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Abstract

This paper is concerned with the analysis of multivariate count data. A class of models
is proposed, based on the work of Aitchison and Ho (1989), in which the correlation
amongst the counts is represented by correlated, outcome-specific, latent effects. Several
interesting special cases of the model are discussed and a tuned and efficient Markov
chain Monte Carlo algorithm is developed to estimate the model. The ideas are illus-
trated with three real data examples of trivariate to sixteen variate correlated counts.

Keywords: Correlated count data; Markov Chain Monte Carlo; Metropolis-Hastings
algorithm.

1 Introduction

Regression analysis of univariate count data has been the subject of a large and still growing

literature (for recent book surveys, see Winkelmann, 1997, and Cameron and Trivedi, 1998)

but the regression analysis of correlated counts involving multivariate measurements on a

random cross-section of subjects or repeated measurements on a sample of subjects over

time is less well developed. Many of the existing models for multivariate counts impose

strong a-priori restrictions on the correlation structure between counts that are unlikely to

hold in applications. Furthermore, most of the estimation methods are concentrated on the

bivariate case.

Correlated count data arises in many situations and in many disciplines. Bivariate

examples include the counts of surface and interiors faults in lenses (Aitchison and Ho, 1989),
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number of doctor consultations and the number of other ambulatory visits (Gurmu and

Elder, 1998), the number of voluntary and involuntary job changes (Jung and Winkelmann,

1993) and the number of entries and exits to an industry (Mayer and Chappell, 1992).

Examples of correlated counts arising from longitudinal measurements are discussed, for

example, by Chib, Greenberg and Winkelmann (1998), Diggle, Liang and Zeger (1994) and

Hausman, Hall and Griliches (1984).

In this paper we propose a class of models for multivariate counts, based on the work

of Aitchison and Ho (1989), in which the correlation amongst the counts is represented by

correlated, outcome-specific, latent effects. The presence of the latent effects implies that

the likelihood function of the model has no closed form expression. We discuss estimation of

the model by Markov chain Monte Carlo simulation methods and demonstrate its efficacy

in problems of upto sixteen dimensions. As far as we are aware a general correlated count

data model with these many correlated counts has never been fit in the literature. The

mixing properties of the algorithm are excellent in the examples.

The paper is organized as follows. In Section 2 we present the model and present some

special cases and extensions. The fitting algorithm is developed in Section 3 while Section

4 gives three real data examples. Section 5 concludes.

2 Model

For the ith subject, let yi = Y be a vector of responses on a set of J count

variables. The model of interest specifies that conditionally on response specific coefficients

13 = (th, ...03j) (where each i3j is a vector of coefficients) and latent correlated random

variables ei = (eii, • • • , eij) the jth count is distributed as Poisson with parameter Oki:

where

and

YijlOij Poisson(9ii),

= E(y13i , eii) = exp(xi3j eii),

ei Arj(-0..5diagD, D) ,
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a multivariate normal distribution with mean vector —0.5diagD and covariance matrix D.

Note that the diagonal elements of D appear in the mean specification.

This model is closely related to that proposed by Aitchison and Ho (1989). If we let

= exp(eii) and let vi = (vil, vu), then our assumption on ei implies that vi

LN j(1, E), a multivariate log-normal distribution with parameters 1 (a vector of ones) and

dispersion matrix E where aii = exp(dii) — 1 and thus E = exp(D) — 11'. Under this

parameterization, yiiPtij Poisson(vijAii), where = exp(x3j) . This is precisely the

model in Aitchison and Ho (1989) except that it has been generalized so as to allow for

response specific covariates xii and response-specific parameters f3j.

Now let Ai = (Aii • • • Aij)' and Ai = diag(Ai), where Aii = exp(xgi). Then by the law

of the iterated expectation we get that

and

E(y2l3,D) =

Var(y210, D) = Ai + Ai[exp(D) — 111A2

Hence, the covariance between the counts is represented by the terms

Yik) = Aij(exp(djk) — 1)Aik j k

which can be positive or negative depending on the sign of di,,, the (j, k) element of D.

Special cases of the model

This model formulation encompasses a variety of interesting sub-cases that are relevant

in practice and have routine solutions when the dependent variable is continuous and the

model is linear in the parameters, but not when the dependent variable is a count. Our

initial interpretation is that i denotes individuals, while j indexes different characteristics,

all measured as counts, for the same individual. One example occurs when studying the

provision of health services where a researcher might be interested in a joint analysis of the

number of individual visits to a doctor and to a non-doctor health specialist (Gurmu and

Elder, 1998).

3



Seemingly unrelated regression. The general formulation can be easily transformed

into the seemingly unrelated regression (SURE) model where the researcher has access to

a cross-section of time series and yij measures the same characteristic for all i and j.

In this context, the first index i represents time while the second index j represents the

cross-section unit. Var(yi) is now a contemporaneous variance-covariance matrix and the

diagonal elements allow for heteroscedasticity and overdispersion. The covariates xii may

or may not vary in the cross-section. While in the linear model, system estimation increases

efficiency only when xj Xik for some j k, this requirement does not apply in the case

of multivariate counts. Alternative interpretations of the SURE model are possible. For

instance, Aitchison and Ho (1989) give data by Arbous and Kerrich on measurements from

three air samplers at 50 different locations. Here, Var(yi) accounts for the correlations

between the measurements of the three samplers at a given location.

Panel models. The proposed multivariate Poisson model can also be used when data

form an independent cross-section of time series. In particular, assume that data are re-

organized so that i denotes the cross-section unit and j denotes time. Now, Var(yi) cap-

tures serial correlation for observations of cross-section unit i over time whereas there is

no correlation, contemporaneous or else, between cross-sections. A special case arises when

eii = ui + vij where ui and vij are independent error components with constant variance.

This "one-factor" approach reduces the number of free parameters in D from J(J + 1)/2

to 2 and, as in the linear error components model, D = crIj +

In addition, the level of generality of the model is affected by whether the parameters

are heterogeneous or homogeneous. For instance, consider the following three conditional

expectation functions:

= exp(si3) , = exp(x4,82) , = exp(x4i3j) .

In the second case, the parameters are allowed to vary over individuals, whereas in the third

case, the parameters are allowed to vary over time.

Independent observations. There are two possibilities. First, assume that D is a

diagonal matrix. The joint density of the counts on subject i , f(yi10, D), collapses into a
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product of one dimensional integrals

p(yi 10, D) = H 
i=1

(4)

where f is the Poisson mass function with mean Oij = exp(x0j + eii). Effectively, this

is the product of J independent univariate Poisson-log normal densities as discussed, for

instance, in Hinde (1982). A particular feature of this model is that it allows for data with

extra-Poisson variation, or overdispersion. Alternatively, assume that D = 0. Then the

joint density for yi simplifies to a product of J independent Poisson densities.

The univariate Poisson model. For J = 1 the general model collapses to a univariate

Poisson model with unobserved heterogeneity. If furthermore D = 0, this is the standard

log-linear Poisson regression model.

3 Bayesian inference

3.1 Prior distributions

We suppose that the parameters (0, D) independently follow the prior distributions

— N(00, B(71), D-1 — Wish(vo) Ro),

with density 71-(0)7413—'), where (00, Bo, vo, R0) are known hyperparameters and Wish (-, -)

is the Wishart distribution with v0 degrees of freedom and scale matrix Ro.

3.2 Likelihood function

Under conditional independence across subjects, the likelihood function is the product of

the contributions p(y2I0, D), where p(y210, D) is the joint probability of the J counts in

cluster i and is given by

P(Y il0 D) = H eij)0(eil — 0.5diagD,D)dei (5)
i=1

where f as above is the Poisson mass function distribution conditioned on (0i, eij) and 0 is

the J-variate normal distribution. This J-dimensional integral cannot be solved in closed

form. We therefore turn to Markov chain Monte Carlo methods to simulate the augmented
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posterior distribution (which is proportional to the product of the prior 7r(13)7r(D-1) and the

joint density of the observations and the latent variables fr_i p(yi(13, D, ei)p(eilD), where

p(eilD) is the Gaussian density 0(eil — 0.5diagD, D)).

3.3 MCMC implementation

To develop an operational Markov chain Monte Carlo scheme we follow Chib, Greenberg

and Winkelmann (1998) and block the parameters as e, 0, and D and recursively sample

the full conditional distributions

[ely, Db eb [D-11e] , (6)

using the most recent values of the conditioning variables at each step. The details of the

simulations are discussed next.

3.4 Sampling e

The target density is r(ely, 3, D) = 1-17_1 r(eilyi, f3, D) which factors into the product of n

independent terms. To sample the ith target density

7r(eilyi, 3, D) = c10(eilD) 11 exp[— exp(xi3j + eii)] [exp(xgi + eij)]ii (7)
j=1

ci7r* (ei lyi, [3, D

we can utilize the Metropolis-Hastings algorithm [see for example Hastings (1970), Chib

and Greenberg (1995)]. The proposal density is taken to be multivariate-t with parameters

that are tailored to those of the target 7r(eilyi, 3, D). Let 62 = arg max ln r*(eilyi, /3, D) and

Vei = (-1/ei) be the inverse of the Hessian of lne(eilyi, D) at the mode 61. These

quantities are obtained from a few Newton-Raphson steps using the gradient and Hessian

matrix

and

gei = —D-1(ei + diagD) + [yi — exp(x213 + ei)]

Hei = —D-1 — diag{exp(x2i3+ ei)}
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Then, our proposal density is given by q(eilyi,[3,D) = v), a multivariate-t

density with v degrees of freedom (where v is a tuning parameter). We now draw a proposal

value eti from q(eilyi, f3, D) and move to 4 from the current point ei with probability
*ir )q(eilyi,,(3, 11

a(ei, eti lyi, D min 
D) 

(10)
r*(eti lyi,f3,D )q(etilyi,p,D)'

If the proposal value is rejected, then the next item in the chain is the current value ei.

3.5 Sampling p and D

Given e, we next sample from the target density which is proportional to

n J

r * (MY, D) = 0(010o, BV) fl JJ exp[- exp(x4,8i + eii)] [exp(x:iO3 + . (11)
i=i j=i

This density is sampled by the M-H algorithm in a manner that is analogous to that of

ei. The proposal distribution is based on the mode 13 and curvature Vo = [-Ho]-1 of

log 7r* (13y e, D) where these quantities are found as before using a few Newton-Raphson

steps with the gradient vector -B0(i(3-fl0)-Fa--1 E.;.--1.[Yii-exp(xiiifii+eij)lxii and Hessian

matrix Hp = -B, - Eti2=1 E;71=ilexP(x,ei + eaxijx1ii

Following Chib, Greenberg and Winkelmann (1998), we obtain the proposal by reflecting

the current value around the modal value :6 and then add a Gaussian increment with

variance roVo. The resulting proposal density is q(0,0tly, e, D) 0(13- (0 - /3), roVo) and

the probability of move is given in terms of the ratio of density ordinates

43, OtiY, e, D ) = min 1 7*(,13

P

„t,IY' e' D ) 1 (12)

since the proposal density is symmetric in (0, 017)-* ndlY 'hencee'D)c:n1 'cancels.

Finally, the sampling of D-1 is from 7r(D-1Ib) = fw(D-lin + vo, [RV +

a Wishart density with n + vo degrees of freedom and scale matrix [R-6-1 + E7_1(eiei)]-1

where ei = ei diagD.

4 Examples

We illustrate the use of the proposed algorithm on three different data sets. In the first

example, taken from Aitchison and Ho (1989), we are concerned with the trivariate distri-
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bution of the number of bacterial counts for three samplers in 50 different locations. Apart

from a response-specific intercept this examples does not contain any other covariates. Our

second example is based on a longitudinal dataset by Diggle, Liang and Zeger (1994) on

seizure counts for 59 epileptics over five time periods. The estimated model includes three

covariates and five period-specific latent effect. Finally, the third example is considered

with a very high dimensional problem on the number of airline incidents of sixteen U.S.

passenger air carriers between 1957 and 1986.

Our algorithm was run for 6000 iterations following a burn-in phase of 500 iterations.

In each example the results were found to be robust to the starting values (which for 0 was
taken to be the ML estimate from independent Poisson regressions and for D was .1 times

the identity matrix) and the tuning constants in the Metropolis-Hastings steps. In effect,

the algorithm was applied with no user-intervention beyond the specification of the model

and prior hyperparameters.

4.1 Bacterial colony counts

The first example has the structure of a seemingly um-elated regression (SURE) model,

where bacterial colony counts for three different air samplers measured at the same 50

locations are potentially not independent. Correlation between the counts from the three

samplers at a particular location can arise from common location specific variations in

bacterial infestation. In such a situation, joint estimation will increase efficiency.

The prior parameters are set to

Po = 0, B(71 = 0.0113, vo = 6, Ro = /3

The two scale factors are equal to unity. The marginal posterior distributions of 01, 02,

and 03 from 6000 iterations after a burn-in phase of 500 are summarized in Figure 1. The

posterior means are 4.7, 6.5 and 6.6 for samplers 1,2 and 3, respectively.

The autocorrelation functions for the sampled draws show a relatively fast decline, an

indication of the good mixing property of the algorithm. After fifteen lags, the autocorre-

lations are essentially zero. A similarly fast decline in autocorrelation is also obtained for

the simulated draws of the covariance matrix D (Figure 2).
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Figure 1: Posterior distribution of )3 and autocorrelation functions of sampled draws in air

samplers data example.

The posterior means and standard deviations of D are found to be

0.308 0.025 -0.084 \
(0.101) (0.063) (0.084)

0.226 -0.152
(0.080) (0.072)

0.425
(0.130) /

There is evidence for substantial extra-Poisson variation, as the diagonal elements of D

are relatively large. The covariances do not show a systematic pattern, as ci12 is positive,

and J13 and J23 are negative. However, the standard deviations of the simulated posterior

density are large, and the probability of a zero or positive covariance is small only for d23

(0.7 percent). This is also apparent from the Figure 2 where we plot the marginal posterior
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Figure 2: Posterior distributions and autocorrelation functions from the MCMC output of
the covariances d12, d13, d23 in air samplers data example.

distributions of the three covariances. One implication of this analysis is that a "one-factor"

random effects model would be suspect for these data, as such a model forces the covariances

to be positive.

4.2 Seizure counts

The proposed algorithm for computing the posterior density of a multivariate Poisson re-

gression model can also be applied to situations where the dimensionality of J is higher

and where covariates are present. Consider the case where j stands for time and the data

have a longitudinal structure. For example, Diggle, Liang, and Zeger (1994) provide data

on seizure counts (yii) for each of 59 epileptics over 5 consecutive periods (one observation
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is eliminated from the dataset because of the "unusually high pre- and post-randomization

seizure counts"). Thirty persons are treated with a drug progabide after period one and the

following regression model is estimated in order to assess the effectiveness of the treatment:

= exP(01. + 02xii2 + 03xii3 4- fi4xii4 + eii)

where yii Ai follows a Poisson distribution,

1 if visit 1, 2, 3 or 4
x• i3

2 = 1 0 if baseline

1_ 1 if treatment group
Xij3 - 0 if control

and sii4, an interaction between Xii2 and xi33. The latent effects are ei = (e 1, —, e25) and

the prior hyperparameters of 0 and D (a 5 dimensional matrix) are set to

Po = 0, AV = 0.01/5; vo = 10, Ro = /5

where go = (001, 002, 003, /304)'•

As the periods are of different length (8 weeks for the base period and 2 weeks each for

the post-treatment visits), 02 accounts for both any genuine difference in the seizure rates

before and after treatment for the control group and the effect of the longer base period. For

instance, if seizure counts were strictly proportional to the length of the period, one would

expect an estimated coefficient of ln(1/4). As the assignment to the drug was randomized,

one would expect 03 to be close to zero. Finally, the coefficient 04 measures the treatment

effect.

With a simulation sample of size 6000 after discarding simulations from a burn-in phase

of 500, we obtain marginal posterior distributions of th - /34 with means and standard

deviations of 3.328 (0.126), -1.276 (0.100), -0.011 (0.161), and -0.372 (0.148), respectively.

A box-plot summary of the distributions for the 15 elements of D is presented in Figure

3 along with the autocorrelation functions of the diagonal elements of D. The latter indicate

that the sampler is mixing extremely well. The covariances are quite precisely estimated

and are all positive, with means between 0.40 and 0.77. The variances tend to be somewhat
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Figure 3: Posterior box plots of vechD and autocorrelation functions of the diagonal elements

of D in epilepsy data example.

larger than the covariances, in particular d44 (column number 10). The evidence appears

to suggest only moderate departures from an equi-correlation structure.

We conclude this section by providing a heuristic diagnostic check of the model against

the data. Suppose we consider the ability of the model to predict the frequency distribution

of the dependent variable. For instance, the outcome "zero" occurs for 23, or 7.9 percent, of

all observations. The probability of this outcome from the model depends on 0, the latent

variable eii and the covariates sit. One can compute the average predicted probability

by integrating f (010, eii, xii) over the joint posterior distribution of 0 and e and over the

observed data distribution of x. The average predicted probabilities of other outcomes

y = 1, 2, ... can be calculated in the same way.
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Figure 4: Relative observed frequencies and average predicted probabilities for epilepsy

counts.

In practice, this approach is very simple to implement as it only requires the output

from the MCMC algorithm. A prediction step is included in each iteration using the current

values of i3 and e. The reported average predicted probabilities given in Figure 4 are

obtained as grand means over observations and simulations. We find that the predicted

distribution traces the data distribution quite closely, although the actual distribution has

several non-monotonic parts that the monotonic predicted distribution fails to pick up.

4.3 Number of airline incidents

In this final example we use annual data on the number of airline accidents of sixteen U.S.

passenger air carriers between 1957 and 1986, taken from Rose (1990). Carriers with missing
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observations for some years are excluded from the sample. The accident variable is defined

as any operation related occurrence that leads to personal injury or death, or substantial

damage to the aircraft. Over the sample, the number of accidents ranges from 0 to 14 with

mean 1.7 and variance 4.9.

To model the sixteen counts, let yij denote the number of accidents in year i for carrier

j and let yijlOij be independently Poisson distributed with conditional mean given by

= dij exp(x40 + eij) ,

where dij is the total number of departures dij (in thousands) and the (7 x 1) vector of

covariates xij includes a constant, the operating margin as a measure of profitability of

the airline (OPMARG), the average stage length in thousands of miles (AVSTAGE), the

cumulative airline operating experience in billions of aircraft miles (EXPER), the fraction

of total departures that are international flights ( INTL), an indicator variable for Alaskan

carriers, and a linear time trend (see Rose, 1990, for further details).

In this set-up, we allow for contemporaneous correlations between the accident rates

of the carriers by assuming that ei = (ea, • • - eilo) are jointly normal distributed with a

sixteen dimensional covariance matrix D. We employ the following hyperparameters

Po = 0, = 0.01/7; vo = 32, Ro = 116

which implies that the prior mean of the diagonal elements of D is approximately 1/32 = .03

(indicating small heterogeneity) but with fairly large prior variance (due to the low value

of the degree of freedom).

In Table 1 we provide a prior-posterior summary related to 13 from our MCMC output.

The table includes the inefficiency factor (INEFF) (also called the autocorrelation time) in

the estimation of the posterior mean of and defined as 1 + 2 Er_i p(k), where p(k) is

the autocorrelation at lag k for the parameter of interest and the terms in the summation

are cut off according to (say) the Parzen window. Each of the inefficiency factors is small

indicating that the sampler is mixing well. The quality of the MCMC sampler in the

estimation of D is not as easy to summarize given that D contains one hundred and thirty six
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parameters. To give some idea of the posterior distributions, however, we report in Figure

5 the posterior box plots of the sixteen diagonal elements along with the autocorrelation

plots of D11, D9,9, D12,12 and D16,16. We see that the posterior distributions are of the

diagonal elements are quite similar with median values ranging from about .07 to .40. Note

that the autocorrelations in the sampled output decline quickly indicating once again that

the sampler is mixing well.

Mean Std dev Lower Upper INEFF
Constant -4.099 0.105 -4.275 -3.928 4.5011
OPMARG 0.133 0.658 -0.925 1.204 4.4569
AVSTAGE 0.703 0.229 0.328 1.082 5.1250
EXPER -0.000 0.036 -0.063 0.061 4.1633
LNTL 0.459 0.218 0.104 0.824 4.4524
ALASKA 1.005 0.313 0.433 1.481 5.6743
TIME -0.080 0.006 -0.090 -0.068 4.9788

Table 1: Posterior summary from the sixteen variate count model fit to airlines data. Results
are based on 6000 MCMC draws. "Lower" and "Upper" denote the 5th percentile and the

95th percentile, respectively, and INEFF denotes the inefficiency factor.

This example provides further evidence of the efficacy of our method in high dimensional

count data models that (as far as we are aware) have never before been fit with these many

counts or with this level of generality on the correlation structure.

5 Concluding Remarks

The estimation framework developed here can easily be extended to deal with variants of

the model discussed above. One example is truncated data. For example, in the analysis

of park visitor data one would normally not have information on individuals that have not

visited the park and therefore the "zero visits" outcome must be precluded. To deal with

this situation one can respecify the conditional Poisson specification for the i, jth count as

f(mili3j,e)/(1- f(013, eii)), yi; = 1, 2, 3 ...

where, as before, f is the Poisson mass function with mean Oki = exp(xii3i3j+ eii). Censoring

can be also be taken into account in the same way. For instance, data are occasionally top-
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Figure 5: Posterior box plots of diagD and autocorrelation functions of D11, D9,9, D12,12
and D16,16 in airline count data example.

coded with an open upper category "a or more" counts. The probability mass function is

then

(1- F(a1/3i, )1 yii 

= , 1 , . . . ,a

where F is the cumulative distribution function of the Poisson distribution and cii is an

indicator variable that is one if the observation is censored and zero otherwise.

Finally, it is possible to extend the analysis to mixed data consisting of both counts

and continuous measurements. The posterior simulation would only require some minor

modifications as the data density, conditional on the heterogeneity terms eii, would now be

product of the respective discrete and continuous probability functions.
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