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1 Introduction

This paper is concerned with the problems of specification and estimation of panel count
data models with random effects. These problems were first addressed by Hausman, Hall
and Griliches (1984) who suggested the use of gamma distributed individual random ef-
fects, and by Gourieroux, Monfort and Trognon (1984) who proposed a semi-parametric
approach. Recent contributions to the literature include Brénnis and Johannson (1996),

Cincera (1997), and Chib, Greenberg, and Winkelmann (1997, 1998).

This paper summarizes the existing methods and offers some extensions. Firstly, I discuss
a model based on additive Poisson distributed random effects. The resulting model is easy
to implement and has several desirable properties. In particular, the marginal distribution
of the counts has a covariance structure very similar to the one of the linear random effects
model. Furthermore, the model is readily extended to allow for extra-Poisson variation,
or over-dispersion. Secondly, I show how the parameters of a multi-factor model with

correlated errors can be estimated without much hassle by Simulated Maximum Likelihood.

Throughout this paper, the conditional expectation function is kept the same for all models,
so that estimated regression parameters are directly comparable across the different speci-
fications. An application section illustrates the practicalities of implementing the different

models, and studies the sensitivity of the results with regard to the choice of model.

2 One-factor models

I consider the situation where data are observed in clusters such that y; = (yi1,...,¥%7)

and z; = (21,...,2;7) denote observations on the ith cluster, i = 1,...,n. Typically, ¢

represents time and i represents individuals.? The most well known example of a one-factor

2All the methods are easily extended to the case of a variable cluster size T;.




model for continuous data is the normal linear model with cluster specific random effects

(see Hsiao, 1986)
Yie = 2B + i + e (1)

where u; and ¢;; are independently normal distributed with means 0 and variances o2 and

a2, respectively. Then y; ~ MV N(z}3,Q) where
Q= ollr 4+ oliriy.

MV N is the multivariate normal distribution, and ¢ denotes a (T x 1) vector of ones.
Now consider the situation where y; represents counts rather than continuous responses.
The benchmark model is the Poisson regression model

T
oy TT SXP(=Ai) AR
f(yilz:) = E T(yi +1)

where A;; = exp(2},0).

Hausman, Hall and Griliches (1984) have proposed to introduce cluster specific heterogene-
ity in a multiplicative way. In particular, the mixture multivariate density of y; takes the

form

L ittt )( Ay )Vt
St = [ [H M—”—] o(u)du; )

Pty Iy +1)

If u; is gamma distributed with E(x;) = 1 and Var(u;) = 7 it can be shown that the
joint PDF of y; is of a negative binomial variety. This model will be referred to as the

Poisson-Gamma model.® Define y;. = 3, i and A, = Y, Ais. Then

T
o (Aa)¥ | Ty 4771, 2y 7\
Tl = [E e +1)] v et (55) (®)

31f, instead, u; was log-normal the integral would not have a closed form solution but rather require

numerical methods. An algorithm based on Gauss-Hermite quadrature is discussed in Winkelmann (1998).




The marginals of the Poisson-Gamma model are univariate negative binomial,

E(yi) =X

Var(y;) = Ai + AyyudA;

where A; = (Air,. .., A7) and A; = diag(\).*

Hence, the Poisson-Gamma model allows for over-dispersion, a phenomenon frequently
encountered in applications. The within cluster covariances are an increasing function
of both «, the variance of the multiplicative heterogeneity term, and the product of the

expected values. The correlation matrix is given by

Corr(y;) = C,‘A,‘C,{ + C,':\,")'LL'A;C,(

where C; = diag{(A\i +7A3) V2, ., (v + 7A%) 712}

Unlike the normal linear model with random effects, the Poisson-Gamma model does not
lead to equi-covariances or equi-correlation within clusters. However, like for the normal

model, within cluster correlations are bound to be positive.

3 An alternative model

While the previous model was based on a multiplicative error, it turns out to be possible
to construct a simple parametric model with additive error as well. This approach exploits

that the Poisson distribution (like the normal distribution) is closed under convolution and

4 These results follow from the law of iterative expectations by which E(yi) = Eu[E(v:|ui)] and Var(yi) =

Eu[Var(y:jui)] + Varu[E(yilui)].




models the data as the sum of a count that is both individual and time specific plus a count

that is specific to the individual.
Yit = Zit + W (6)

The Poisson-Poisson model has been used before in the context of multivariate and “seem-
ingly unrelated” count data (Gourieroux, Montfort and Trognon, 1984, King 1989, Jung
and Winkelmann, 1993, Gurmu and Elder, 1998). However, I adopt it here to the situation
of panel data with individual specific effect. Arguably, the approach is much better suited
for longitudinal data than for multivariate data since the simple “one-factor” structure does
only allow for non-negative within-cluster correlations. This restriction is likely to be un-
desirable in the context of systems of equations or multivariate counts, but it fits quite
plausibly to the structure of panel data as was already noted in the linear random effects
model. I also show that one further criticism of the model, its apparent inability to account

for over-dispersion, can be overcome in an extended model.

Assume that z;; and u; are independently Poisson distributed with parameters A;; — v and
7, respectively. Then y; = (yi1 + Ui, ..., ¥ + ;) has a multivariate Poisson distribution

with the following properties: Each element y;; is Poisson distributed with
E(yit) = Var(yi) = Ait

where Ay = exp(a%,3). Moreover,

Var(yir, yjs) = Var(zir + i, 2js + 1)

Ait fori=jandt=s
7 fori=jandt#s
0 otherwise

In cluster-specific notation

Var(y;) = A; + y(erer = IT),




Hence, as in the linear random effects model, all covariances are the same. However, since
the Poisson model is inherently heteroscedastic, the Poisson-Poisson model is not equi-

correlated. Correlations are given by v/[(Xi)"1/3(\is)~1/2), or, in matrix-form,
Corr(y;) = CiAiCl+ Cryd/C!

where C; = diag{(\1)~1/2,...,(\ir)" 1?2}

In order to estimate the parameters of the Poisson-Poisson model by maximum-likelihood,
I next derive the likelihood function. Let s; = min(y;1,...,yi7). The generic joint PDF for

cluster ¢ under independence of z;; and u; can be written as

si T
flyins- o vir) = Zf )1 f(wie = k) (M)
k=0 t=1

where f is the Poisson PDF. The intuition behind this joint probability function is as follows.
First, we know that the cluster specific count u; cannot exceed any of the observed counts
(¥i1,. .., ¥iT), because each count is the sum of u; and a non-negative count z;;. Secondly,
the probability of an observed count y;; is the sum over the joint probabilities f(u;) and
f(zie) = f(yit — w;), where u; = 0,...,s;. Multiplication follows from the independence

assumption.

In explicit notation

‘(/\-z ’Y)(,\ - y.;—k

f(yirs oo viT) A X tnl: J,z—’»)!

T

(’\H_ /)y” -k
tl_[l ./zt - L (8)

Si

T ok
= exp [(T=-1)y - Z /\it] Z b
t=1

and for clusters with at least one zero observation, the joint probability function simplifies

to

T
- .sz
flyis- . 'ayiT)]min(y.l,..,,y.r)=0 = exp ‘:(T - 1)7 Z ’\lt} H Ai ‘7

]
t=1 t=1 (vie)!




Also, for 7 = 0 the joint PDF collapses to the standard Poisson model. As for the normal

distribution, zero correlation implies independence in this particular model.

The Poisson-Poisson model can be readily extended to allow for over-dispersion. Perhaps
the simplest way of doing so is to assume from the outset that z;; and u; are independently

negative binomial distributed. One possible reason could be that

zit|vie ~ Poisson(Ajvi)

wi|ki ~ Poisson(yk;)

where v;; and k; are independently gamma distributed. As before
Yit = Zit + i

Furthermore, assume that the parametrization is such that®

zit ~ NB with E(zi) = \iy — 7, Var(zig) = (Mie = 7)(1 + o)

u; ~ NB with E(u;) = v, Var(w;) = v(1+ o)

It can then be shown that the marginals of y;; are negative binomial with expectation

E(yi) = Air and variance®

Aif(L+ o) fori=jandt=s

Var(yie, ¥js) = § y(1+0) fori=jandt#s

0 otherwise

At present, the variance term is forced to be the same for the z and u parts. Relaxing this restriction
in the future is desirable. Also, this model implies a linear variance function in contrast to the quadratic
variance function of the previous section.

®A derivation is given in the Appendix.




or, in the usual notation,

Var(y:) = [Ai + 7(erer = IT))(1 + 0)

Hence, the covariance matrix is proportional to the covariance matrix of the Poisson-Poisson
model, and over-dispersion exists whenever ¢ > 0. The joint PDF for cluster 7 is obtained
along the lines of (7) where f now stands for the univariate negative binomial PDF. This

model will be referred to as the Negbin-Negbin model.

4 Multi-factor models

An alternative to the one-factor approach, the multi-factor approach models dependence

within clusters by way of correlated errors.” Let & = (<i1,...,&71). E(eie}) = D is

left unrestricted. In the normal linear model it is relatively simple to directly estimate
the t(t 4+ 1)/2 elements of D, for instance by maximum likelihood, although this option
is rarely pursued in practice (most likely, because the one factor model has an intutitive
interpretation as a model for individual specific unobserved heterogeneity that the multi-

factor model does not have).

Estimation of multi-factor models is more difficult in the context of non-linear count data
models. The basic Poisson model is augmented by correlated individual and time specific
heterogeneity components ¢;;. The marginals are obtained by integrating the joint PDF over
the multivariate (T-dimensional) distribution of ¢;. The generic model with multiplicative

multivariate normal heterogeneity structure can be written as follows.

Counts are Poisson distributed conditionally on the random effects u;; = e, i.e.,

yitlB, it ~ Poisson(A;et),

"“Correlated” errors refers to correlation of errors within clusters, not between errors and regressors =




where
&i = (€i1y---,8i1) ~ MV N7(0, D),
and MV Nt denotes the T-variate normal distribution. Hence, exp(e;) has a multivariate
log-normal distribution with mean Elexp(e;;)] = exp(0.50%) and covariances
vjr = Covlexp(ei;) expleir)] = [exp(pjroior) — 1]exp[0.5(0? + a})]
(See Johnson and Kotz, 1972, p. 20). Let V have typical element [v;]. Then
Var(y;) = A; + A;VA!

This model allows for both positive and negative covariances. In particular, (9) is negative,
positive, or zero if and only if the bivariate coefficient of correlation pjy is negative, positive,
or zero, respectively.

Under conditional independence, we obtain the likelihood function for observations on the

ith cluster

T
f(yilei, B,) = [] plyicles, B,€0)

t=1

f(yiseilzi, B, D) = f(uili, By€:) (€:l0, D)

is the joint density of (yi,e;), where p is the Poisson mass function with conditional mean
Aie’it and ¢(e4]0, D) is the density of the normal distribution with variance covariance

matrix D. Each likelihood contribution may be written in explicit form as

Huleo8,D) = [ /[ﬁeXP(—eXP(OEftﬂ+E£t))(exp(l‘§tl3+€.‘z))y"
t=1

Py + 1)
X @(gi1y. .. €73 D)deiy - - - deir




The likelihood function of the parameters given y = (Y1,---,9z) is then the product of the

n likelihood contributions L;(y;|3, D):

18, 0) = I [ stwneds, Dy
i=1
HLi(.l/iLﬂvD)’ (11)
i=1
The intractability of the likelihood function arises from the difficulty of evaluating the

multidimensional integral.

5 Simulated Maximum Likelihood

One possible approach to estimate the model parameters is to replace L(y;|x;,8,D) by a
consistent estimator i(y;lx;,ﬂ, D) and maximize the resulting simulated likelihood function
(See Gourieroux and Monfort, 1993). This approach is particularly easy to implement
whenever a relevant conditioning exists, i.e., when flyilzi, B, D, u;) has closed form and the
distribution of u; is known and, in particular, does not depend on further parameters. In

such a situation, the actual density

f(wilzi,3,D) = / ki B, D, w)g(us)du;

can be replaced by a simulated density

H
2 1
fyilzi,8,D) = Vi E fyilzi, B, Dy uin)
h=1

where w; are random number draws from g(u) and H is the number of simulations per
observation. The draws [u;s] are kept constant over the itérations of the ML routine in

order to avoid discontinuities in the log-likelihood function. The objective function is then

N

L8, D) =" log f(vilvi, B, D)

=1




and the Simulated Maximum Likelihood estimator

argmaxﬁ'DI:(ﬂ, D)

is consistent and asymptotically efficient whenever H and N tend to infinity in such a way

that /N/H tends to zero (Gourieroux and Monfort, 1993).

In the present context, let u;, ~ MV N(0, IT) and v;p(D) = chol(D)'u;p. Then

Flein, D) = S [ Rl expli + s)expleyf + v
h

Ty +1)

=1 Lt=1
6 Application

Diggle, Liang, and Zeger (1994) provide data on seizure counts (y;;) for each of 59 epileptics,
some of whom are treated with a drug progabide (two observation are eliminated from the
dataset because of the “unusually high pre- and post-randomization seizure counts”). In
this illustration, I use data for the base period and two post-treatment periods (T = 3).

The covariates are

visit 1 or 2

baseline

treatment group

control

zi4, an interaction between z;, and z;3

Following Diggle, Liang, and Zeger, the counts are modelled by a Poisson link with mean

log E(yit|B) = 81 + Bairz + Batira + BaZiraina

11




As the periods are of different lenght (8 weeks for the base period and 2 weeks each for
the post-treatment visits), 8, accounts both for any genuine difference in the seizure rates
before and after treatment for the control group, in addition to the effect of the longer
base period. For instance, if seizure counts were strictly proportional to the length of the
period, we would expect an estimated coefficient of In(1/4) = —1.39. As the assignment to
the drug was randomized, we would expect 33 to be close to zero. Finally, the coefficient
(4 measures the treatment effect. A negative value corresponds to a greater reduction (or
smaller increase) in the seizure counts for the treatment group, and thereby indicates that

the treatment was effective.

Table 1 gives the maximum likelihood estimates for the standard Poisson model without
random effects, and for the two additive random effects Poisson models that were introduced

above (Standard errors in parentheses).®

The Poisson parameters in the first column of Table 1 show that, as expected, f2 is nega-
tive and close to the value that would give strict proportionality to the period at risk. The
treatment effect is negative (i.e., a reduction in the expected number of epileptic seizures by
31 percent) and significant. The two random effects models produce quite similar param-
eter estimates. These models illustrate the importance of allowing for individual specific
heterogeneity. However, the estimated treatment effect decreases in the Poisson-Poisson

and Negbin-Negbin models (in absolute value), and is insignificant in the latter.

Both t- and likelihood ratio tests clearly reject the restriction 4 = 0 of the Poisson model

against the Poisson-Poisson model. In the Poisson-Poisson model, the value of 3.019 gives

the within cluster covariance. In this model, the conditional variance and expectation are
set equal, an assumption that seems not to fit well with the data, as the Negbin-Negbin
model that separately estimates the variance and covariance terms, has a much higher log-

likelihood value. Note that the Negbin-Negbin model implies a linear variance function

8The data and the programs (written in Gauss) are available from the author upon request.

12




whereas the models that are shown in Table 2 all imply a quadratice variance function.

The Table displays the results for the three models with multiplicative error. In the Poisson-
Gamma model, the multiplicative individual specific heterogeneity term is Gamma dis-
tributed. The Poisson normal model has the same structure, only that the heterogeneity
term is now log-normally distributed. Finally, the last column gives the Poisson model
with correlated errors (Poisson-MVN). While the Poisson-Gamma model has closed form
expressions for the marginal distribution y|z the other two models don’t, and they were

both estimated by Simulated Maximum Likelihood with 300 draws for each observation.

If &;; is normally distributed with mean 0 and variance d;;, then exp(e;;) has a log-normal
distribution with variance ed*(e% — 1). For instance, the estimated variances of the het-
erogeneity term in the Poisson-MVN model range from 0.65 to 2.50. The negative treat-
ment effect in all cases indicates a significant reduction in the number of seizures for the
treated group. The Poisson-Gamma and Poisson-normal models yield almost identical log-
likelihood values whereas the Poisson-MVN model provides a substantially better “fit”. A
formal comparison of the Poisson-MVN model against the Poisson-normal model based on
a log-likelihood ratio test leads to a rejection of the one-factor restriction at any conventinal

significance level.

7 Discussion

This paper has explored various issues that arise in the specification and estimation of count
data models with random effects. While the discussion was centered around panel data,

i.e. repeated observations on the same cross-sectional unit over time, all of the presented

methods equally well can be used to model multivariate counts of systems of seemingly

unrelated count data regressions.

It is important to stress that the presented methods relied on the assumption of indepen-




dence between the cluster specific random effect and the regressors z. In situations where
the validity of this assumption is questionable one would need to use alternative methods
that allow for conditional inference as discussed in Hausman, Hall and Griliches (1984) and
more recently in Blundell, Griffith and Van Reenan (1995). It is possible to test the validity

of the random effects assumption through a Hausman type test.

Appendix
The negative binomial distribution has probability generating function

P(s) = E(s¥) = [1+0(1 - 5)]™°

and PDF

0= ey im (m9) (70)

The mean and variance are given by

E(X)="P/(1) = af

Var(X) = P"(1) + P'(1) = [P'(V)]* = ab(1 + ) . (13)

Assume that the two random variables ¥; and Y are distributed with N B(a;,6;) and

N B(az,0;) respectively. Under independence,

PY)-I-Y;(’S) = pY](s)’PY}(‘S)

[1 4+ 6,(1 - S)]_al[l + 02(1 - 8)1—02
See Feller, 1968). Next consider the following two common parametrizations:
( ) ) g P

14




Negbin I @ = A/6. Then E(Y) = A and Var(Y) = A(1 +9).

Negbin IT § = A/a. Then E(Y) = A and Var(Y) = A(1 + M a).

We see that the Negbin 1 model is closed under convolution if 6; = 6, (whereas the Negbin

II model isn’t), since

Pritra(s) = [1406(1—s)]™M/1+6(1 - s)]/°

[1 + 0(1 _ s)]—(,\ﬁw\;)/é

and Y} 4 Y3 is negative binomial distributed with mean A; 4+ A2 and variance (A1 +A2)(1+9).

To obtain the random effects negative binomial model, let z;; ~ NB(\;; — v,0) and u; ~

NB(#,0). Then y;; ~ NB(Ai, o) with PDF

Do+ i) 1 \Y g\
f(ylt)_I‘(/\it/ff)r(yit+1)(1+0) (1+a) :
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Table 1. Poisson random effects models

Poisson Poisson- Negbin-

Poisson Negbin

3.326 3.309 3.242

(0.036) (0.035) (0.095)
-1.255 -1.295 -1.161
(0.061) (0.058) (0.134)
-0.005 0.024 0.091

(0.050) (0.047) (0.123)
-0.273 -0.183 -0.156
(0.087) (0.078) (0.169)

3.019 4.151
(0.302) (0.789)
6.335
(0.925)

Log-Likelihood -562.04




Table 2. Poisson Mixture Models

(Simulated Maximum Likelihood)
Poisson- Poisson- Poisson-
Gamma  normal MVN

3325 2975 3114
(0.093)  (0.125)  (0.083)
1255  -1.255  -1.385
(0.060)  (0.060)  (0.101)
-0.005 0216  -0.115
(0.060)  (0.162)  (0.089)
0273 -0.273  -0.333
(0.086)  (0.087)  (0.126)
2.468  0.408
(0.464)  (0.070)
0.385
(0.045)
0.286
(0.059)
0.584
(0.105)
0.362
(0.053)
0.573
(0.075)
0.767
(0.066)

Log-Likelihood -579.87 -579.95 -541.58
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