03 .5060311+03
4 0. .740000E+02 -.7400001+02 .1000001+21
5 0. .3859061+03 -.3A59061+03 .1000001+21
6 •.4414P3r+00 0. -.3A6n54F+00 .2017121+01

2

TTFQATIIINS= 21

1052 0.209

sOtoTTON VALUE= ".1971101+01

DRIPAI VARIABIEs

10 .1377841+00
92 .169553r+01
20 .137784r+00

DUAL SLACK

0.
0.
0.

COST srNsTT1VITY

-.107062E+01 .14,58351+00
-.796527F-01 .150731E+00
-.354967E+00 .314385E-01

nuAL VARTAni Es PRIMAL SLACK iirSflURcr SrNSITTvITY
1 0, .78e9061+13 -.7q69061- +n3 .100000E4'1
2 -.2806401-03 0. -.2106521+04 .5296351+03
3 -.g7/Q601-02 0. -.3761631+02 .2290381+03
4 0. 0. n. .1000001+21
5 0. .432517E+02 ".432917F402 .1000001421
6 -.449483r+00 0. -.1A2788v+00 .8970351+00

3 1057 1.507
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Example 2: A specific efficiency run:

CARD 1: 1, 5, 0, 0, 0, 0, 0, 0

CARD 2: -2, 3, 4, 105, -106, -1

CARD(s) 4: DATA

The output of this run is shown on the following pages for the first 3 firms

in the sample. The calculated technical efficiency indices relative to variable

1 (an output) are:

Firm

1

3

Actual Frontier Index
Value Value (-Actual/Frontier)

2,236 - 2,236 1.000

3,743 -11,824 0.317

4,009 - 4,903 0.818

CONTROL PARAMETEPS
NUMBER nF REPLICATIONS = I
NUMBER OF CONSTRAINT VARIABLES = 5
NUmBER OF FoUALITy CONSTRAINTS = 0
MAXIMUM NUmRER OF INPUT VARIABLES FOR LEAST-COST ALGORITHM = 0

VARIABLE INnEx LIST..,
THIS IS NGT AN ISOQuANT RUN

.2 3 4 105 -106

THIS IS NOT A LEAST-INpUT-cOST RUN

VARIABLE MEANS ARE NOT TO DE READ FOR EACH REPLICATION

NUMBER OF OBSERVATIONS= 50

VARIABLE MEANS...
-1130.8 278.2 15.9 14.1 '2.7 "4327.3
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LISTING OF DATA MATRIX

1 1002 -2236.0 -140.0 185.8 0.0 7.5 -4.0 -1.0
2 1052 -3743.0 -2490.0 560.0 74.0 86.6 -3.0 -1.0
3 1057 -4009.0 -1068.0 232.2 0.0 27.8 -3.0 -1.0
4 100g -2518.0 -111.0 111.5 0.0 4.9 -2.0 -1.0
5 1090 -5202.0 -937•0 281.5 30.4 12.5 -3.0 -1.n
6 1101 -3039.0 -1699•0 172.0 0.0 5.2 -3.0 -1.0
7 1107 -1716.0 -166.0 113.3 0.0 4.6 -2.0 -1.0
8 1345 -2063.0 -273.0 122.1 5.3 6.4 -2.0 -1.0
9 1353 -2262.0 -139.0 110.0 0.0 5.9 ' -2.0 -1.0
to 1360 -4920.0 -3837.0 258.2 0.0 11.3 -4.0 -1.0
11 1365 -4207.0 -970.0 288.3 0.0 11.4 -3.0 -1.0
12 1378 -7324.0 -2447.0 469.0 0.0 16.2 -2.0 -1.0
13 1380 -2676.0 -598.0 183.8 0.0 5.8 -2.0 -1.0
14 1480 -4024.0 -317•0 256.0 0.0 18.0 -4•0 -1.0
15 14h1 -3637.0 -883.0 248.6 14.0 18.0 -4.0 -1.0
16 1546 -2176.0 -536.0 120.0 0.0 3.3 -2.0 -1.0
17 155? -1530.0 -1456.0 113.0 0.0 4.1 -2.0 -1.0
18 1561 -1985.0 -1521.0 116.3 0.0 4.8 -2.0 -1.0
19 1572 -4895.0 -314.0 302.0 17.0 11.5 -4.0 -1.0
20 1573 -1831.0 -290.0 100.5 0.0 4.6 -2.0 -1.0
21 1574 -5382.0 -5466.0 700.7 40.2 31.3 -2.0 -1.0
22 1590 -2278.0 -256.0 109.6 0.0 5.6 -3.0 -1.0
23 1599 -2963.0 -470.0 198.2 3.0 7.1 -2.0 .1.0

24 1601 -4192.0 -589.0 282.0 0.0 10.7 -2.0 -1.0
25 1616 -4598.0 -2285.0 320.0 0.0 13.0 -2.0- -1.0
26 1620 -4049.0 -730.0 275.0 39.0 17.8 -3.0 -1.n
27 167" -7692.0 -134•0 507.0 25.1 25.8 -3.0 -1.0
28 1759 -7274.0 -2378.0 553.4 97.0 37.1 -3.0 -1.0
79 1808 -1855.0 -769.0 78.4 0.n 3.5 ,i2.0 -1.0
30 1812 -1998.0 -1722.0 114.0 0.0 4.6 "1.0 -1.0
31 1815 -2080.0 -1903.0 115.0 0.0 10.8 -2.0 -1.0
32 1816 -2115.0 -1952.0 171.0 0.0 5.6 -2.0 -1.0
33 1890 -7443.0 -626.0 • 499.9 12.9 22.7 -2.0 -1.0
34 1915 -3903.0 -380.0 222.7 10.1 9.1 -2..0 -1.0
35 1926 -3878.0 -317.0 221.5 7.6 10.5 -4.0 -1.0
36 1927 -4901.0 -304.0 311.5 9.0 12.9 -3.0 -1.0
37 1949 -3444.0 -1159.0 188.0 2.0 6.8 -2.0 -1.0
38 1,950 -6946.0 -4410.0 537.9 0.0 22.4 -3.0 -1.0
39 1963 -8267.0 -717.0 474.0 55.0 19.2 -4.0 -1.0
40 1976 -5056.0 -486.0 268.0 10.0 17.4 -4.0 -1.0
41 1977 -5258.0 -768.0 363.6 28.3 15.5 -3.0 -1.0
42 2002 -8737.0 -1067.0 470.0 42.0 21.7 "3.0 -1.0
43 2006 -3572.0 -239.0 258.0 0.0 8.1 -2.0 -1.0
44 2008 -6380.0 -624.0 370.0 69.0 18.0 -4.0 -1.0
45 2015 -8479.0 -2949.0 449.9 73.1 17.3 .3.0 -1.0
46 2017 -4453.0 -645.0 285.5 0.0 9.5 '3.0 -1.0
47 2020 -6669.0 -1067.0 350.7 67.2 15.0 -4.0 -1.0
48 2024 -4641.0 -463.0 252.6 11.1 9.9 -3.0 -1.n
49 2031 -8824.0 -1474.0 470.0 30.0 18.6 -4.0 -1.n
50 2184 -3043.0 0.0 200.0 0.5 6.9 -2.0 -1.0
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TTFRATTONS= 19

SOLUTION VALuE= -.223600r+04

PRIPA1 VARIABLES
1 .100000F+01

DUAL VARIABLES

O.
2 -.120377E+02
3 O.
A -030797E+00
5 -.853991F+00

1

TTERATIoNS= 12

1002

DUAL SLACK
O.

PRIMAL SLACK

o.
o.
o.
0.
o.

SOLUTION VALUE= -.118245E+05

PRIMAL VARIABLES
10 .120168E+01
29 .318721r+01

nuAL VARIABLES
1 0.

2 -.211153E+02
3 0.
4 O.
5 -.108036F+00

2

TTERATIONS= 19

1052

1.000

DUAL SLACK
O.
O.

PRIMAL SLACK
.456581E+04

0.
.740000E+02
.936607E+06
O.

SOLUTION VALUE= -.490296E+04

PRIMAL VARIABLES
10 .498269E+00
29 .132155E+01

DUAL VARIABLES
1 O.
2 -.211153F+02
3 o.
4 0.
5 "9108036E+00

3

0.317

DUAL SLACK
O.
O.

PRIMAL SLACK
.185764E+04
O.
O.
.100014E+06
O.

1057 0.818

0.
us.185750E+03
O.
-.968817E+04
-.100000E+21

COST SENSITIVITY
-.942017E+03 .615227F+03

RESOURCE SENSITIVITY

.100000E+21
O.
.100000E+21
O.
0.

COST SENSITIVITY

-.119184E+04 .116718E+02
••100000E+21 .580863E+02

RESOURCE SENSITIVITY
-.456581E+04 .100000E+21
...362376E+03
$$.740000E+02
**.936607E+06
...106716E+05

.100000E+21

.100000E+21

.100000E+21

.132568E+05

COST SENSITIVITY
.P.119184E+04 .116718E+02
...100000E+21 .580863E+02

RESOURCE SENSITIVITY
-.185764E+04 .100000E+21
-.147436E+03 .100000E+21
O. .100000E+21
•.100014E+06 .100000E+21
...442491E+04 .549682E+04
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Example : A production surface run:

CARD 1: 1, 5, 1, 0, 0, 0, 0, 0

CARD 2: -2, 3, 4, 105, -106, -1

CARD(s) : DATA

CARD 6: 2, 200.0, 300.0; 400.0

The output of this run is shown on the following pages. The resulting portion

of the frontier production surface is illustrated below.

8,000

X
1

(an output) 6,000

4,000

2,000

X
2 
(an output) = 1,131

- 
X
4 
(an input) = 15.9

X
5 
(a scale factor) = 14.1

X (a qualitative factor)

1

100 200 300 400

X
3

(an input)

CONTROL PARAMETERS
NUMBER OF REPLICATIONS = 1

NUMBER OF CONSTRAINT VARIABLES .7. 5
NumBER OF EQUALITY CONSTRAINTS = 0
MAXIMUM NUMBER OF INPUT VARIABLES FOR LEAST"COST ALGORITHM m0

VARIABLE INDEX LIST... .02 3 4 105 "106 "/
THIS IS AN ISOAUANT RUN

THIS IS NOT A LEAST.INPUT-COST RUN

VARIABLE MEANS ARE NOT TO RE READ FOR EACH REPLICATION

NUMBER OF OBSERVATIONS= 50

VARIABLE MEANS...
"1130.8 278.2 1569 14.1 "2.7 "4327.3
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The listing of the data matrix for this example is exactly the same as the

listing for the previous run.

iso-RuN VARIABLE INDICATOR AND VALUES

2 200. 300.

TTERATioNS= 18

SOLUTION VALuE: -.434511E+04

PRIMAL VARIABLES

to .326766F+00
29 .147570E+01

DUAL VARIABLES

1 O.
2 -.217255E+02
3 0.

0.
5 -.111159E+00

TTEpATioNS= 17

DUAL SLACK

O.
o.

PRIMAL SLACK

.125622E+04
0.
.158538E+02
.334242E+05
0.

SoLuTIoN VALUE= -.651766E+04

10
29

PRIMAL VARIABLES

.490149F+00

.221354E+0t

DUAL vARIABLES

1 0.
-.217255F+02

3 o.
4 0.
5 -.111159E+00

TTEpATTEINS= 18

DUAL SLACK
O.
O.

PRImAL SLACK
.244971E+04
O.
.158538E+02

.501363E+05
0.

SOLUTION VALUE= -.869021E+04

PRIMAL VARIABLES

10 .653532F+00
29 .295139E+01

DUAL VARIABLES
1 O.

-•217255E+02
3 O.
4 O.
5 -.111159E+00

DUAL SLACK

O.
O.

PRIMAL SLACK

.364320E+04
O.
.158538E+02
.668484E+05
O.

400.

COST SENSITIVITY

-.119184E+04 .120126E+02

-.100000E+21 .594890E+02

RESOURCE SENSITIVITY

-.125622E+04
-.1n5256E+o3
-.158538E+02
-.334242E+05
-.4;40223E+04

.100000E+21

.100000E+21

.100000E+21

.100000E+21

.350357E+04

COST SENSITIVITY
-.119184E+04 .120126E+02

-.100000E+21 .594890E+02

RESOURCE SENSITIVITY

-.244971E+04 .100000E+21

-.205256E+03 .100000E+21
-.158538E+02 .100000E+21

-.501363r+05 .100000E+21
-.790335E+04 .525536E+04

COST SENSITIVITY

-.11.9184E+04 .120126E+02
-.100000E+21 .594890E+02

RESOURCE SENSITIVITY

-064320E+04 .100000E+21

-.305256E+03 .100000E+21
-.158538E+02 .100000E+21

-.668484E+05 .100000E+21

-.960446E+04 .700715E+04



Example 4: 4: A production surface run with variable means:

first
replication

second
replication

CARD 1: 2, 5, 1, 0, 0, 0, 1, 0

CARD 2: -2, 3, 4, 105, -106, -1

CARD(s) 4: DATA

CARD 5: -1130.8, 278.2, 15.9, 14.1, -2.0

CARD 6: 2, 200.0, 300.0, 400.0

CARD 5: -1130.8, 278.2, 15.9, 14.1, -4.0

CARD 6: - 2, 200.0, 300.0, 400.0

The data listing for this run is exactly the same as the listing for example

2. The output of this run is shown on the following pages. The resulting portions

of the frontier production surface are illustrated below.

10,000 X
6 
= 2.0

X
2 
(an output) = 1,131 (a quality factor)

X (an input) = 15.9
8,000 4 X

6 
= 4.0

X
5 
(scale) = 14.1

X
1

(an output) 6,000

4,000

2,000

200 300 400

X
3

(an input)

CONTROL PARAMETERS
NUMBER OF REPLICATIONS = 2
NUMBER OF CONSTRAINT VARIABLES = 5
NUMBER OF EQUALITy CONSTRAINTS 0
MAXIMUM NUMRER OF INPUT VARIABLES FOR LEAST-COST ALGORITHM =0

VARIABLE INDEX LIST...
THIS IS AN ISpAUANT RUN

•2 3 4 105 "106 m1

THIS IS NOT A LEAST-INPUT-COST RUN

VARIABLE MEANS ARE TO BE READ FOR EACH REPLICATION

NUMBER OF OBSERVATIONS= 50

'VARIABLE MEANS
m1130.8 278.2 15.9 14.1 "2.7. "4327.3
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vARIANF MEANS FOR THIS REPLICATION
-1130.8 278.2 15.9

ISO.RUN VARIABLE INDICATOR AND VALUES
2

TTERATIONS= 16

SOlUTION VALUE= ..473456E+04

PRIMAL VARIABLES
29 .255232E+01

DUAL VARIABLES
1 O.
2
3
4 O.
5 si.121122F+00

TTERATIONS= 14

-.236728E+02
O.

200. 300.

DUAL SLACK
O.

PRIMAL SLACK

*P31936E+03
O.
•159000E+02
.500588E+05
0.

SOLUTION VALUE: •.710184E+04

PRIMAL VARIABLES
29 .382848E+01

DUAL VARIABLES

0.
2 -.236728F+02
3 O.
4 0.
5 O.

TTFRATTONS= 15

DUAL SLACK
O.

PRIMAL SLACK
.181330E+04
O.
.159000E+02
.750882E+05
-.745058E-08

SOLUTION VALUE= •.946912E+04

PRIMAL VARIABLES
29 .510465F+01

DUAL VARIABLES
0.

2 -.236728E+02
3 O.
4 O.
5 O.

DUAL SLACK
O.

PRIMAL SLACK
.279467E+04
O.
.159000E+02
.100118E+06
.186265E-'06

14.1 -2.0 0.0

400.

cnsT SENSITIVITY
-.100000E+21 .638794E+02

RESOURCE SENSITIVITY

-,s31936E+03 .100000E+21
-.847731E+02
-.159000E+02
-4-500588E+05
4.762259E+04

.100000E+21

.100000E+21

.100000E+21
O.

cnsT SENSITIVITY
-.100000E+21 .851993E+02

RESOURCE SENSITIVITY

'1'181330E+04 .100000E+21
l'o160000E+02
-.159000E+02
-.790882E+05
.745058E-08

.100000E+21

.100000E+21

.100000E+21

.100000E+21

cnsT sENsiTivrry
-.1n0000E+21 .853993E+02

RESOURCE SENSITIVITY
.4,279467E+04 .100000E+21
-.228571E+03
*i.159000E+02
-.100118E+n6
-.186265E-06

.100000E+21

.100000E+21

.100000E+21

.100000E+21



VARIABLE MEANS mEANs FnR THIS REPLICATION
-1130.8 278.2 15.9

Tsn-RuN VARIABLE INDICATOR AND VALUES
2 200. 300.

TTEpATTDNS= 19

SOLUTION VALUE= -.381129E+04

PRIMAL VARIABLES
10 .774653E+00

DUAL vARIABlES
1 O.
2 -.190565E+02
3 0.
4 0.
5 -.975027E-01

TTERATToNS= 26

DUAL SLACK
O.

PRIMAL SLACK
.183767E+04
0.
.159000E+02
.105314E+05
O.

SOLUTION VALUE= -.571694E+04

10

PRIMAL VARIABLES

.11619er+01

nuAL VARIABLES
0.

2 -.190565E+02
3 0.
4 0.
5 -.975027E-01

TTERATTnNS: 26

DUAL SLACK

0.

PRIMAL SLACK
.332191E+04
O.
.159000E+02
.157971E+05
0,

SOLUTION VALUE= -.762259E+04

PRIMAL VARIABLES
10 .154931E+01

DUAL VARIABLES

0.
2 -.190565E+02
3 0.
4 0.
5 -.975027E-01

DUAL SLACK
0.

pRIMAL SlACK
.460614E+04
0.
.159000E+02

• .210628E+05
0.

14.1 00 0.0

400.

COST SENSITIVITY
-.119184E+04 .105237E+02

RESOURCE SENSITIVITY
-.183767E+04
-.123813E+03
-.159000E+02
-.105314E+05
-.252288E+04

.100000E+21

.100000E+21

.100000E+21

.100000E+21
0.

COST SENSITIVITY

'',119184E+04 .105237E+02

RESOURCE SENSITIVITY
...312191E+04
.223813E+03

".159000E+02
••157971E+05

...378432E+04

.100000E+21

.100000E+21
.100000E+21
.100000E+21
O.

CoST SENSITIVITY

-.119184E+04 .105237E+02

RESOURCE SENSITIVITY
-.480614E+04 .100000E+21
-.323813E+03
•.159000E+02
-.210628E+05
...504577E+04

.100000E+21

.100000E+21

.100000E+21
O.
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Example 5: A total economic efficiency run:

CARD 1: 1, 4, 0, 0, 0, 1, 0, 6

CARD 2: -1, -2, 105, -106, 3, 4

CARD 3: 20.0, 10.0

CARD(s) 4: DATA

The output of this run is shown on the following pages for the first 3 firms

in the sample. The total economic efficiency indices are:

Firm

1

2

Actual Frontier Index
Cost Cost (Frontier/Actual)

3,715 3,715 1.000

11,940 3,677 0.308

4,644 3,753 0.808

CONTROL PARAMETERS
NUMBER OF REPLICATIONS m 1
NUMBER OF CONSTRAINT VARIABLES = 4
NUMBER OF EQUALITY CONSTRAINTS m 0
MAXIMUM NUMBER OF INPUT VARIABLES FOR LEAST"COST ALGORITHM a 6

VARIABLE INDEX LIST... .4 "2 105 '.106 3
THIS IS NOT AN ISOQUANT RUN

THIS IS A LEASTmiNPUTP.COST RUN

VARIABLE MEANS ARE NOT TO RE READ FOR EACH REPLICATION

INPUT PRICES FOR COST ANALySIG
20.00 10.0.0

NUMBER OF OBSERVATIONS= 50

VARIABLE MEANS...
04327.3 "1130.8 14.1 "2.7 278.2 15.9
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LISTING riF DATA MATRIX

1 1002 -2236.0
2 1052 "3743.0
3 1057 "4009.0
4 1089 -2518.0
5 1090 -5202.0
6 1101 -3039.0
7 1107 -1716.0
8 1345 -2063.0
9 1353 -2262.0
10 1360 4920.0
11 1365 -4207.0
12 1378 •i7324.0
13 1380 -2676.0
14 1480 •4024.0
15 1481 ..3637.0
16 1546 "P2176.0
17 1552 •1530.0
18 1561 m1985.0
19 1572 "4895.0
20 1573 -1831.0
21 1574 -5382.0
22 1990 "2278.0
23 i599 "2963.0
24 1601 "4192.0
25 1616 -4598.0
26 1620 -4049.0
27 1674 -7692.0
28 1759 "7274.0
29 1808 -1855.0
30 1812 uP1998.0
31 1815 -2080.0
32 1816 si2115.0
33 1890 ..7443.0
34 1915 ..3903.0
35 1926 • e•3878.0
36 1927 -4901.0
37 1949 -3444.0
38 195n ..6946.0
39 1963 "8267.0
40 1976 -5056.0
41 1977 "5258.0
42 2002 •8737.0
43 2006 ..3572.0
44 2008 -6380.0
45 2015 "8479.0
46 2017 -4453.0
47 2020 -6669.0
48 2024 "4641.0
49 2031 u.8824.0
50 2184 m3043.0

▪ 140.0
-2490.0
-.1068.0
-113.0
-937.0
-1690.0

166.0
273.0

-139.0
-3832.0
-970.0

-2447.0
-598.0
-317.0
.883.0
-536.0

.1456.0
-1521.0
•314.0
"290.0
"5466.0
"256.0
470.0

•589.0
-2285.0
-730.0
**134.0

-2378.0
-769.0

•1722.0
-1903.0
mi1952.0
"626.0
•'380.0
"317.0
-304.0
-1159.0
-4410.0
-717.0
-486.0
"768.0
-1067.0
-239.0
-624.0

-2949.0
-645.0
1067.0
*461.0
1474.0

0.0

7.5
86.6
27.8
4.9
12.5
5.2
4.6
6.4
5.9
11.3
11.4
16.2
5.8
18.0
18.0
3.3
4.1
4.8
11.5
4.6
31.3
5.6
7.1
10.7
13.0
17.8
25.8
37.1
3.5
4.6
10.8
5.6
22.7
9.1
10.5
12.9
6.8
22.4
19.2
17.4
15.5
21.7
8.3
18.0
1.7.3
9.5
15.0
9.9
18.6
6.9

-4.0
-3.0
-3.0

-3.0
-3.0
"2.0
-2.0
"2.0
-4.0
-3.0
-2.0
-2.0

-4.0
*2.0
-2.0
a'2.0
-4.0
-2.0
"2.0
•"3.0
2.0

-2.0
2.0

-3.0
-3.0
-2.0
"1.0
u.2.0
-2.0
mP2.0
-2.0

-3.0
"2.0
"3.0

"3.0
u.3.0
"2.0

"3.0
*3.0
4.0

-3.0

"2.0

3715.0
11940.0
4644.0
2230.0
5934.0
3440.0
2265.0
2495.9
2200.0
5163.6
5765.0
9360.0
3675.0
5120.0
5112.0
2400.0
2260.0
2325.0
6210.0
2010.0
14416.0
2192.0
3994.8
5640.0
6400.0
5890.0
10391.0
12037.8
1567.2
2280.0
2300.0'
2420.0
10127.0
4554.5
4506.0
6320.0
3780.0
10757.0
10030.0
5660.0
7554.7
9820.0
5160.0
8090.0
9729.0
5710.0
7686.2
5163.0
9700.0
4004.0
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TTERATToNS2 6

SOLUTION VALUE= .3715001+04

PRIMAL VARIABLES
1 .100000E+01

DUAL VARIABLES
1 '-.1661451+01
2 O.
3 0.5849111+00
4 0.1824371+01

100?

iTFRATToNS2 9

DUAL SLACK
0,

PRIMAL SLACK
O.
O.
O.
O.

SOLUTION VALUE= .367731E+04

PRIMAL VARIABLES
10 .356080F+00
29 .750044F+00
31 .288343E+00

DUAL VARIABLES
-.633102E+00

2 °.525145E+00
3 O.
4 0.704540102

105?

iTERATToNSr 7

1.000

DUAL SLACK
O.
O.
O.

PRIMAL SLACK
O.
O.
.786444E+06
0.

SOLUTION VALUE= .3752931+04

PRIMAL VARIABLES
10 .3634031+00
29 .1197341+01

DUAL VARIABLES
1 -.936127E+00
2 O.
3 0.
4 -.1080361+00

3 1057

3.247

DUAL SLACK
0.
O.

PRIMAL SLACK
0.
.124531E+04
.765550E+05
O.

1.237

COST SENSITIVITY
0.964082E+03 .100000E+21

RESOURCE SENSITIVITY
i".1000001+21
O.
0.100000E+21
0.100000E+21

O.
.100000E+21
O.
O.

COST SENSITIVITY
•.722502E+02 .209446E+04
0.672424E+03 .100188E+03'
0.601341E+03 .419511E+02

RESOURCE SENSITIVITY
*.572205E+03 .796629E+03
0.673237E+03 .330179E+03
0.286444E+06 .100000E+21
0.171690E+04 .365159E+04

COST SENSITIVITY
-.100693E+04 .212791E+03
"013440E+04 .820369E+02

RESOURCE SENSITIVITY
0.100000E+21 .215814E+04
0.124531E+04 .100000E+21
-.765550E+05 .100000E+21
0.420749E+04 .338701E+04
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Example 6: A cost surface run:

CARD 1: 1, 4, 1, 0, 0, 1, 0, 6

CARD 2: -1, -2, 105, -106, 3, 4,

CARD 3: 20.0, 10.0

CARD(s) 4: DATA

CARD 6: 1, -2000.0, -4000.0, -6000.0

The output of this run is shown on the following pages. The data listing for

this run is identical to the listing for example .5. The resulting portion of the

frontier cost surface is illustrated below.

6,000

Cost 4,000

2,000

X
2 
(an output) = 1,131

- 
X
5 
(scale) = 14.1

X
6 
(a quality factor) = 2.7

2,000 4,000 6,000

xi
(an output)

CONTROL PARAMETERS
NUMBER OF REPLICATIONS = 1
NUMBER OF CONSTRAINT VARIABLES 2 4
NUMBER OF EQUALITY CONSTRAINTS = 0
MAXIMUM NUMBER OF INPUT VARIABLES FOR LEAST-COST ALGORITHM =6

VARIABLE INDEX LIST... -1 -2 105 -106 3
THIS Is AN ISOQUANT RUN

THIS IS A LEAST-INPUT-COST RUN

VARIABLE MEANS ARE NOT TO RE READ FOR EACH REPLICATION

INPUT PRICES FOR COST ANALYSIS
20.00 10.00

NUMBER OF OBSERVATIONS= 50

VARIABLE MEANS...

..4327.3 "P1130.8 14,1 -2.7 278.2 15.9
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ISo-RoN vARIARLF INDICATOR AND VALuES
-2000. -4000.

TTERATioNS= 11

SOLUTION vALuE= .1856621+04

10
29
31

PRImAt VARIABLES

.t33037F+00

.6572271+00

.6072311-01

DuAl vARIABIEs
1 -.631945E+00

2 -.524185E+00
3 0.
4 -.703252r-02

TTERATToNS= 13

DUAL SLACK

0.
0.
0.

PRIMAL SLACK
0.
0.
.1326441+05
0.

snLUTToN VALUE= .364220E+04

PRIMAL VARIABLES
10 .2609831+00
29 .1464131+01

DUAL vARIAR1 ES

1 -.9105501+00

0.
3 0.
4 "•1050851+00

TTERATIoNs= 10

DUAL SLACK
0.
0.

PRIMAL SLACK

0.
.995244E+03
.280172E+05
0.

SOLUTION VALUE= .546330E+04

PRIMAL VARIABLES
10 .391475E+00
29 .2196201+01

DUAL VARIABLES

1 -.910550E+00
2 0.
3 0.
4 -.1050851+00

DUAL SLACK
0.
0.

PRIHAL SLACK
0.
.205825E+04
.420258E+05
0.

cnsT SENSITIVITY
-.722502E+02 .198539E+04
-.663057E+03 .1001881+03
-.594911E+03 .41g5111+02

RESOURCE SENSITIVITY
-.127484E+03 .6895841+03
-.595043E+03 .677578E+02
-.132644E+05 .100000E+21
-.3622321+03 .136678E+04

COST SENSITIVITY

-.100693E+04 .205789E+03

-.248762E+04 .8026941+02

RESOURCE SENSITIVITY
-.100000E+71
-.995244E+03
-.280172E+05
-.528954E+04

.187252E+04

.100000E+21

.100000E+21

.250076E+04

cnsT SENSITIVITY
"6100693E+04 .2057891+03
-.248762E+04 .802694E+02

RESOURCE SENSITIVITY
-.100000E+21 .387257E+04
-.205825E+04 .100000E+21
-.420258E+05 .100000E+21
-.793431E+04 .3751141+04
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The Computer Program

The computer program for this algorithm is listed on the follow-

ing pages. The program is written in FORTRAN and it should be

compatible with most computer systems. The author has run the program

on a Burroughs 6700, an IBM 360/165, and a CDC 6400. A card deck for

the program along with the sample data and control cards for the six

illustrative examples are available upon request from the author.
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rnmvoN v(51,200),K(400),1(200),J(200),TS(200),F1(50),
1F(400),F,Ymp -LL,M,M1,m2,N,N1,N2,1.14,IDPPIX2,NO•NS,
211P1S,ITC,NSI,NL,KAME,INvT
FITHINsinN INDFY(20),VMEAN(20),IDENT(200),VST(21,200),
1VINE(10),VmST(20),COST(20)
RFAP(5,10) NRFp,NVAR,ISO,IFF,NEQ'TcsT,Tvm,IcN

10 FnRmAT(3I5)
KvAR=INVAR+1
READ(5,20) (INnEX(II),II=1,20)

20 FORMAT(2014)
TCY = ICN KVAR + 1
TF(ICSI.EQ.1) READ(5,30) (COST(II),II=1,Icy)

30 FORmAT(AF10,2)
wRTTF(6,40) NREP,NVAR,NEQPICN,

1(TNDEY(II),II=1,KVAR)
40 FoRmAT(01,1 CONTROL pARAmETERS',/,10X,fNUMRFR OF ',

1 ,RIPLICATION5 =',I4,/,10y,INUmRER OF CONSTRAINT I,
2'vARIARLES = 1 04,/,1nx,INUMBER OF EQUALITY 1,
PcnNsTRAINTS =',I4,/.10X,I MAXImUm NUMBER OF INPUT VARIABLES
btFOR tEAST.COST ALGORITHM =104,/,/,1x, 'VARTABLE 1,
5' INDEX LIST...',5X,20I5,/)
TF(ISO.E().0)
TE(ISO.FQ.1)
TF(ICST.E0.0)
TF(ICST.Eo.1)
TF(IVM.EQ.0)
IF(Ivm.FQ.1)

WRITE(6,50)
WRITE( 6,60)
WRITE(6,70)
WRITE(6,80)

WRITE( 6,90)
wRITE(6,100)

50 FORMAT(1X,ITHIS IS NOT AN TSOQUANT RUN',/)
60 FoRMAT(1X,'THIS IS AN ISrQUANT RUN',/)
70 FORMAT(1XOTHIS IS NOT A LEAST-INPUT-COST RUN''/)
An FnpmAT(1X,'THIs IS A LEAsT-INPUT-COST RUN',/)
90 FORMAT(1X0VARIABLE mEANs ARE NOT TO RE READ FOR EACH

l'REP1ICATIPN',/)
100 FORMAT(lx,'vARTABLE mEANs ARE TO RE READ FOR EACH PEPLICATION',/)

TE(ICST.E;).1) wRITE(6,110) (CDST(II),IT=1,T0X)
110 FoRMAT(tX,IINpUT PRICES FOR COST ANALySTS',/,

15xplor10.2,/,5x,10F10.2,/)
nn 120 II=1,31
nn 120 JJ=1,200

120 V(II,JJ)=0.0
nn 130 II=1.00

130 VmEAN(II)=0.0
IF(IFF.F0.1.) K\/AR = KVA'? - 1
NN=0
TF(IrsT.E(1.1) KVAR=IcN

17n NN=NN+1
READ (5,140) IDENT(01),(VST(II,NN),II=1.6)

140 FORMAT (I6.4x,2F10.0,/p1no2F10.2,/,60xpri0.6./p30x,F10.0,/)
IF(InFNT(NN).GT.999998) GO TO 150
nn 160 II=1,KvAR
KK=TABS(INnEY(TI))
TF(KK.GT,100) KK=KK-1UU
sGN=1.0
Ir(INDEX(IT).1T.0) SGN=-1.0
V(TI,NN)=S1N*VST(KK,NN)
VVEANCIT)=vMFAN(II)+V(II.NN)

160 CONTINUE
GO To 170

150 KNT=NN-1
w14ITF(6,11n) KNT
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180 F0RMAT(1X,'NUMRER OF O3SFRVATIONS= 9,I6,/)

nn 190 ii=1,KvAR
190 vmEAN(IT)=vmEAN(II)/FLOAT(KNT)

wRTTF(6,20(1) (vmEAN(TI),1I=1,KvAR)
700 FoRmAT(1WvARTABLE mEANs...,,/,5x,10F1n.1,/,

15x,1orlo.1.1)
TF(IFF.FQ.1) KvAR = KVAR 1
TF(IC5I.EQ.1) KVAR=NVAR+1
M=K VAR
TF(ICST,E0,0) GO Tn 210

nn 220 II=1PKNT
HOLD=0.0
KK=0
nn 230 JJ=KVAR,ICN
KK=KK+1

230 HOLD = HOLn + (COST((K)kV(JJPIT))
VCKVARATIY=HOLn

220 coNTINUE
210 N=KNT+1

m2=NEQ
N2=0
Np.10
KAME=0
TOP=0
INVT=0
NST=0
71=1.0E-8
WRITE(6,240)

740 FoRvAT(IHWLIsTING nF nATA mATRixt,/,/)
nn 250 II=1,KNT
Tr(IFF.F0.1)v(m,II)=mt.0
wRITF(6,260) TtpIDFNT(TI)0(V(JJ,TI),JJ=1,KvAR)

260 FnRt4 tT(Ixpi3,TA,2x,1)F10.1,/,i4X,inFloo,/)

790 cnNTTNUE
nn 270 ITs1p4
Do 270 JJ=1,N

270 VsT(II,JJ)=V(II,JJ)
DO 280 TI=1pKVAR

280 vmsT(TI)=999.9
nn 290 NR=IpNRFP
KNTA=KNT
TF(IS.O.F(4.0) GO TO 3000 %**CHANGE0 FROM 300 To 3000

KNTA=3
IF(IVM$FA4,1) RFAD(5,310) (VMSI(IT),I1=1,KVAR)

310 FnRMAT(10F14$0)
TF(TVM•FQ61) WRITE(6,315) (VMST(TI),II=IpKVAR)

3/9 FORMAT(1H4OVARIABLE MEANS FOR THIS REPLICATION',/,10

$))
RFAD(5,320) IFRST,(VONE(TI),II=1,3)

320 FORNAT(I5p5Xp3F10.0)
WRITF(6,330) IFRSTp(VONE(II),IT=1,3)

330 FORMAT(IHOOIS0•RUN vARIABLE INDICATOR AND VALUES',/,

1ioX,T5,5X,10F10.0,/)
nn 340 TI=1,1<vAR
IF(VMST(IT),NFe999•9) VMFAN(II)=VMST(1I)

340 CONTINUE
3000 no 350 NA=IpKNTA %** CHANGED FROM 300 To 3000

iF(isO.FQ.0) GO 10 360
VHDLII=VMEAN(IFRST)
VMEAN(IFRST)=VONE(NA)

(5)01 F10•1 p/
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360 on 370 II=1,M
DO 370 JJ=IPN

370 v(//,JJ)=vST(II,JJ)
on 380 II=IPNVAR
V(II,N)=VST(II,NA)
TFCISOIrEQ.1) V(II,N)=VMEAN(II)
KK=IABS(INDEXCII))
IF(KK.LTelOO) GO TO 380
VCII,N)=0,0
no 390 JJ=1,KNI
XA=VST(II,JJ)*VST(KVAR,Jj)
XR=VMEAN(IT)*VST(KVARPJJ)
IF(ISO.EQ4.0) X8=VST(II,NA)*VST(KVAR,jj)
SGN=1,0
IF(INOEX(II).LT.°) SGN=•1•0

VCII,J,OnSGN*CABSCXAP.ABS(XB))
390 CONTINUE
380 CONTINUE

VCKVARPN)=0.0
CALL LINEAR
IFCISO.FQ.1) VMEAN(IFRST)=VHOLD
rFclso.EQ.1) GO TO 350
FFF=999.0
VL=VCM,N)
IF(VL.NE.0.0) EFF=ABS(VST(KVARANA))/ABS(VL)
WR/TE(6,400) NAPIDENT(NA),EFF

400 FORMAT(/P2XP2I10,F15.3,/,/)

350 CONTINUE
290 CONTINUE

STOP
FND

SUBROUTINE LINEAR
COMMON vu1,2o0),K(400)pi(200),J(200),Tw00),F1(20),
1F(400),PYm,zLim,141,m2,N,N1,N2,LH,ToP,/x2,No,NP
21I,LSJPITC,NSI,NL,KAME,INvT

CONTROL PROGRAM AND INDEX SELECTION

4 CALL READIN
GO in 13
EXECUTE PIVOT TRANSFORMATION

8 ITC=ITC+1
TF(ARS(V(LTPLS))•GToZL)G0 TO 9

801 V(LTPLS):10.0
Nr1=NO+1
Go TO 13

9 CALL TRANS
INTERMEDIATE TABLEAU PRINT OUT
IFOOP.EQ.1)CALL PRINT
INDEX SELECTION
TAKE CARE OF ZL WIPEOUT

13 IF(NO.LTO)GO TO 12,
KC=NO".(2*(NO/2))
L1=K(N0saKC)
L2=K(NO..1+KC)
IF(VCL1PL2).E0.00NO2N0m1

12 IF (NO.GT.2) GO TO 47

IF CNO•E-0.1) GO TO 27
No IS ONE
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19 Nn = 2
TnYir.N1+1
TnY2r. 4 " 1

.1:1 21 IR=I1x1,TnX2
lq IF (v(IR,N).LT.O.) Gi TO 24

IF (V(IR,N).10.n.) G1 Ti) 21
19 IF (IR.LE.!H) r,n To 21
,0 IF" (T(IR).1 F.m2) Gr. rJ 24
1 1 cnNTTNIIL

K(?) = m
r,n In 2/

*.)4 K(7) = II

Nn Is fira
T7 JR = K(2)

4TOYI m1

TOX2 = N I
HsT=n
nn 3Q IC=I1X1p1OX2

31 IF (v(IR'Ir).GT.0.) ln Tn 31
IF (v(IRpIr).1^,.0.) In 39

32 Tv (TR.F).$4) Gn TO 44.
31 IF (V(IP,N).G1.0.) G1 TO 36

nn In a4
14 IF (IP.10.0) GP TG 3;
35 IF (V(IRPN).GT.0.) G1 10 44
36 TF (TC.1L.LH) GO Ti) 39
17 IF (J(IC).,IT.N2) Gn 1.1) 3:
14 TF(AIRS(V(T11,TC)).0".Sr)G0 TO 39
45 psT=APS(V(TR•TC))

K( 1)IC
39 CONTINUE

TF(PST.GI.r..)(In TO CI
FINAL PRINT OUT
IF (K(?).NF.H) GO TO 42
Gn 111 43

41 Frip4AT(f0 TNcnNsIsTENT CnNSTRATNTst/(2nT6)
42 wRTIF (6,41) T(IR),(1(IT),IT=1.LH)
43 T1111.7.0

CALL PRINT
RETURN
Nn = 3
Nn AT LEAST THRIE

a7 Kc = Ni) - C2 * (NO / 2))
IF (KC.FQ.n) Grl TO 1?1
Nn nnr
srT scANNING sE(MENu'

51 TnYi = Ni +
inY2 = NO - 4
TnY3 = 4 - 1
IF (I(YX2.GT.0) GO TO 59

S. Ns .= IOX3 - NI
nn 57 TR=1,NS

57 IsCIP) = IP + 141
nn To 69

59 NS = 0
no 67 ip=inx1,TnX3
nn 64 IC=1,I1)(2,2
TOYCn1 = KCIC)
IF (V(IR•InxC01 ).NF.).) GO TO 67

64 cnNTTNuF
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Ns = NS +
TS(NS) = IR

67 CrINTTNUE
DETERMINE TRANSFORMATION

69 Ls = K(NO)
11 = K(NO-1)
12 K(NO-?)
IF (Li.NE.m) GO TO 77

73 FxTREm=1.0r20
TI (V(L1,LS).1E.0.) q0 10 78

75 FXTREm = -FxTRFm
Gil TO 78

77 ExTREm = v(L1,1.2) / V(L1,LS)
78 IT = El

no 109IR=1,NS
IDXR = IS(IR)
IF (v(IOXR,LS).EQ.O.) GO TO 109

82 RATIn = V(IDXR,L2) / V(InXR,1S)
DECISION NIT
IF (RATIO.LT.0.) GO TO 105
IF (RATIO.GT.0.) GO TO 102

A5 Tr (Is.LE.LH) GO TO 57
86 IF (J(LS).LE.N2) GO TO 90
87 IF (TpxR.Lr.LH) GO To 94
88 /IF (I(IoXR).GT.m2) GO TO 94

SIT TRANSFORMATION
90 LT = IOxR

Gn To 11/
TFST FOR DEGENERACY

94 TI (v(inxp,Ls).iro.) GO Tn 109
97 Nn = NO +

K(NO) = IDYR
GO TO 13
TEST FOR EXTREME
RATIO POSITIVE

102 IF (ExTREm.LE.0.) GO TO 109

103 TI (EYTREM.LE.RATIO) GO TO 109
Gn Tn 107
RATIO NEGATIVE

109 Tr (EXTREM.GE.0.) GU TO 109
106 1F (RATIO.LE.EXTREm) GO TO 109
107 LT = IOxR
108 EXTRFM = PATin
109 CrINTTNUE

uNPOUNOED TABLEAU PRINT OUT

IF (LT.NE.m) GO TO 115
GO TO 112

111 FoRmAT(t0ExTRFmE UNHUNDFD,14)

112 WRITE (6,111) J(Ls)
GO TO 43

115 IF (1T.NE.L1) GO TO 117
116 Nn = NO 1
117 Nn = NO • 1

Gn TO 8
Nn EVEN
SET SCANNING sFQUENCE

121 inx1 = ml + 1
Tox2 = Nn - 4
Tnx3 = N • 1
IF (I0x2.GT.0) GO To 129
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129 NS = I0X3 41
DO 127 TC=1,NS

197 IS(IC) = IC + ml
GO In 139
nn 137 IC=IDX1,IDX3
DO 134 IR=2, IDY2,2
TOXR = K(T?)
IF (v(InxR,Tc).NE.0.) GO Tn 137

134 CONTINUE
NS = NS + 1
IS(NS) = Tr

137 CONTINUE
OFTERmINE TRANSFORMATION

13Q LT = KCNO)
11 = K(NO•1)
L2 = KCNO•2)
FXTRFM = V(O,L1) / V(LTPL1)
IS = L1
no 171 IC=1,NS
ToYCnL = TS(IC)
IF (v(LT,InxcoL).EQ.o.) GO TO 171

147 RATIO = V(1.2,TOXCOL) / VaT,TOXCOL)
DECISION NFT

12Q NS = 0
IF CRATIO.1T.0.) Gn TO 167
IF (RATT(J.GT.0.) GO TO 164

15(1 IF (IDXCOL.Lt.lH) GO TO 156
151 IF (J(IDXCnL).GT.N2) GO TO 196

SET TRANSFORMATION
193 IS = IOYCOL

GO TO 174
TEST FOR DEGENERACY

156 IF (V(LT,InXC01).GE.0.) GO TO 171
15g Nn = NO + 1

K(MO) = IDYCnL
Go TO 13
TFST FR EXTREME
RATIO POSTTVE

164 TF (EXTREm.LE.0.) GO TO 171
165 IF (EXTREM.LE.RATIO) GO TO 171

Go To 169
RATIO NEGATIVF

167 IF (ExTpEm.GE.0.) GO TO 1 7 1
168 IF (RATIO.LE.EXTREM) GO TO 171
169 Is = inxCol

FXTREM = RATIO
171 CONTINUE

IF (Ls.NE.i1) GO TO 174
173 Nn = NO "11
174 Nn=Nn-t

Go TO 8
ENn

SUPROUTINE TRANS
cnmmni v(21,200),K(100),T(200),J(200),Ts(200),Ft(2o),
1F(400),pqmpzom,mipm2,NpNi,N2.LH'IoPpix2,Nn•Ns'
21T,Ls,ITc,Nsi,NL,KamE,INvT

C THIS TRANSFORMATION suslinuTINE MODIFIED To ZERO NFAR...7ERO FLEMFNTS
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FTPST STAGF
7T=7I*.n1
ntki=v(LT,I.S)
w(II,IS)=1.0
ps=11
nn 9 IC=1,1,

v(II,Ir)=V(LT,Tr)/PP,
TF(Ans(v(LT,TO)).(1T./I)Gr Ti P
v(1T,TC)=0.
Gr; In 9

A t'S=NS.4. 1

TS(NS)=IC

cntiTTNUE
no 15 TR=tor
Tr cip.F0.1T1 GP T 1 15

11 Y=v(TR,LS)
FF (Y.E0.0.) on To is

12 qcrkpIS)=0.
no 14 IP=1,NS

IC=Ic(IP)
vcIP.TC)=V(TR,TC)-Y*v(LT.Ir) .
IF(APS(JCIP,T(;)).1.1.71)V(JP,TC)=n.

14 CrTTNUE
19 roNTINIIF

IF (I H) CO Tr le

17 IF (I 5.1 MI Tr 20.
OP in 4n

1P1 IF (E.S.IF .114) •(7,1.' if
or In 2P

POw INTFPGPANGF
20 TFHP= 1(1 S)
WS) T(1 T)

WI) =
Ti (T(Ls).r,T,12) T(

24 CAIL INCHC (I.S,P1+1•1)
m1 = PI 1
RFTI!RN
COLUMN INTFliCHANGF
ITEJT = ,)(15)
J(L5) = ,;(1T)

id 1) = LTfmr,
IF (J(LT)..GT.K2)'Gn In 39

36 rAIL INO-r(IT,N1-0,1)
NI = N1+1

3g RETURN
Ann POw ANr coliTN

40 CALL INCHR(1T,IH+1•0)
CALL INCHC(LS,1P+10,(0
IF (i(LH+11.GT.P2) c, Ti L7

49 CA)L INCHC (L1.1 + 141 + 1,1)

M1 M1 4 1

1i7 IF (J(I.H41).GT.N2) Gr TO 50

ail CALI INcHR (IH 4 1,N 1 4 1) 1)

Kf 4. I

5r IN = tH 1
RETURN

C. nELUir 44nw ANn COLUmo

51 CA1L INCHP(ITF)H,I)

rAIL TNCHC(LS,L1-,1)

1O = tH - 1
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RETURN
FNn

SURROUrINE INCHR(LR1,02eLP3)
commnN v(21,200),K(400),T(200),J(200),Ts(200),F1(2n),
1E(400),PYm,n.,m,m102,N,N1,N2,LH,Top,1)(2,No,Ns,
21T,Ls,ITc,NsT,NL,K4mE,IN0

on 7 IC=1,NI
TEMP = v(LRi,rc)
V(LRt,TC) = V(R2PTC)

7 V(LR2,IC) = TEMP
IF (LR3dIGT•0) GO TO 11

A [TEMP = '(tRI)
I(LR1) = I(LR2)
T(Lli?) = LTEMP
Gn TO 12

11 [TEMP = J(LR1)
j(LR1) = J(LR2)
J(1R2) = LTEMP

12 nn 13 IR=2,Nno
IF (LR2•EQ,K(IR)) GO TO 15

13 CONTINUE
GO TO 16

15 K(IR) = LR1
16 RETURN

FNn

SUBROUTINE INCHC(LC1PLC2,LC3)
cnvmoN V(21,200),K(400),T(2.00),J(200),TS(200),F1(20),
1F(400),,PYM,ZL,M,M102,N,N1,N2,LHOOPPIY2,NO,NS,
2tT,LspITcpmsT,NL,KAmE,INVT
on 7 TR=1,M
TEMP = V(IPPIC1)
V(TRPLC1) = V(IR,LC2)

7 V(IR,LC2) = TEMP
TI (1C3•GT.0) GO TO 11

R LTEMP = J(IC1)
j(I C1) = J(LC2)
J(LC2) = LTEMP
GO TO 12

11 LTEMP = 1(1 Cl)
T(LC1) = T(LC2)
T(LC2) = LTEMP

12 no 13 Ic=1,N0,2
IF (LC2GEQ,K(IC)) GO TO 15

11 CnNTTNUE
Gn TO 16

15 K(IC) =LC1
16 RETURN

ENO

SUBROUTINE READIN
commoN v(21,200),K(400),1(200).J(200),Ts(20n),F1(20),
1r(400),pYmaL,m,m1,m2,N,N1pN2pLH,ToPp1x2,Nn,ws,
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21TpIS,ITC,NSI,NL,KAMr,INvT

71=1.00- A
TF(KAmE .F0.0.) GC 111 19

nn 14 IR=1.M

14 v(TR,N+1)=1.0

no 15 IC:1.N

19 V(m+1,Ti)=.1.0

TRANSLATE Ti' FoSITIVF PAyoFF

13,0=0.0

no 16 IR=1,m

nn 16 IC=1,14

IF(V(TR,IC) .GE. PYM) GO lo 16

PYM=V(IR,IC)

16 cnNTTNUE
TF(PYM .GE. 0.0) GO TO 18

nn 17 IR=1.M
nn 17 IC=1•N

17 V(TR,IC)=V(IR,TC) -pYm

18 M=m+1
N=N+1
V(M,N) =0,

19 IF(INVT .F0. 0) GO TO 33

TRANSPOSE TO nHAL
ITEMP=m

IA = N
N = ITEMP
!TEMP = M2

M2 = N2
N2 = LTFHp

IF (m.GF.I1) GO TO 22

20 InX1=N

Go Tr 23

22 TIOY1=M

21 no 27 IR=1,Inx1
no 27 IC=IR,IDY1
TFPP=-VCIR,IC)

V(II6TC)=mv(IC,IR)

27 V(IC,TR)=TFHP

nn 29 1C=1,M

29 V(V,TC) = -V(POC)

nn 31 IR=1.m

31 V(IR.N)
COmPIFTE STEP SITUP

.33 LH= o
Ml = 0
N1 = 0
NS = 0
IT = 0
IS = 0
TTC=0
IS Cl) =0
nn 34 IR=1,M

34 T(TR)=IR

nn 36 Ic=1,1J

36 J(IC)IC

Nn=1
Kc1)=N
INITIAL TArILFAH PRINT OUT

TF(Inp .E0. 1) CALL PRINT

42 RETURN
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E Nn

SuRRnuTiNF PRINT
commON v(21,200),K(400),T(200),J(200),Ts(200),11(20),
1F(400),pYMpa,m,ml,m2,N,N1,N2,LH,I0P,Iy2,NO.NS,
21T,LS,ITC,NsI,NL,KAME,INvT
DIMENSION VT(300),SL(300),PL(300),RU(30n)
DATA AEQ,ATQ,AFV,ANVARh5.WW/2HECP2HICONFVP7HNVP2HRSP2HBR/

IF(Inp.F0.0)G0 TO 36
TABLEAU PRINT nUT
TF(ITC.EQ.n)Go TO 10

4 FTRMATUTH rIVDT(I3P1H,I301H))

WRITE(6,4)LTPLS
9 FoRMAT( 10 1 /is ITERATI1)N= 9,I4)

10 WRITF(60)/TC
11 FORMAT(21H EQUATIONS IN KERNEL=T3)

WRITF(6,11)M1
13 FDRmAT(26H FREE VARIABLES IN KERNEL=I3)

WRITF(6013)N1
15 FORMAT(25H CURRENT CnNIROL SEQUENCE)

wRITF(6,15)
17 FnPmAT(7H K(ND)=28I4/(1H 3014))

WRITF(6,17)(KCIR)PIR.11,NO)

19 FDRMAT(21H CUPRINT KERNE' SI7E=I3)

WRITF(6.191LH
21 FORMAT(21H BASIC rABIEAU V(M.N))

WRITF(6,21)
On 22 Jc=1,N
IF (JCGLE.LH)IS(JC)=1(JC)
TE(JC.GT.LH)ISCJC)=J(JC)
IF( (IC0LE4.1H).ANDo(JC.LE.Mf))VT(JC)=AFQ

IFC(JC0LE•IH).AND0(JC.GT.M1))VT(JC)=AIO
TEC(JC.GTOH).ANDo(J(JC)•LE.N2))VT(JC)=AFV

27 TF((JC.GT.IH).ANDo(J(JC),GT.N2))VT(jC)=ANV

VT(N):=RHS
24 FDRMAT (R(I13,A2))

WRITE(6,94)(IVIC),VT(IC)PTC=1,N)
26 rnRMAT(1H PI3,A2,8E154,6/(611 P8E15.))

no 28 IR=1,M 
6 

TF(IR.LF,LN)IS(IR)=VIR)

IF(IR•GT,LH)IS(IR)=I(14)
TFC(IR.LEOH).AND.(IR•LE.N1))VT(TR)=AFv

TF(CIR.LE.1H).AND.CIR.GT.N1))VT(TR)=ANv
TFCCIR.GT•IH)•ANDe(I(IR).LE•M2))VT(IR)=AFQ

IF(CTR.GT.IF1).AND.(I(IR)ouTom2))vT(IR)=AIG

IFCIR.EQ.m)VT(IR)=14w
2A wRITF(6,20IS(IR)pvT(IR),(v(TR,IC),IC=1,N)

RFTURN
FINAL PRINT OUT

39 FDRMAT(' ITERATIONS:',I4)

3' IF(KAME.GE.i)Gn TO lle

WRITF(6.35) ITC
44 FrIPMAT(16HnSOIUTION WALUF=F15.6)

VI="PV(M.N)

WRITE(6,44)VL
47 rimmAT(1H0,5X,16HPRIHAL vARIABLEs,7X,10H00AL sLAcK,12Y,16HCOsT sFN

1SITIVITY)
WRITF(6,47)
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SFT PRINT VECTORS
NF=Neal
DO 58 Jr=1,NF
JIM=J(JC)
IF(JC.GT*LH)GO TO 96
wr(JLm)=V(JC,N)
SICJIM)=0.0
GO TO 58

96 SL(JIP)=V(MPJC)
VT(JI.v).0.0

512 cnNTTrur
N 30,141
no 76 J1=1,NF
t1M=JCJ1)
IF(J1.GT.LH)GO 10 74
RGU=1.0F20
RGI="1.0E20
nn 70 J2= m3,Nr
IF(V(J1,J2).E0.0.)G0 10 70
RATIO: V(M,J2)/V(.11,J2)
IF(RATTO•LT.0.)G0 10 68
IFCRATTO.GF•RG(J)G0 TO 70
RGU=PATIO
on TO 70

68 IF(RATIO.LF.RGI)G0 TO 70
RGL=RATIO

70 CONTINUE
RL(LIM)=RGI
Rucup.)=RGu
on Tn 76

74 RLaLm)=-v(m,J1)
Pu(Ltm)=1.nE2o

76 cnNTTNur
77 FoRvAT(1H T3,117.6,E20.6,E18.6,Ei8.6)

nn 79 JC=11NF
IF(VT(JC).FQ.0.0) GO 10 79
WRITF(6,77)(JCPVT(JC),SL(JO),RL(JC),RU(JC))

79 CONTINUE
SFT DUAL PRINT VECTORS

81 FORMAT(1H09x,14HHAL vARTAPLEs,7x,12HpPTvAL SLACK,10X,20HRFSOURCE
1SFNSITIVITY)
WRTTF(6,81)
MF=140"1
no 92 IC=1,MF
MIM=NIC)
IF(IC.GT.LH)GO TO 90
VT(PLP)="'V(M,IC)
Sl(PIM)=0.0
GO TO 92

90 SL(MIN)=V(IC,N)
VT(MI.M)=0.0

92 CONTINUE
N3 = N1 + 1
nn 112 I1=1,MF
NI M=I(T1)
7F(II.GT•LH)G0 TO 110
RGU=1.0E20
RGL="1.0E20
nn 106 I2=N3,MF
IF(V(I2,11).FA.0.)G0 TO 106

1
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RATInc-v(19,N)/V(12,T1)

Tr(kATIO.LT.0.)G0 10 104

TF(KATTo.GF.RGII)Gu Tr 106
PCO=RATIn

GO TP 106
104 TF(RATTn.LF.RGI )60 Tr i 106

PGIITRATI0

106 NINTINUE
RI(NIp)=RGI

PU(NIV)=R(H

no TO 112

lln Pi(Nlv)=-v(11,N)

nu(Nip)=1.nE20
117 cnNTTNUE

nn 114 TC=1,4F
114 WpTTE(6,77)(Tc,VT(TC,S1(1r),Fit(IC),RA;(1C))

RETURN
GAmf THFnRy

11 7 FOPPfiT(12i4PGAmF VALUF=11'1.f')
hR Gt./=( 1.0/v(M,N))+FYPA.

WRT1F(6,117)6V

nn 172 IC=1.0q-
122 VT(TC)=0.0

TF(LH.F.0.0)611 111 127

on 1 9s TC=1,1H
v1 ,4=1(IC)

125 VT(Ptv)=V(P,1c)/V( 4,t)
176 rePvAT(11H0Pnw NAYLp)

127 wRTTF(6,17t,)
12P FOPPAT(T3•F11.6)

WRTTF(6.12P)((TcpVT(IC),TC=1,PF))

NF=N-1
nn 112 Jc=1,Nr

132 vT(J(7)=-0.n

T1(LH.10.0)611 TV 111
no 139 JC= 1 ,IP
JIY=0(JC)

135 VT(JIM)=V(JC,M)/V(m.N)

136 FORVAT(141-;CCIIIIIMN PLAYER)

137 wpTTF(6,136)
WRTTF(6,124)(CJC,VT(JC)),!r=1,Ni.)

piTupr

FNI1



-58-

REFERENCES

[1] Aigner, D. and S. Chu, "On Estimating the Industry Production

Function," American Economic Review, September 1968, pp.

826-837.

[2] Boles, J., "Efficiency Squared . . . Efficient Computation of

Efficiency Indexes", Western Farm Econ. Assoc., 1966 Proceed-

[3]

[4]

ings, Pullman, Washington, January 1967, pp. 137-142.

 , "The 1130 Farrell Efficiency System - Multiple

Products, Multiple Factors," Giannini Foundation of Agricul-

tural Economics, February 1971.

, "The Measurement of Productive Efficiency: The

Farrell Approach," U.C. Berkeley, unpublished manuscript, 1972.

[5] Carlson, D., "The Production and Cost Behavior of Higher

Education Institutions," Paper P-36, Ford Foundation Program

for Research in University Administration, December 1972.

[6] , "Examining Efficient Joint Production Processes",

[7]

Measuring and Increasing Academic Productivity, Robert Wallhaus

(ed.), Jossey-Bass, San Francisco, Winter 1975.

Dan, S., Industrial Production Models, Springer-Verlag, New

York, 1966.

[3] Farrell, M., "The Measurement of Productive Efficiency,"

Journal of the Royal Statistical Society, Series A, Part III,

[9]

1957, pp. 253-290.

Farrell, M. and M. Fieldhouse, "Estimating Efficiency Production

Functions Under Increasing Returns to Scale," Journal of the

Royal Statistical Society, Series A, Part II, 1962, pp. 252-267.



-59--

[10] Henderson, J. and R. Quandt, Microeconomic Theory: A Mathe-

matical Approach, Second Edition, McGraw-Hill, 1971.

[11] Seitz, W., "Productive Efficiency in the Steam-Electric

Generating Industry," Journal of Political Economy, July/August

1971, pp. 878-886.

[12] Si torus, B., "Productive Efficiency and Redundant Factors of

Production in Traditional Agriculture of Underdeveloped

Countries," Proceedings, 39th Annual Meeting, Western Farm

Economics Association, 1966.

[13] Timmer, C., "Using a Probabilistic Frontier Production Function

to Measure Technical Efficiency," Journal of Political Economy,

July/August 1971, pp. 776-794.


