

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. DIVISION OF AGRICULTURAL SCIENCES AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF CALIFORNIA

WAITE MEMORIAL BOOK COLLECTION DEPT. OF AGRIC. AND APPLIED ECONOMICS

Statistical Supplement to:

Production Functions and Supply Applications for California Dairy Farms

by IRVING HOCH

0

378.794

G43455 M-36

Suppl.

GIANNINI FOUNDATION OF AGRICULTURAL ECONOMICS

July 1976

378.794 643455 M-36 Suppl.

STATISTICAL SUPPLEMENT TO:

PRODUCTION FUNCTIONS AND SUPPLY APPLICATIONS FOR CALIFORNIA DAIRY FARMS

(This Statistical Supplement contains additional information extending the results presented in Giannini Foundation Monograph Number 36 (University of California, Berkeley). For economy of effort and presentation, the Monograph presents only limited information on standard errors and t ratios for estimated equations. This Supplement remedies that limitation by presenting those statistics as well as information on sample size and number of independent variables appearing in each equation. In addition, it presents more detail on a number of coefficient estimates; in particular, results obtained prior to introduction of firm effects are presented here for the various production equations employed.

The Supplement is organized in three sections: Section 1 presents additional information on Equations 1 through 6; Section 2 extends the results for Equation 7; and Section 3 extends results for the feed regressions used in estimating some of the feed quantities.

Because the information here should be of considerable interest primarily to the production specialist and econometrician, it is being presented as a Supplement rather than an appendix to the Monograph.

TABLE OF CONTENTS

Section 1:	Equations 1 Through 6 •	•	••	•••	• •	• •	•		•	•	•	•	• 1	· 2
Section 2:	Equation $7 \cdot \cdot \cdot \cdot \cdot$	•	•••		•••	• •	•	•••	•	•	•	•	•	• 14
Section 3:	Feed Regressions • • • •	•		•••	• •	• •	•	•••	•	•	•	•	•	• 18

LIST OF TABLES

Supplement Table

1	Number of Dummy Variables for Equations 1 Through 6 by Region and Sample ••••••••••••••••••••••••••••••••••••
2	Detailed Results for Equation 1 by Region and Sample $\cdot \cdot \cdot \cdot 4$
3	Detailed Results for Equation 2 by Region and Sample • • • • 5
4	Detailed Results for Equation 3 by Region and Sample $\cdot \cdot \cdot \cdot 6$
5	Detailed Results for Equation 4 by Region and Sample • • • • 7
6	Elasticity Estimates for Equation 5 by Region and Sample · · · 8
7	Standard Errors for Equation 5 by Region and Sample 9
8	t Ratios for Equation 5 by Region and Sample 10
9	Estimates for Equation 6 by Region and Sample 11
10	Standard Errors for Equation 6 by Region and Sample 12
11	t Ratios for Equation 6 by Region and Sample • • • • • • 13
12	Some Detailed Results for Equation 7, All Samples 15
13	Estimated Elasticity Components for San Joaquin Valley (Northern Market) Expanding Firm Cases
14	Estimated Elasticity Components for San Joaquin Valley (Southern Market) Expanding Firm Cases
15	Feed Regressed on Cows Milking and Cows Dry Only (Initial Step) by Region and Sample • • • • • • • • • • • • • • • • • • •
16	Feed Regressed on Extended Set of Independent Variables— Coefficients (Final Step) by Region and Sample •••••• 20
17	Feed Regressed on Extended Set of Independent Variables

Page

Section 1: Equations 1 Through 6

This section extends the presentation of results in the Monograph and its Appendices by exhibiting standard errors and t ratios for each of Equations 1 through 6 for both Case 1 (before firm effects introduced) and Case 2 (after firm effects introduced). Supplement Table 1 shows, by sample, the number of dummy variables for each set of dummies employed and then uses the information to indicate the maximum number of dummies that may appear for each sample. The maximum number of independent variables is then obtained by adding to this value the number of factors of production for a given equation. By equation, the number of factors was:

Equation	Factor
1	2
2	2
3	1
4	3
5	5
6	5

The following Supplement Tables extend the results for Equation 1 shown in Tables 7 and 8 of the Monograph; those for Equation 2 in Table 18; those for Equation 3 in Table 27; and those for Equation 4 in Table 29. Selected results for Equation 5 appear in the Monograph as Tables 31 and 32, while the full set of coefficients is presented as Appendix Table B.1. The latter table is reproduced here, followed by corresponding values of standard errors and t ratios for the individual samples. Similarly, selected results for Equation 6 appear in the Monograph as Table 34, while Appendix Table B.6 presents individual coefficient estimates by sample. That table is reproduced here, followed by corresponding standard errors and t ratios.

For all of the equations, information is also given on \mathbb{R}^2 , number of independent variables, and sample size (number of observations).

	[Numbe	r of dummy varia	ables			
				Dairy Herd Improvement Association		Maximum of inde dummy va	pendent riables
<i>a</i>				(DHIA) and months b	m - + - 1	Excluding firms	Including firms
Region ^a and sample	Firms	Years	Breeds	and months	Total	<u> </u>	1111115
Sacramento Valley							
Market	64	6	4	13	87	20	83
Manufacturing	20	6	4	13	43	20	39
Left survey	21	6	3	13	43	19	39
Northern and Sierra Mountains	29	6	4	13	52	20	48
San Joaquin Valley			r r				
Northern Market	46	6	4	13	69	20	65
Southern Market	, 51	6	4	13	74	20	70
Manufacturing	20	6	3	13	42	19	38
North Coast	29	3	4	13	49	17	45
Bay Area							
Northern	67	5	4	13	89	19	85
Southern	41	5 5	4	13	63	19	59
Southern California							
Central	63	5	3	13	84	18	80
Peripheral	23	5 5	3	13	44	18	40

SUPPLEMENT TABLE 1 Number of Dummy Variables for Equations 1 Through 6 by Region and Sample

^aCounties covered by specific samples were:

Sacramento Valley: Market, Manufacturing, and Left survey--Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba.

Northern and Sierra Mountains: Lassen, Nevada, Plumas, and Siskiyou.

San Joaquin Valley: Northern Market--Madera, Merced, San Joaquin, and Stanislaus. Southern Market--Fresno, Kern, Kings, and Tulare. Manufacturing-entire region.

North Coast: Del Norte, Humboldt, and Mendocino.

Bay Area: Northern--Marin, Napa, and Sonoma. Southern--Alameda, Contra Costa, Monterey, Santa Clara, and Santa Cruz.

Southern California: Central--Los Angeles, Orange, Riverside, San Bernardino, and San Diego. Peripheral--Imperial, San Luis Obispo, Santa Barbara, and Ventura.

^bDummy variable for DHIA plus 12 months.

 c One dummy from each set must be excluded to avoid exact collinearity.

Detailed Results for Equation 1 by Region and Sample

			1	ndard					
		icity Imates		rors stimate	tra	tios			
		A11		A11		A11	1	Number	
	Feed	other	Feed	other	Feed	other		of inde-	
Region ^a and sample	cost 7	inputs 7	cost	inputs 7	cost	inputs	R ²	pendent	Sample
Region and sample	Z ₁	Z ₂	z ₁	Z ₂	Z_1	^Z 2		variables	size
		1		Before	firm eff	ects int	roduced	1	
Sacramento Valley									
Market	.816	.220	.023	.027	35.46	8.20	.893	22	1,330
Manufacturing	.813	.270	.046	.050	17.75	5.36	.840	22	404
Left survey	.379	.632	.057	.060	6.60	10.46	.926	21	318
Northern and									
Sierra Mountains	.809	.256	.034	.044	23.79	5.82	.873	22	529
			-						525
San Joaquin Valley									
Northern Market	.838	.160	.019	.020	44.63	7.91	.955	22	1,446
Southern Market	.884	.132	.020	.023	43.93	5.75	.975	22	1,232
Manufacturing	.700	.270	.033	.042	23.30	6.70	.956	21	496
North Coast	.888	.055	.046	.052	19.29	1.06	.867	19	381
Bay Area									
Northern	.661	.409	.020	.024	33.53	16.97	.939	21	1,388
Southern	.734	.325	.029	.029	25.11	11.36	.954	21	836
Southern California									
Central	.752	.263	.020	.021	37.28	12.23	.969	20	898
Peripheral	.684	.391	.047	.048	14.47	8.19	.942	20	341
				After	finn off				
				Alter	iiim eii	ects int	roduced		
Sacramento Valley				· · ·					
Market	.330	.477	.026	.041	18.28	8.07	.953	85 40 ^b	1,330
Manufacturing	.942	.292	.070	.117	13.39	2.50	.879		404
Left survey	.259	.506	.062	.087	4.19	5.81	.950	41	318
Northern and									
Sierra Mountains	.595	.125	.048	.065	12.31	1.93	.921	50	529
San Joaquin Valley									
					,				
Northern Market Southern Market	.709	.181	.027	.031	26.49	5.86	.969	67	1,446
Southern Market Manufacturing	.736	.175	.027	.035	27.07	5.04	.984	72	1,232
isanaj ac var vig	.6/3	.412	.050	.072	13.46	5.69	.971	395	496
North Coast	.510	.392	.072	.120	7.04	3.26	.917	47	381
Bay Area									
Northern	.545	.367	.031	.060	17.35	6.17	.958	87,	1,388
Southern	.576	.322	.040	.056	14.48	5.76	.974	87 _b 60 ^b	836
Southern California									
Central	.484	.214	.031	.038	15.67	5.65	.981	$\substack{81^b_b\\41}$	898
Peripheral	.469	.107	.058	.078	8.13	1.36	.969	j b	341

^aFor geographic coverage, see Supplement Table 1, *supra*, p. 3.

 b_{Besides} base dummy, one additional firm dummy is eliminated because of collinearity.

.

Detailed Results for Equation 2 by Region and Sample

	[dard					
		icity		ors					
	Feed	nates All	of es Feed	timate All	Feed	All		Number	
	in,	other		other	in ₁	other		of inde-	
	TDN^{D}	inputs	in_{b} TDN	inputs	TDN^{b}	inputs		pendent	Sample
Region ^{α} and sample	×1	Z ₂	×1	^Z 2	×1	^Z 2	R ²	variables	size
	<u> </u>	2	1		firm eff				
				Berore	rirm eri	ects int	roduced		
Sacramento Valley									
Market	.806	.268	.024	.027	33.842	9.984	.888	22	1,330
Manufacturing	.840	.293	.048	.050	17.662	5.910	.839	22	404
Left survey	.449	.593	.060	.062	7.483	9.565	.895	21	318
Northern and									
Sierra Mountains	.802	.280	.035	.045	23.175	6.173	.879	22	529
San Joaquin Valley									
	075	1.55	010	000	1 1 1 0 7	7 7 20	056	22	1,446
Northern Market	.875	.155	.019	.020	45.197	7.739 6.377	.956 .973	22	1,232
Southern Market		.151	.021	.024	23.061	6.431	.975	22	496
Manufacturing	.824	.272	.030	.042	23.001	0.431	.955	21	490
North Coast	.895	.098	.041	.045	21.692	2.169	.882	19	381
Bay Area									
-			0.01	0.01	a	16 107	0/0	21	1 200
Northern	.722	.389	.021	.024	34.294	16.107	.940	21	1,388
Southern	.699	.390	.031	.029	22.588	13.510	.949	21	836
Southern California									
Central	.753	.264	.021	.022	36.529	12.080	.968	20	898
Peripheral	.646	.432	.049	.049	13.290	8.863	.938	20	341
-					<u> </u>	L	L		
0		1		After 1	firm effe	ects intr	oduced	[
Sacramento Valley									
Market	.499	.341	.026	.040	19.073	8.502	.953	85 ₄₀ d	1,330
Manufacturing	.980	.226	.072	.118	13.710	1.922	.881		404
Left survey	.334	.400	.069	.086	4.841	4.651	.954	41	318
		1				1			
Northern and					1 10 10-	1	0.01	L 50	E 20
Sierra Mountains	.651	.113	.048	.063	13.427	1.810	.924	50	529
San Joaquin Valley									
Northern Market	.736	.186	.028	.031	26.179	6.024	.969	67	1,446
Southern Market	.729	.214	.029	.035	25.492	6.072	.983		1,232
Manufacturing	.625	.455	.051	.074	12.358	6.179	.970	72 39 ^d	496
		1 '							
North Coast	.565	.398	.074	.118	7.633	3.382	.919	47	381
Bay Area									
Northern	. 597	.271	.033	.068	17.955	4.006	.959	87,	1,388
Southern	.598	.296	.035	.057	14.424		.974	87 60 ^d	836
Southern California									
Central	.476	.220	.031	.038	15.514	5.799	.981	81^d_{41}	898
Central Peripheral	.476	.120	.031	.038	7.711		.961	41 ^d	341
t et chuetar	.439		1.05/	<u> </u>		1.525		<u> </u>	

^aFor geographic coverage, see Supplement Table 1, *supra*, p. 3.

^bTotal digestive nutrients.

^CThis table corresponds to Table 18 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 51.

 $d_{\rm Besides}$ base dummy, one additional firm dummy is eliminated because of collinearity.

Detailed Results for Equation 3 by Region and Sample^a

Region ^b and sample	Elasticity estimates for all inputs combined, Z ₀	Standard errors of estimate	t ratios	R ²	Number of independent variables	Sample size
		Ве	fore firm eff	ects introduc	ed	
Sacramento Valley						
Market Manufacturing Left survey	1.077 1.122 1.009	0.011 0.028 0.022	95.661 40.448 46.075	.889 .830 .925	21 21 20	1,330 404 318
Northern and Sierra Mountains	1.132	0.024	48.090	.867	21	529
San Joaquin Valley						
Northern Market Southern Market Manufacturing	1.016 1.057 1.081	0.007 0.006 0.013	155.650 178.167 84.816	.950 .971 .955	21 21 20	1,446 1,232 496
North Coast	1.003	0.027	37.155	.850	18	381
Bay Area						
Northern Southern	1.093 1.059	0.008 0.011	135.980 95.528	.940 .953	20 20	1,388 836
Southern California						
Central Peripheral	1.026 1.078	0.006 0.026	158.064 41.445	.967 .883	19 19	898 341
		I	fter firm eff	ects introdu	ced	
Sacramento Valley						
Market Manufacturing Left survey	0.844 1.425 0.721	0.034 0.083 0.078	25.026 17.165 9.235	.953 .875 .950	84 39 [°] 40	1,330 404 318
Northern and Sierra Mountains	0.806	0.059	13.763	.918	49	529
San Joaquin Valley						
Northern Market Southern Market Manufacturing	0.908 0.992 1.115	0.027 0.025 0.049	33.833 39.388 22.713	.967 .983 .972	66 71 37 ^d	1,446 1,232 496
North Coast	0.908	0.105	8.676	.917	46	381
Bay Area						
Northern Southern	1.022 0.926	0.045 0.046	22.619 20.224	.959 .975	86 59 ⁷	1,388 836
Southern California						
Central Peripheral	0.728 0.513	0.033 0.068	21.908 7.524	.981 .938	80 [°] 40 [°]	898 341

^aThis table is an extension of Table 27 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 74.

^bFor geographic coverage, see Supplement Table 1, *supra*, p. 3.

 c One firm dummy eliminated because of collinearity, reducing number of independents by one.

 $d_{\rm Two}\ {\rm firm}\ {\rm dummies}$ eliminated because of collinearity.

Number of Standard Sample independent errors Elasticity R^2 Region,^b sample, and input size t ratios variables estimates of estimate Before firm effects introduced San Joaquin Valley Southern Market 33.76 30.49 6.62 .563 .017 Roughage and pasture 1,232 .974 23 .010 Concentrates .297 .023 All other inputs .155 Southern California Central 29.90 .015 Roughage and pasture .456 29.06 9.13 898 21 .966 .013 Concentrates .375 .021 All other inputs .190 After firm effects introduced San Joaquin Valley Southern Market 20.05 20.23 6.13 .021 Roughage and pasture .427 73 1,232 .984 .013 .256 Concentrates .211 .035 All other inputs Southern California Central

Detailed Results for Equation 4 by Region and $Sample^{lpha}$

^aThis table is an extension of Table 29 in Production Functions and Supply Applications for California Dairy Farms, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 78.

13.09

11.49

3.31)

.981

 82^{C}

898

.022

.021

.035

^bFor geographic coverage, see Supplement Table 1, *supra*, p. 3.

Roughage and pasture

Concentrates

All other inputs

^CBesides base dummy, one additional firm dummy is eliminated because of collinearity.

.283

.239

.116

Elasticity Estimates for Equation 5 by Region and Sample

			y estimates			6	
	T 1	Cow		Operat-	Capital	Sum of	
Region ^a and	Feed in TDN b	service	Labor	ing	service flow	elas-	
		flow	cost	cost		ticities	R ²
sample	×1	×2	×3	×4	×5	ticities	к
	T		Before fi	rm effects i	ntroduced	T	
Sacramento Valley							
	700			00/	100	1 022	.896
Market	.783	.015	.249	.094	109	1.032	.896
Manufacturing	.816	.068	.199	.023	.032	1.138	
Left survey	.406	.162	.279	.079	.119	1.045	.930
Northern and Sierra Mountains	.871	075	.160	.067	.046	1.069	.884
Sterra nouncariis	.0/1	.0/5	.100				
San Joaquin Valley							
Northern Market	.884	005	.094	.049	.009	1.031	.956
Southern Market	.875	.016	.126	.046	024	1.039	.973
Manufacturing	.823	.034	.109	.082	.055	1.103	•954
North Coast	.835	098	.266	.027	024	1.006	.891
Bay Area							
Northern	.726	021	.223	.150	.016	1.094 1.062	.942 .954
Southern	.694	047	.247	.180	012	1.002	• 904
Southern California						<i>,</i>	
Central	.724	.069	.128	.071	.016	1.008	.969
Peripheral	.687	.131	.101	.101	.083	1.103	.938
	l		After fir	m effects in	troduced		
			AILEI III	m errects ri			
Sacramento Valley							
Market	.259	.530	.007	.079	.244	1.119	.958
Manufacturing	.885	.161	.042	.045	.072	1.205	.881
Left survey	.202	.479	.099	.052	052	.780	.956
Northern and Sierra Mountains	.514	.249	.005	.022	.457	1.247	.929
San Joaquin Valley			<i>a</i> = 1	, 		1.050	071
Northern Market	.307	.602	.054	.025	.071	1.059	.971
Southern Market	.757	005	.081	.060	.079	.972	.983
Manufacturing	.475	.325	.223	.059	.265	1.347	.970
North Coast	.756	205	.304	.048	.055	.958	.913
Bay Area							
Northern	.506	.248	.068	.035	111	.746	.959
Northern Southern	.298	. 567	.083	.012	.249	1.209	.978
Southern California							
	0.00	//-	010	014	.243	.931	.984
Central	.208	.445	.019 039	.016 .013	.243	.749	.984
Peripheral	.292	.283	039	.013	.200	•/42	• 77 1

 $a_{\rm For geographic coverage, see Supplement Table 1, supra, p. 3.$

^bTotal digestive nutrients.

8

J

Standard Errors for Equation 5 by Region and Sample

		Standard er	rors for coe	ficients of			
		Cow		Operat-	Capital	Number	
	Feed in TDN b	service	Labor	ing	service	of inde-	Sample
- , a , , , , , , , , , , , , , , , , ,	in TDN	flow	cost	cost	flow	pendent	size
Region ^a and sample	×1	x ₂	×3	x ₄	x ₅	variables	SIZE
			Before fi	rm effects in	ntroduced		
Sacramento Valley							
Market	.024	.013	.021	.016	.017	25	1,330
Manufacturing	.051	.037	.053	.030	.032	25	404
Left survey	.061	.034	.057	.033	.039	24	318
Northern and Sierra Mountains	.036	.022	.029	.022	.024	25	529
San Joaquin Valley							
		010	017		010	25	1 ///6
Northern Market	.021	.013	.017	.014	.013	25	1,446
Southern Market	.022	.012	.022	.013	.011	25	1,232 496
Manufacturing	.036	.024	.036	.021	.029	24	490
North Coast	.043	.030	.046	.027	.028	22	381
Bay Area							
Northern	.023	.016	.025	.015	.014	24	1,388
Southern	.031	.018	.030	.019	.018	24	836
Southern California		·					
Central	.023	.012	.020	.011	.010	23	898
Peripheral	.049	.033	.044	.030	.027	23	341
10100000							
			After fi	rm effects i	ntroduced	T	
Sacramento Valley							
Market	.034	.046	.028	.013	.062	88	1,330
Manufacturing	.133	.169	.106	.031	.098	88 43 ^C	404
Left survey	.069	.098	.064	.038	.099	44	318
Northern and	-	_					
Sierra Mountains	.069	.076	.038	.024	.154	53	529
San Joaquin Valley							
Northern Market	.051	.060	.020	.014	.036	70	1,446
Southern Market	.043	.047	.025	.014	.025		1,232
Manufacturing	.074	.094	.063	.025	.104	75 42 ⁰	496
North Coast	.062	.055	.070	.038	.048	50	381
Bay Area							
M	0/7	070		001	100	00	1 200
Northern Southern	.047	.072	.044	.021 .019	.102	90 63 ^c	1,388 836
Southern California							
Central	.039	.046	.030	.012	.061	84 ^C	898
Peripheral	.077	.097	.054	.029	.108	44 ^C	341
- or opinor an					1		

^aFor geographic coverage, see Supplement Table 1, *supra*, p. 3.

^bTotal digestive nutrients.

 $^{\mathcal{C}}\textsc{Besides}$ base dummy, one additional firm dummy is eliminated because of collinearity.

t Ratios for Equation 5 by Region and Sample

	t ratios for coefficients of											
	Feed in \mathtt{TDN}^b	Cow service flow	Labor cost	Operating cost	Capital service flow							
Region ^a and sample	X ₁	X ₂	X ₃	X ₄	X ₅							
	<u>⊥</u> _	i	irm effects int		5							
Sacramento Valley												
Market	32.245	1.104	11.829	5.873	-6.561							
Manufacturing Left survey	15.920	1.809	3.759	0.758	0.997							
Lejt survey	6.649	4.815	4.883	2.384	3.054							
Northern and												
Sierra Mountains	24.322	- 3.410	5.461	3.034	1.935							
San Joaquin Valley												
Northern Market	42.356	- 0.343	5.414	3.583	0.642							
Southern Market	39.275	1.325	5.799	3.644	-2.120							
Manufacturing	22.728	1.427	3.024	3.937	1.886							
North Coast	19.522	- 3.290	5.813	0.988	-0.851							
Bay Area												
37	21 000	1 00/	0.000	0 700	1 1 2 /							
Northern Southern	31.888 22.752	- 1.286 - 2.658	8.982 8.328	9.732 9.530	1.134 -0.684							
			0.510	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Southern California												
Central	31.865	5.633	6.328	6.451	1.511							
Peripheral	14.029	4.032	2.286	3.334	3.035							
		After f	irm effects int	roduced								
	!											
Sacramento Valley												
Market	7.583	11.545	0.245	6.001	3.905							
Manufacturing	6.644	0.950	0.397	1.457	0.734							
Left survey	2.954	4.890	1.557	1.402	-0.530							
Northern and												
Sierra Mountains	7.491	3.274	0.139	0.923	2.968							
San Joaquin Valley												
Northern Market	5.972	10.098	2.646	1.773	1.952							
Southern Market	17.540	- 0.100	3.217	4.404	3.144							
Manufacturing	6.404	3.468	3.510	2.415	2.553							
North Coast	12.124	- 3.712	4.318	1.237	1.151							
Bay Area												
27 (7	10.00/	2 455	1 5/1	1.670	1 000							
Northern Southern	10.804 6.067	3.455 9.337	1.541 2.282	1.678 0.641	-1.082 2.395							
Southern California												
Central	5.407	9.738	0.634	1.324	3.987							
Peripheral	3.785	2.929	-0.725	0.445	1.847							

 ${}^{a}\ensuremath{\mathsf{For}}$ geographic coverage, see Supplement Table 1, ${\it supra}$, p. 3.

 $^{b}_{\rm Total \ digestive \ nutrients.}$

Estimates for Equation 6 by Region and $Sample^a$

c 0.090* -0.172* -0.165*	a ₁ 0.864* 1.279* 0.169	-0.054 0.274*	a ₃ m effects in 0.230*		a ₅	R ²
-0.172* -0.165*	0.864* 1.279*	Before fir -0.054 0.274*	m effects in 0.230*	troduced		
-0.172* -0.165*	1.279*	-0.054 0.274*	0.230*			
-0.172* -0.165*	1.279*	0.274*		0.1(7*		
-0.172* -0.165*	1.279*	0.274*		0 1 (7 + 1		
-0.165*				-0.167*	-0.003	.906
	0.169		0.394	-1.088*	-0.125	.823
0.07/*		0.471*	0.562*	-0.366*	-0.200*	• 940
0 07/*						
-0.074*	0.826*	0.184*	-0.260	0.412*	0.008	.908
-0.055	0.498*	0.431*	0.072*	0.048*	-0.047*	.968
	1.216*	0.158*	-0.058*	0.037	С	.973
-0.110*	1.294*	-0.076	-0.201*		0.130*	.976
-0.197*	1.007*	0.216*	-0.938*	1.099*	0.144	.879
-0.078	0.994*	0.155*		0.032	-0.003	.948
	1.072*	0.131*	0.127	-0.097	-0.027	.965
	0.573*		-0.064*		0.007*	.967 .968
-0.070	0.778*	0.1/4*		0.026*	0.00/*	.900
		After fir	m effects int	roduced		
						050
						.958 .895
						.964
0.250	0.945	0.055	0.550	0.491		
0.047	0.685*	0.163*		-0.007	-0.041*	.944
0.141*	0.727*	0.185*	-0.035*	0.093*	-0.008	.982
	0.957*	0.155*		0.047*		.984
-0.135*	1.172*	0.171	-0.204*		0.095*	.982
-0.179	0.834*	0.351*	-0.526	0.711*	0.017	.904
0.004	1.022*	0.136		-0.051	-0.010	.969
-0.256	0.860*	0.333*		0.022	-0.026*	.978
0.118	0.955*	0.176*	-0.061*		0.007	.982
0.337	0.587*	0.183	0.081*	-0.117*	-0.027*	.979
	-0.027 -0.135* -0.179 0.004 -0.256 0.118	-0.163^* 1.216^* -0.110^* 1.294^* -0.197^* 1.007^* -0.197^* 1.007^* -0.078 0.994^* -0.046 1.072^* -0.070 0.573^* -0.070 0.573^* -0.070 0.573^* -0.070 0.778^* -0.070 0.778^* -0.091 1.159^* 0.238 0.343^* 0.047 0.685^* 0.141^* 0.727^* -0.179 0.834^* 0.004 1.022^* -0.256 0.860^* 0.118 0.955^*	-0.163* $1.216*$ $0.158*$ $-0.110*$ $1.294*$ -0.076 $-0.197*$ $1.007*$ $0.216*$ -0.078 $0.994*$ $0.155*$ -0.046 $1.072*$ $0.131*$ -0.070 $0.573*$ $0.298*$ -0.070 $0.573*$ $0.298*$ -0.070 $0.778*$ $0.174*$ -0.070 $0.778*$ $0.170*$ -0.070 $0.778*$ $0.174*$ -0.070 $0.778*$ $0.170*$ -0.070 $0.778*$ $0.170*$ 0.091 $1.159*$ 0.064 0.238 $0.343*$ 0.053 0.047 $0.685*$ $0.163*$ $0.141*$ $0.727*$ $0.185*$ 0.027 $0.957*$ $0.155*$ 0.179 $0.834*$ $0.351*$ 0.004 $1.022*$ 0.136 0.256 $0.860*$ $0.333*$ 0.118 $0.955*$ $0.176*$	-0.163^{*} 1.216^{*} 0.158^{*} -0.058^{*} -0.110^{*} 1.294^{*} -0.076 -0.201^{*} -0.197^{*} 1.007^{*} 0.216^{*} -0.938^{*} -0.078 0.994^{*} 0.155^{*} 0.127 -0.046 1.072^{*} 0.131^{*} 0.127 -0.070 0.573^{*} 0.298^{*} -0.064^{*} -0.070 0.573^{*} 0.298^{*} -0.064^{*} -0.070 0.778^{*} 0.170^{*} 0.029 -0.070 0.778^{*} 0.170^{*} 0.029 -0.070 0.778^{*} 0.170^{*} 0.029 -0.070 0.778^{*} 0.170^{*} 0.029 -0.091 1.159^{*} 0.064 -0.502 0.238 0.343^{*} 0.163^{*} -0.336 0.047 0.685^{*} 0.163^{*} -0.035^{*} 0.141^{*} 0.727^{*} 0.185^{*} -0.035^{*} -0.179 0.834^{*} 0.351^{*} -0.526 0.004 1.022^{*} 0.136 -0.526 0.004 1.022^{*} 0.136 -0.061^{*} 0.118 0.955^{*} 0.176^{*} -0.061^{*}	-0.163* $1.216*$ $0.158*$ $-0.058*$ 0.037 $-0.110*$ $1.294*$ -0.076 $-0.201*$ 0.037 $-0.197*$ $1.007*$ $0.216*$ $-0.938*$ $1.099*$ -0.076 $0.994*$ $0.155*$ 0.032 -0.097 -0.076 $0.778*$ 0.127 0.032 -0.097 -0.070 $0.573*$ $0.298*$ $-0.064*$ $0.164*$ -0.070 $0.573*$ $0.298*$ $-0.064*$ $0.164*$ -0.070 $0.573*$ $0.298*$ $-0.064*$ $0.164*$ -0.070 $0.573*$ $0.170*$ 0.029 0.087 -0.070 $0.778*$ $0.170*$ 0.029 0.087 -0.091 $1.159*$ 0.064 -0.502 0.201 0.238 $0.343*$ $0.163*$ $-0.035*$ $0.093*$ 0.047 $0.685*$ $0.163*$ $-0.035*$ $0.093*$ 0.047 $0.685*$ $0.155*$ $-0.035*$ $0.093*$ $0.135*$ $1.022*$ 0.136 <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*a*}Equation 6 is of the form $Y = c + a_1 X_1 + a_2 Z_2 + a_3 (X_1 Z_2) + a_4 X_1^2 + a_5 Z_2^2 + \Sigma b_1 D_1$ where Y is 3.4 percent equivalent milk in thousands of hundredweight; X_1 is feed in thousand pounds of total digestive nutrients; Z_2 is all other input in thousands of dollars; and D_1 is a general dummy variable covering time periods, breeds, Dairy Herd Improvement Association, and firms.

 $^b{\rm For}$ geographic coverage, see Supplement Table 1, supra , p. 3.

 c Blanks indicate corresponding variable did not enter regression equation.

*Statistically significant at the 5 percent level.

Standard Errors for Equation 6 by Region and Sample

	Sta	ndard orro	rs for cor	rogranding		b b	Number of inde- pendent	Sample
Region ^a and sample	c JLa		a ₂	a ₃		a ₅	variables	size
		L			ffects int		II	
Sacramento Valley								
Market	.044	.079	.046	.070	.078	.019	25	1,330
Manufacturing Left survey	.043	.156	.101	.419	.406	.131	25 24	404 318
Lejt Survey	.038	.129	.060	.157	.172	.040	24	510
Northern and								
Sierra Mountains	.023	.089	.045	.154	.186	.037	25	529
San Joaquin Valley								
Northern Market	.032	.043	.026	.015	.015	.004	25	1,446
Southern Market	.024	.061	.033	.019	.035	<i>C</i>	25	1,232 496
Manufacturing	.026	.072	.053	.034		.019	24	496
North Coast	.042	.160	.075	.265	.256	.077	22	381
Bay Area								
Northern	.037	.060	.025	0.67	.022	.004	24	1,388
Southern	.032	.082	.033	.067	.067	.016	24	836
Southern California								
Central	.065	.068	.030	.008	.019		23	898
Peripheral	.143	.106	.046		.008	.002	23	341
			Aft	er firm ef	fects intr	oduced	······································	
Sacramento Valley								
Market	.074	.089	.061	.069	.069	.020	88	1,330
Manufacturing	.061	.200	.164	.440	.449	.134	43 ^d 44	404
Left survey	.142	.143	.105	.171	.178	.049	44	318
Northern and Sierra Mountains	.046	.112	.059		.077	.017	53	529
, Siella nouncains	.040	•112	.059			.017	55	525
San Joaquin Valley								
Northern Market	.061	.060	.040	.014	.014	.005	70	1,446
Southern Market	.088	.076	.047		.019	.006	75 42 ^d	1,232
Manufacturing	.048	.115	.091	.049		.021	42 ^{<i>a</i>}	496
North Coast	.113	.223	.165	.293	.282	.099	50	381
Bay Area								
Northern	.101	.108	.084		.041	.015	90 63 ^d	1,388
Southern	.132	.092	.069		.020	.008	63 ^a	836
Southern California						· .		
Central	.177	.097	.048	.010		.004	84^d_d	898
Peripheral	.277	.156	.093	.029	.036	.009	44 ^a	341

^aFor geographic coverage, see Supplement Table 1, *supra*, p. 3.

^bThese are coefficients for the following variables: a_1 for X_1 , a_2 for Z_2 , a_3 for $X_1 Z_2$, a_4 for $(X_1)^2$, and a_5 for $(Z_2)^2$, where X_1 is feed in total digestive nutrients and Z_2 is all other inputs in dollars.

 c Blanks indicate corresponding variable did not enter regression equation.

 $^d\mathrm{One}$ firm dummy excluded because of collinearity in addition to base firm dummy.

t Ratios for Equation 6 by Region and Sample

2	t ratio for corresponding coefficient ^b									
Region a and sample	с	^a 1	^a 2	^a 3	^a 4	^a 5				
		Bef	ore firm eff	ects introdu	ced					
Sacramento Valley										
Market	2.037	10.893	-1.174	3.307	-2.145	-0.135				
Manufacturing	3.965	8.189	2.716	0.942	-2.681	-0.950				
Left survey	-4.295	1.304	7.817	3.585	-2.122	-5.050				
Northern and Sierra Mountains	-3.293	9.314	4.081	-1.686	2.211	0.225				
San Joaquin Valley										
Northern Market	-1.699	12.083	4.679	-2.430	6.860	-1.757				
Southern Market	-6.895	20.021	4.806	-3.086	1.065	С				
Manufacturing	-4.213	17.955	-1.432	-5.886		6.809				
North Coast	-4.721	6.312	2.881	-3.546	4.286	1.882				
Bay Area										
Northern	-2.132	16.463	6.140		1.466	-0,638				
Southern	-1.460	13.078	3.955	1.886	-1.465	-1.665				
Southern California										
Central	-1.080	8.391	9.887	-7.713	8.681					
Peripheral	-0.490	7.371	3.805	-7.715	-3.097	4.554				
				<u> </u>						
		Aft	er firm effe	cts introduc	ed					
Sacramento Valley										
Market	-1.659	5,104	2.776	0.419	1.256	-0.317				
Manufacturing	-1.481	5.790	0.392	-1.141	0.448	0.912				
beft survey	1.672	2.401	0.511	-1.959	2.779	1.702				
Northern and Sierra Mountains	1.002	6.141	2.777		-0.090	-2.433				
San Joaquin Valley										
	0.007	F 070	10.000	2.00	1 770	1.057				
Northern Market Southern Market	2.306	5.972	10.098	2.646	1.773	1.952				
Southern Market Manufacturing	-0.300	12.585	3.299 1.878	-4.199	2.451	4.469				
Manujaeturing	-2.818	10.134	1.070	-4.199						
North Coast	-1.590	3.744	2.127	-1.794	2.520	0.17				
Bay Area										
Northern	0.041	9.448	1.620		-1.234	-0.630				
Southern	-1.930	9.355	4.818		1.103	-3.148				
Southern California										
Central	0.666	9.878	3.691	-6.013		1.77				
Peripheral	1.215	3.760	1.957	2.751	-3.201	-3.15				
-						1				

^aFor geographic coverage, see Supplement Table 1, *supra*, p. 3.

^bThese are coefficients for the following variables: a_1 for X_1 , a_2 for Z_2 , a_3 for X_1 Z_2 , a_4 for $(X_1)^2$, and a_5 for $(Z_2)^2$, where X_1 is feed in total digestive nutrients and Z_2 is all other inputs in dollars.

 c Blanks indicate corresponding variable did not enter regression equation.

Section 2: Equation 7

Equation 7 introduced slope shifters in the form of firm and time effects which were components of elasticities. In practice, the elasticity for a particular time period and firm, t and f, was written:

 $\alpha_{ift} = \alpha_{i0} + \alpha_{it} + \alpha_{if}$

where

 α_{i0} = constant component

 α_{it} = slope shifter for year t

and

 α_{if} = slope shifter for firm f

with

i = 1, 2 covering feed and other input.

A total of 11 samples was examined using Equation 7, with 5 samples set up to cover expanding firms and 6 samples set up to cover nonexpanding firms. In the Monograph, results were presented in Tables 37, 38, 39, and 40, with additional detail appearing in Appendix Tables B.8 and B.9.

The case employing elasticity slope shifters plus firm intercept shifters was labeled Case 1, in contrast to Case 3, which employed firm effects as intercept shifters only. Some detailed results for those cases are presented here in Supplement Table 12 which extends the results shown in Table 37 of the Monograph. Supplement Table 12 presents coefficients for both feed and all other input, and R²'s, for Cases 1 and 3, respectively. (Case 2 included only slope shifters, and Case 4 excluded both slope and firm intercept shifters, corresponding to an ordinary regression of outputs on inputs. Those cases were omitted here since the information contained did not seem to justify the effort and space to present them.)

Supplement Tables 13 and 14 of this Supplement extend Table 39 of the Monograph by listing the various components of the elasticities (α_{i0} , α_{it} , and α_{if}); the standard errors; and the t ratios for the San Joaquin Valley expanding firm samples. Supplement Table 13 presents those results for the San Joaquin Valley (Northern Market) sample, and Supplement Table 14 presents them for the San Joaquin Valley (Southern Market) sample. (Corresponding results for the other nine samples can be obtained by writing the author.)

			Case 1					Case 3		
		α	shifters in				α	shifters ou		
b	Feed elasticity	All other input elasticity	Sum of elasti- cities	Number of inde- pendent variables	R ²	Feed elasticity	All other input elasticity	Sum of elasti- cities	Number of inde- pendent variables	R ²
Region ^b and sample	(average)	(average)	C1tles	variables		clasticity	clubtitity			
<u>San Joaquin Valley</u>										
Northern Market					•					
Expanding Nonexpanding	.607 .214	.235 .500	.842 .714	66 59	.979 .977	.710 .468	.189 .326	.899 .794	32 30	.975 .974
Southern Market										
Expanding Nonexpanding	.785 .798	.201 .107	.986 .905	60 69	.984 .988	.788 .670	.151 .147	.939 .817	30 33	.980 .984
Southern California										.974
Expanding Stable Contracting	.276 .188 .298	.190 .075 .286	.466 .263 .585	49 65 40	.978 .981 .986	.331 .291 .220	.234 .069 .206	.565 .360 .426	28 33 27	.974 .976 .982
Bay Area								.761	27	.971
Expanding Nonexpanding	.733 .199	.049 .250	.782 .449	52 67	.976 .968	.780 .313	018 .367	.680	32	.961
Sacramento Valley										
Market										
Expanding Nonexpanding	.554 .597	.202 .089	.756 .686	71 63	.958 .969	.499 .389	.286 .296	.785 .685	34 31	.944 .958

Some Detailed Results for Equation 7, All Samples^a

^aThis table is an extension of Table 37 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 91.

^bFor geographic coverage, see Supplement Table 1, *supra*, p. 3.

 c Usually a small number of independent variables were deleted because of collinearity.

Estimated Elasticity Components for San Joaquin Valley (Northern Market) Expanding Firm Cases $^{\mathcal{A}}$

Estimated		Feed		[All other input	s
elasticity		Standard			Standard	
component	Coefficients	errors	t ratios	Coefficients	errors	t ratios
Constant element, a _{i0}	1.008	0.171	5.89	.235	0.307	0.77
Time com- ponent, "it						
1959	0 ^{<i>b</i>}	С		o ^b		
1960	168	0.106	-1.58	.135	0.115	1.17
1961	396	0.118	-3.35	.370	0.125	2.96
1962	269	0.124	-2.18	.240	0.132	1.82
1963	253	0.134	-1.89	.197	0.144	1.37
1964	277	0.131	-2.11	.211	0.147	1.44
Firm com - ponent, α _{if}						
1	0 ^b			o ^b		
2	407	0.231	-1.76	139	0.360	-0.39
3	240	0.224	-1.07	164	0.378	-0.43
4	.194	0.241	0.81	578	0.365	-1.58
. 5	139	0.230	-0.60	220	0.466	-0.47
6	0^d			020	0.133	-0.15
7	.019	0.293	0.07	.161	0.524	0.31
8	196	0.261	-0.75	318	0.529	-0.60
9	416	0.227	-1.83	173	0.463	-0.37
10	329	0.266	-1.24	693	0.522	-1.33
11	120	0.254	-0.47	042	0.390	-0.11
12	267	0.251	-1.06	435	0.373	-1.17
13	055	0.213	-0.26	056	0.380	-0.15
14	483	0.261	-1.85	024	0.486	-0.05

^aThis table is an extension of the left-hand side of Table 39 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 94.

 b Omitted to avoid collinearity, ex ante.

 $^{\mathcal{C}}$ Blanks indicate not applicable.

 d Omitted to avoid collinearity, ex post.

Estimated		Feed		All other inputs						
elasticity component	Coefficients	Standard errors	t ratios	Coefficients	Standard errors	t ratios				
Constant element, α _{i0}	0.384	0.250	1.54	1.193	0.307	3.88				
Time com- ponent, α _{it}										
1959	o ^b	с		o ^b						
1960	0.318	0.239	1.33	-0.454	0.314	-1.44				
1961	0.485	0.225	2.15	-0.620	0.290	-2.14				
1962	0.616	0.209	2.95	-0.795	0.274	-2.90				
1963	0.505	0.213	2.37	-0.657	0.275	-2.39				
1964	0.437	0.229	1.91	-0.636	0.293	-2.17				
Firm com- ponent, a _{if} 1	o ^b			o ^b						
2	o ^d			-0.288	0.316	-0.91				
3	-0.083	0.216	-0.38	-0.264	0.275	-0.96				
4	0.131	0.213	0.61	-0.672	0.332	-2.03				
5	-0.095	0.195	-0.48	-0.373	0.267	-1.40				
6	-0.357	0.250	-1.43	0^d						
7	-0.094	0.273	-0.35	-0.273	0.338	-0.81				
8	0.118	0.199	0.59	-0.885	0.328	-2.70				
9	0.155	0.227	0.68	-0.673	0.316	-2.13				
10	0.406	0.263	1.55	-0.675	0.349	-1.93				
11	0.001	0.266	0.00	-0.765	0.366	-2.09				
12	-0.096	0.199	-0.48	-0.706	0.382	-1.85				

Estimated Elasticity Components for San Joaquin Valley (Southern Market) Expanding Firm ${\rm Cases}^a$

^aThis table is an extension of the right-hand side of Table 39 in *Production Functions and Supply Applications for California Dairy Farms*, University of California, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 94.

 ${}^{b}\mbox{Omitted to avoid collinearity, } ex ante.$

 c Blanks indicate not applicable.

 $^{d}\ensuremath{\mathsf{Omitted}}$ to avoid collinearity, $ex\ensuremath{\textit{post}}.$

Section 3: Feed Regressions

For a two-stage process for 30-40 percent of the overall sample, feed was estimated from a regression of the remaining feed observations on exogenous and predetermined variables. As an initial step, feed was regressed on cows milking and cows dry. As a final step, feed was regressed on those independents plus 4 season dummies, 3 breed dummies, body weight, value per head, and year dummies, with a maximum of 20 independent variables specified. Coefficients for the initial step appear as Appendix Table A.6 of the Monograph, while selected results for the final step appear as Appendix Table A.7. The following Supplement Tables present coefficients, standard errors, and t ratios for each of the individual samples employed, consisting of 10 samples, including 2 combined cases. Appendix Table A.8 and Table 6 present results for the 10 samples combined into 1 overall sample.

ſ <u> </u>	Number		1	Coeffi	cient	Standard	l error	t r	atio
	of	2		Cows	Cows	Cows	Cows	Cows	Cows
Region ^b and sample	observations	R ²	Constant	milking	dry	milking	dry	milking	dry
Sacramento Valley									
Sacramento valley									
Market	567	.921	- 27.022	25.516	16.273	0.445	1.740	57.393	9.355
Manufacturing) Left survey	142	.920	57.556	26.480	5.734	1.129	4.834	23.456	1.186
Left Survey	142	• 920	57.550						
Northern and				00.005	10.000	0.569	1.823	40.536	6.738
Sierra Mountains	266	.927	103.663	23.065	12.286	0.369	1.025	40.550	0.750
San Joaquin Valley									
		•					1 (00	00.070	14.647
Northern market	560	.979	-227.145	25.940	24.630	0.323	1.682 1.618	80.243 66.240	8.550
Southern market	693	.956	82.671	24.831	13.837	0.375 0.508	2.530	47.610	3.446
Manufacturing	182	.978	-102.778	24.179	8.719	0.508	2.550	47:010	3.440
									4 4 5 0
North Coast	66	.888	140.432	21.913	10.722	1.066	2.405	20.553	4.459
Bay Area									
bay Area								70.070	0 007
Northern	619	.957	136.656	23.192	12.075	0.318	1.508 1.360	72.969 78.762	8.007 15.668
Southern	660	.975	68.885	24.387	21.312	0.310	1.360	/0./02	19.000
Southern California									
Central }	1,099	.987	-143.913	29.273	19.328	0.229	0.778	127.992	24.847
Peripheral (_,								
				1					
Average:									
10 market samples	с		8.901	24.878	14.492				

Feed Regressed on Cows Milking and Cows Dry Only (Initial Step) a by Region and Sample

^aThis table is an extension of Appendix Table A.6 in Production Functions and Supply Applications for Californic Dairy Farms, Giannini Foundation Monograph No. 36 (Berkeley, 1976), p. 122.

^bFor geographic coverage, see Supplement Table 1, *supra*, p. 3.

^cBlanks indicate not relevant.

		Sacramen	to Valley	Northern							
		Market		and		Joaquin Vall					
		and Manu- facturing	Left	Sierra Mountains	Northern Market	Southern Market	Manu- facturing	North Coast	Northern	Area Southern	Southern California
		racturing	survey	Mountains	Market	Market	Tacturing	COASE	Northern	Souchern	Carrionnia
Numbe obser	er of vations	567	142	266	560	693	182	66	619	660	1,099
pende	r of inde- nt variables	17	18	18	18	18	18	15	17	16	16
r ²		.941	.944	.048	.984	.989	.983	.944	.975	.981	.989
Const	ant	-741.258	-1,478.683	411.048	-2,738.055	-508.031	-1,462.597	-1,392.723	-831.096	-1,220.101	-3,522.273
<u>Coeff</u>	<u>icients</u>										
х ₁ :	number of cows milking	19.821*	26.886*	13.128*	18.293*	15.101*	26.817*	14.265*	19.368*	14.391*	29.583*
x ₂ :	number of cows dry	20.237*	2.057	14.571*	23.845*	15.262*	12.694*	13.332*	16.239*	20.948*	18.477*
х ₃ :	expected milk per cow (pounds per day)	3.953	5.751	- 4.555	- 11.629	- 5.169	19.469*	- 10.352	5.925	- 9.577*	3.807
х ₄ : Seaso	expected milk total (hundred pounds per day) on dummies ^b	12.849*	- 0.341	34.515*	18.090*	27.570*	- 12,030	25.380	9.000*	23.363*	- 0.771
x ₅ :	current summer	121.131*	- 23.303	5.340	135.006*	5.007	3.056	165.992	- 22.129	44.641	- 52.265
x ₆ :	current winter	38.398	13.124	0.866	70.714	8.023	- 31.984	76.924	- 63.032	- 5.536	- 11.423
x ₇ :	lagged summer	44.311	11.349	- 55.207	115.801	- 52.195	- 67.069	54.565	- 59.099	2.449	18.318
х ₈ :	lagged winter	29.306	20.898	5.127	61.630	31.210	61.778	140.384	20.837	18.326	- 105.110*

,

-

4

Feed Regressed on Extended Set of Independent Variables--Coefficients (Final Step)^a by Region and Sample

(Continued on next page.)

.

.

20

4

SUPPLEMENT TABLE 16--continued.

[Sacramen	to Valley	Northern							
		Market		and		Joaquin Vall		North	Pau	Area	Southern
		and Manu-	Left	Sierra	Northern Market	Southern Market	Manu- facturing	Coast	Northern	Southern	California
		facturing	survey	Mountains	Market	Market	Tacturing	COASE	Northern	bouchern	Gairrormia
Breed	l dummies ^b										
x ₉ :	Guernsey	-114.354	372.068*	-143.715*	-444.671*	-106.935	- 39.972	-418.853	-163.770*	с	-746.980*
x ₁₀ :	Jersey	- 81.977	- 28.196	-160.994*	224.670	-276.240*	321.252	-217.843	- 51.291	18.974	
x ₁₁ :	mixed	- 21.322	328.509*	-100.149*	114.402	-214.334*	41.431	-322.697	- 42.903	-70.554*	-216.162*
x ₁₂ :	body weight (hundred pounds)	17.660	139.867*	- 17.493	93.546	35.626*	54.897	117.457	51.969*	60.902*	122.664*
x ₁₃ :	value per head (dollars)	1.641*	- 1.263	- 0.174	6.903*	2.632*	0.913	5.117	1.364*	3.585*	4.964*
Year	dummies ^b										
x ₁₄ :	1965	- 18.681		172.831*							438.642*
x ₁₅ :	1964	-110.231*		- 0.075	-312.805*	-498.314*	- 51.152	-462.242*	-191.679*	-48.819	12.805
x ₁₆ :	1963	- 76.577	37.011	32.653	- 62.483	-474.831*	- 22.923	-241.273*	-134.335*	-77.251*	159.661
X ₁₇ :	1962	- 22.330	192.716	73.365	- 0.622	-342.108*	- 21.596		95.937*	- 3.449	61.795
	1961		152.118	82.561	-167.493	-363.578*	- 84.146		6.460	- 7.769	
	1960		-129.414		-151.941	-405.376*	69.091				
x ₂₀ :	1959		- 4.197				1 2 4 4 4 4 4 4 4 4 4 4 4 4 4				
							L				<u> </u>

^aThis table is an extension of Appendix Tables A.7 and A.8 in *Production Functions and Supply Applications for California Dairy Farms*, Giannini Foundation Monograph No. 36 (Berkeley, 1976), pp. 124 and 125.

 b Omitted dummies: remaining months, both current and lagged season; Holstein, 1958, and earlier.

^CBlanks indicate years not in equation.

*Statistically significant at the 5 percent level.

<u></u>		Sacramen	to Valley	Northern					l		[
		Market		and		Joaquin Val					
		and Manu-	Left	Sierra	Northern	Southern	Manu-	North		Area	Southern
······································		facturing	survey	Mountains	Market	Market	facturing	Coast	Northern	Southern	California
Cooff	inimto					unduru errer					
	icients									1 050	0.00/
х ₁ :	number of cows milking	1.771	4.982	3.187	1.621	0.754	2.467	4.483	1.151	1.253	0.904
x ₂ :	number of cows dry	1.581	4.682	1.728	1.601	0.837	2.758	2.297	1.229	1.223	0.729
х ₃ :	expected milk per cow (pounds per day)	4.819	8.854	5.541	6.288	3.109	6.258	15.338	4.391	3.726	5.092
х ₄ :	expected milk total (hundred pounds per day)	5.009	15.016	10.689	3.746	2.186	8.589	17.426	3.448	2.910	1.967
Seaso	n dummies ^a										
х ₅ :	current summer	44.165	111.409	40.549	63.166	23.321	48.241	121.526	29.830	29.377	38.824
x ₆ :	current winter	42.438	91.244	27.379	67.207	28.110	52.598	104.633	42.363	32.372	44.389
X ₇ :	lagged summer	46.193	106.933	40.820	74.459	27.289	56.484	129.238	41.951	33.270	40.703
1 '				27.042	54.214	23.843	39.167	127.072	32.675	28.971	41.364
x ₈ :	lagged winter	32.780	79.982	27.042	54.214	23.045	39.107	127.072	52.075	20.771	41.504
Breed	dummiesa										
X _o :	Guernsey	63.072	178.755	66.746	107.049	67.881	61.530	234.470	43.877	Ъ	133.432
x ₁₀ :	Jersey	61.283	166.400	56.384	505.593	48.866	184.680	189.835	45.141	156.743	
	mixed	35.456	108.756	43.709	82.320	31.396	51.240	179.218	25.701	30.849	48.863
X ₁₁ :	mined	351150	1000100				- ·				
x ₁₂ :	body weight (hundred pounds)	16.796	47.061	15.947	53.035	16.249	33.080	60.438	13.408	19.500	28.966
x ₁₃ :	value per head (dollars)	0.423	1.027	0.442	1.778	0.743	1.095	3.552	0.501	0.903	1.579
Year	dummiesa								4. 		
x ₁₄ :	1965	72.084		51.349							136.524
X ₁₅ :	1964	42.946		44.390	103.561	36.551	74.653	119.624	42.704	40.427	95.207
	1963	39.090	144.712	41.121	92.739	35.577	74.190	107.779	32.961	38.923	94.783
X ₁₆ :		38.431	122.979	42.438	87.925	35.621	74.305		32.934	36.520	95.074
X ₁₇ :		30.431					75.994		31.975	36.666	
X ₁₈ :	1961		130.985	49.366	86.876	35.938			51.5/5	50.000	
X ₁₉ :	1960		117.279		90.963	70.475	82.515	1			
x ₂₀ :	1959		127.259								

٠

.

.

Feed Regressed on Extended Set of Independent Variables--Standard Errors and t Ratios (Final Step) by Region and Sample

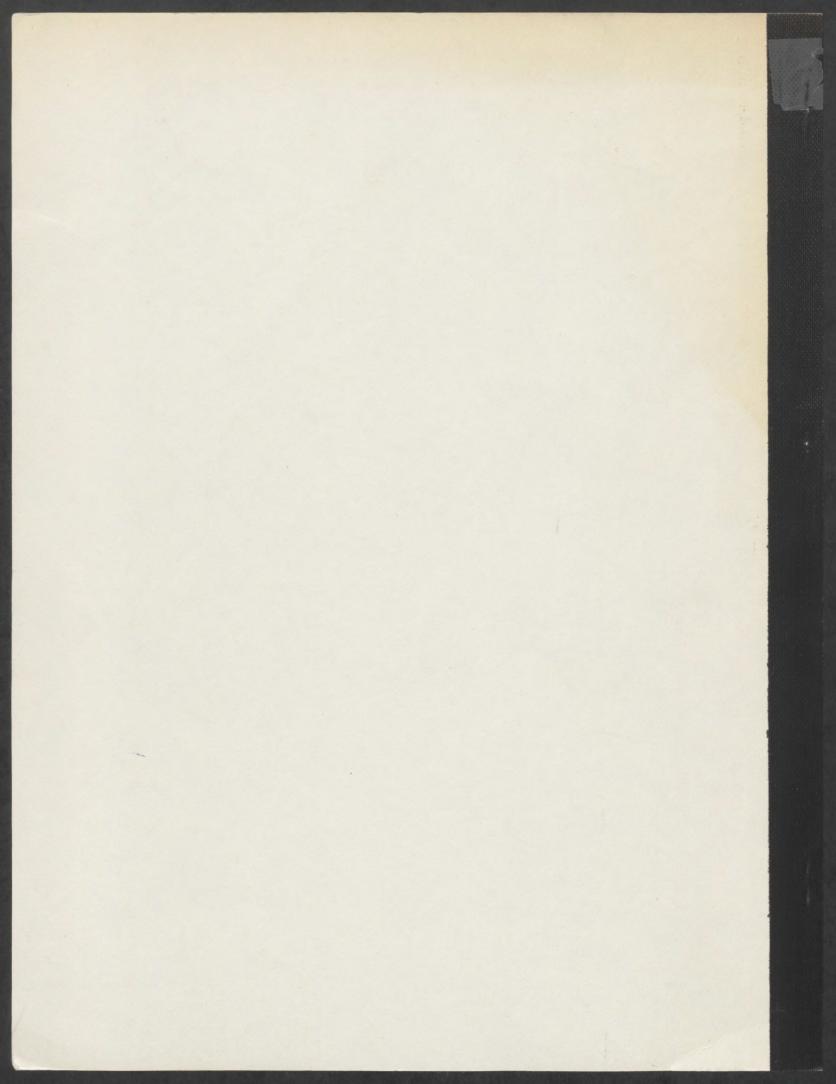
(Continued on next page.)

٠

SUPPLEMENT TABLE 17-continued.

			to Valley	Northern	·						
		Market and Manu-	Left	and	Sar Northern	Joaquin Val Southern	ley Manu-	North	Par	Area	Southern
		facturing	survey	Sierra Mountains	Market	Market	facturing	Coast	Northern	Southern	California
	· ·						tios		· · · · · · · · · · · · · · · · · · ·		
Coeff	icients										
x ₁ :	number of cows milking	11.190	5.397	4.120	11.285	20.033	10.871	3.182	16.831	11.485	32.736
x ₂ :	number of cows dry	12.799	0.439	8.432	14.892	18.238	4.603	5.803	13.216	17.130	25.344
x ₃ :	expected milk per cow (pounds per day)	0.820	0.650	-0.822	- 1.849	- 1.663	3.111	-0.675	1.349	- 2.570	0.748
х ₄ :	expected milk total (hundred pounds per day)	2.565	-0.023	3.229	4.829	12.610	- 1.401	1.456	2.610	8.027	- 0.392
Seaso	n dummies ^a										
х ₅ :	current summer	2.743	-0.209	0.132	2.137	0.215	0.063	1.366	- 0.742	1.520	- 1.346
х ₆ :	current winter	0.905	0.144	0.032	1.052	0.285	- 0.608	0.735	- 1.488	- 0.171	- 0.257
х ₇ :	lagged summer	0.959	0.106	-1.352	1.555	- 1.913	- 1.187	0.422	- 1.409	0.074	0.450
х ₈ :	lagged winter	0.894	0.261	0.190	1.137	1.309	1.577	1.105	0.638	0.633	- 2.541
Breed	dummies ^a										
X _g :	Guernsey	- 1.813	2.081	-2.153	- 4.154	- 1.575	0.650	-1.786	- 3.732		- 5.598
x ₁₀ :	Jersey	- 1.338	-0.169	-2.855	0.444	- 5.653	1.740	-1.148	- 1.136	0.121	
x ₁₁ :	mixed	- 0.601	3.021	-2.291	1.390	- 6.827	0.809	-1.801	- 1.669	- 2.287	- 4.424
х ₁₂ :	body weight (hundred pounds)	1.051	2.972	-1.097	1.764	2.192	1.660	1.943	3.876	3.123	4.235
х ₁₃ :	(dollars)	3.876	-1.230	-0.394	3.883	3.544	0.834	1.441	2.723	3.971	3.145
Year	<u>dummies</u> a										
× ₁₄ :		- 0.259		3.366							3.213
x ₁₅ :	1964	- 2.567		-0.002	- 3.020	-13.633	-0.685	-3.864	- 4.489	- 1.208	0.134
x ₁₆ :	1963	- 1.959	0.256	0.794	- 0.674	-13.346	-0.309	-2.239	- 4.076	- 1.985	1.684
x ₁₇ :	1962	- 0.581	1.567	1.729	- 0.007	- 9.604	-0.291		2.913	- 0.094	.650
x ₁₈ :			1.161	1.672	- 1.928	-10.117	-1.107		0.202	- 0.212	
x ₁₉ :			-1.103		- 1.670	- 5.752	0.837				
x ₂₀ :			-0.033								

.


.

۱,

٠

^aOmitted dummies: remaining months, both current and lagged season; Holstein, 1958, and earlier.

 $\boldsymbol{b}_{\rm Blanks}$ indicate years not in equation.

