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Abstract

In the modern literature on game theory there are several versions
of what is known as Zermelo’s theorem. It is shown that most of
these modern statements of Zermelo’s theorem bear only a partial
relationship to what Zermelo really did. We also give a short survey
and discussion of the closely related but almost unknown work by
Konig and Kélmar. Their papers extend and considerably generalize
Zermelo’s approach. A translation of Zermelo’s paper is included in
the appendix.
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1 Introduction

It is generally agreed that the first formal theorem in the theory of games was
proved by E. Zermelo? in an article on chess appearing in German in 1913
(Zermelo (1913)). In the modern literature on game theory there are many
variations in the statements of this theorem. Some writers claim that Zermelo
showed that chess is determinate, e.g. Aumann (1989b, p.1), Eichberger
(1993, p.9) or Hart (1992, p.30): “In chess, either white can force a win,
or black can force a win, or both sides can force a draw.” Others state
more general propositions under the heading of Zermelo’s theorem, e.g. Mas
Colell et al. (1995, p.272): “Every finite game of perfect information I'p has
a pure strategy Nash equilibrium that can be derived by backward induction.
Moreover, if no player has the same payoffs at any two terminal nodes, then
there is a unique Nash equilibrium that can be derived in this manner.”
Dimand and Dimand (1996, p.107) claim that Zermelo showed that white
can not lose: “[I]n a finite game, there exists a strategy whereby a first mover
(...) cannot lose, but it is not clear whether there is a strategy whereby the
first mover can win.” In addition many authors claim that Zermelo’s method
of proof was by backward induction, e.g. Binmore (1992, p.32): “Zermelo
used this method way back in 1912 to analyze Chess. It requires starting
from the end of the game and then working backwards to its beginning. For
this reason, the technique is soretimes called ‘backward induction’.”
Despite a growing interest in the history of game theory, see for example
Aumann (1989a), Dimand and Dimand (1996, 1997), Kuhn (1997), Leonard
(1995) and Weintraub (1992), confusion, at least in the English language
literature, as to the contribution made by Zermelo and some of the other
early game theorists seems to prevail. This problem may be due, in part,
to a language barrier. Many of the early papers in game theory were not
written in English and have not been translated. For example, to the best
of our knowledge, there is no English version of the Zermelo article on chess.
The same holds for the lesser known but related work by Kénig (1927)%. A

2Ernst Friedrich Ferdinand Zermelo (1871-1951), was a German mathematician. He
studied mathematics, physics and philosophy at Halle, Freiburg and Berlin where he re-
ceived his doctorate in 1894. He taught at Gottingen, Ziirich and Freiburg and is best
known for his work on the axiom of choice and axiomatic set theory.

3Dénes Konig (1884-1944), was a Hungarian mathematician, the son of the mathomatl-
cian Julius Konig. He studied mathematics in Budapest and Gottingen and received his
doctorate in 1907. He spent his whole carcer in Budapest, first as an assistant and later as
a professor. Most of Konig's work was in the ficld of combinatorics and he wrote the first
comprehensive treatise on graph theory, Theorie der endlichen und unendlichen Graphen
(Theory of Finite and Infinite Graphs).




second paper related to that of Zermelo, Kalmar (1928/29)*, has recently
been translated, see Dimand and Dimand (1997)°. The lack of an English
translation may help to explain the apparent confusion in the modern game
theory literature as to what Zermelo’s theorem states and the method of proof
employed. It appears that there is only one accurate summary of Zermelo’s
paper. This was published in a book on the history of game theory by
Vorob’ev (1975) which is unfortunately only available in the original Russian
version or in a German translation.

In this note, we attempt to shed some light on the original statement
and proof of Zermelo’s theorem and the closely related work of Kénig and
Kalmar. This will clarify the relationship between Zermelo’s result and the
modern statements of it. It is shown that most of the modern statements
of Zermelo’s theorem are to some degree incorrect - only the statement on
the determinateness of chess comes close to what Zermelo did, but even this
covers only a minor part of his paper. A translation of Zermelo’s paper is
included in the appendix.®

2 Zermelo’s two theorems on chess

In his paper, Zermelo concentrates on the analysis of two person games with-
out chance moves where the players have strictly opposing interests. He also
assumes that in the game only finitely many positions are possible. However,
he allows for infinite sequences of moves since he does not consider stopping
rules. Thus, he allows for the possibility of infinite games. This is in con-
trast to what is normally assumed in the modern literature.” He remarks
that there are many games of this type but he uses the game of chess as an
example since it is the best known of them.

The Zermelo paper addresses two problems: First, what does it mean for
a player to be in a ‘winning’ position and is it possible to define this in an
objective mathematical manner; secondly, if he is in a winning position, can
the number of moves needed to enforce the win be determined? To answer
the first question, he states that a necessary and sufficient condition is the

4Lasz16 Kalmar (1905-1976) was also a Hungarian mathematician. He studied mathe-
watics and physics in Budapest. From 1930 until his death he worked at Szeged University,
first as au assistant, later as a professor. His main research was in mathematical logic,
computer science and cybernetics.

5However, the translation of Kalmdr's paper contains so many severe mistakes that it
is alinost impossible to understand what Kalmar really did.

SA Russian translation was published in 1961.

TAll of Aumann (1989b), Bimmore (1992), Dimand and Dimand (1996), Eichberger
(1993), Hart (1992) and Mas Colell ¢t al. (1995), for example, assume a finite game.




nonemptyness of a certain set, containing all possible sequences of moves such
that a player (say white) wins independently of how the other player (black)
plays. However, should this set be empty, the best a player could achieve
would be a draw. So he defines another set containing all possible sequences
of moves such that a player can postpone his loss for an infinite number of
moves, which implies a draw.® If this set is also empty, the other player can
enforce a win. This is the basis for all modern versions of Zermelo’s theorem.
The possibility of both sets being empty means that white can not guarantee
that he will not- lose. This contradicts the ‘first mover has an advantage’
version of Zermelo’s theorem given by Dimand and Dimand (1996).

However, this problem was only of minor interest for Zermelo. He was
much more interested in the following question: Given that a player (say
white) is in ‘a winning position’, how long does it take for white to enforce
a win? Zermelo claimed that it will never take more moves than there are
positions in the game. His proof of this is by contradiction: Assume that
white can win in a number of moves which is larger than the number of
positions. Of course, at least one winning position must have appeared twice.
So white could have played at the first occurrence in the same way as he does
at the second and thus could have won in less moves than there are positions.

Notice that in Zermelo’s paper, in contrast to what is often claimed, no
use is made of backward induction. The first time a proof by backward
induction is used seems to be in von Neumann and Morgenstern (1944). The
first mentioning of Zermelo in connection with induction was made by Kuhn
(1953).

3 Konig’s paper and Zermelo’s proof

Thirteen years after Zermelo, Konig published a paper ‘Uber eine Schlufweise
aus dem Endlichen ins Unendliche’ (1927) (On a Method of Conclusion From
the Finite to the Infinite). In this paper, Konig states a general lemma from
the theory of sets which he formulates in a graph-theoretic framework. This
theorem states that: If the countably infinite set of points (= vertices) of
an infinite graph G can be partitioned into countably many finite non-empty
sets Ey, Ey, E3, ... such that each point of E,y1 (n=1,2,3...) is connected
with a point of E, by an edge, there exists in the graph an ‘infinite path’
a1,as,0a3,..., containing in each of the sets E, a point a,. (Konig (1928,
p.121))

8Zermelo does not consider the stalemate position, which ends the game in finitely
many moves without any party winning the game.




He applies this theorem to a number of different topics including the
colouring of maps, relationships between relatives, and to the theory of
games. The latter application was suggested to him by John von Neumann.
Von Neumann conjectured, and Konig proved the proposition that “if g is
such a winning position ( ...) there exists a number N which depends on ¢
such that starting from this position g, white can enforce a win in less than
N moves.”

This is a generalization of Zermelo’s second problem to games with an
infinite number of positions. However, from each position there are only
finitely many new positions that can be reached. An example would be chess
played on an infinite board, where the pieces have to move as on a normal
chessboard. Kénig shows that if one of the players can win at all, there is
only a finite number of moves necessary to do so.

In addition, he argued that Zermelo’s proof was incomplete for two rea-
sons: First, he remarks that Zermelo failed to prove that a player, say white,
who is in a winning position is always able to enforce a win in a number of
moves that is less than the number of positions in the game. Zermelo had ar-
gued that white could do so by changing his behaviour at the first occurrence
of any repeated winning position and thus win without repetition. However
Zermelo implicitly assumes that black would never change his behaviour at
any occurrence of such a position. He just considered the special case of
unchanging behaviour on black’s part. What he needed to show was that his
claim is true for all possible moves by black.

The second argument of Konig was, that the strategy ‘do the same at the
first occurrence of a position as at the second and thus win in less moves’
cannot be carried out if it is black’s turn to move in this position. However,
the second argument is incorrect since Zermelo considers two positions as
different if black or white has to move.

In an appendix to Konig's paper Zermelo provided a new proof of his
theorem without referring to white winning without any repeated positions.
Instead, he uses the lemma of Konig. Zermelo also supplies a proof of von
Neumann’s conjecture without referring to the general lemma. However, as
Konig points out, Zermelo implicitly proves the lemma itself.

4 Kalmar’s generalization of the work of Zer-
melo and Konig

One year after the publication of Konig’s work, Kalmér published a paper
‘Zur Theorie der abstrakten Spiele’ (1928/29) (On the Theory of Abstract




Games). Starting from the work of Zermelo and Konig, he generalizes both
models by allowing not only infinitely many positions in a game, but also
infinitely many new positions being able to be reached from any given po-
sition. The major question he considers is that of Zermelo and Konig: If a
player is in a winning position, is there an upper bound to the number of
moves that it takes him to enforce a win? . :

As Konig pointed out, in the original formulation of Zermelo’s proof there
is a gap since Zermelo claimed, but did not show, that a player who is in a
winning position can always win ‘without repetition’. However, Konig did
not try to bridge this gap but used a different method of proof instead. In
contrast, Kalmér's approach returns to Zermelo’s original idea. Without
making any assumption on the finiteness of the number of positions etc., he
is able to show that even in this much more general class of games Zermelo’s
claim holds: If a win is possible, it can be enforced without any position
appearing twice.

In the first section of his paper Kalmar defines the concepts of a game,
which is given by a set of positions g; and a set of ordered pairs (g;,g;),
where ¢; is a position at which player ¢ has the move and g; is a position at
which player j has the move, such that ¢; — g; is a feasible move. In other

- words, this set implies the rules of the game. Further, winning and losing
positions are defined as well as the idea of a ‘subgame’. However, his concept
of a subgame is different from the concept used in the modern literature. In
Kalmar’s terminology, a subgame is given by any subset of the positions and
the corresponding subset of feasible moves. He also introduces the concept
of a strategy which he calls a ‘tactic’. A tactic ‘in’the strict sense’ (i.t.s.s.)
for player A is a subgame such that each move which is feasible for player
B in the original game is also feasible in the subgame, i.e. does not restrict
player B.

Using the concept of a tactic in the strict sense he defines winning, non-
losing or losing positions in the strict sense. Of course, a position is only
called a winning position if a player can win in a finite number of moves. He
then shows that a winning position i.t.s.s. for player A is always a losing
position i.t.s.s. for player B.

To introduce these concepts ‘in a weak sense’, Kalmér uses the notion of
a ‘script game’ S of a given game S. A position in the script game is-defined
as a position g, in the game S including the history of this position, i.e. the
sequence g, q1,92,.--,qn. Of course, moves in the script game have to be
consistent with the rules of the game S.

Using the script game, he defines a tactic ‘in the weak sense’ (i.t.w.s.)
which is a tactic in the strict sense in the script game. In other words: a
tactic i.t.s.s. depends only on the current position while a tactic i.t.w.s. takes




into account the whole history of the game. Analogously, he defines winning
and losing positions etc. in the weak sense and proves that a winning position
i.t.w.s. for one player is a losing position i.t.w.s. for the other. In a footnote,
Kalmar mentions, that Konig informed him, that this theorem was known
to von Neumann. This comment suggests that the three men were aware, at
least indirectly, of each other’s work. Of course, if a player can enforce a win
without taking into account the history of the game, he can also enforce a
win if he does so, i.e. a winning position i.t.s.s. is always a winning position
i.t.w.s. He also proves that a losing position in the strict sense is the same
as in the weak sense.

In section II he uses the concepts and theorems developed to formulate
and prove the first of his two main theorems: If player A is in a winning po-
sition qq, then qo is also a winning position without repetition for A. (Kalmar
(1928/29, p.79)) Here, a winning position is without repetition if there ex-
ists a winning strategy such that during the play of the game no position is
repeated.

To prove his claim, Kalmdr characterizes the set of winning positions for
player A as follows: The set of winning positions i.t.w.s. is the smallest set
M of positions in the game S with the following closure property: If it is
A’s turn to move and if A can make a move to a position in M, then A has
already started from a position in M. If every move of B leads to a position
in M, then B has started from a position in M.

He shows that every set M with this property contains the set of winning
positions for A and that the winning positions without repetition have this
closure property. Since the set of winning positions is the smallest set with
this property, the set of winning positions without repetition contains the
set of all winning positions. Or stated otherwise, if player A is in a winning
position, he is also in a winning position without repetition.

This result shows that the gap in Zermelo’s proof can be bridged using
Zermelo’s original idea of non-repetition of positions. This is in contrast to
Konig’s conjecture which suggests that for the proof of Zermelo’s theorem
the boundedness of the number of moves has to be shown first.

In the last part of his paper, Kalmdr proves that if a player is in a winning
position, there exists a - possibly transfinite - ordinal number of moves in
which this player can win independently of the behaviour of his opponent.

If in addition, the cardinality of the set of possible moves is smaller than a
transfinite cardinal number g, then a player in a winning position can win in
a < g moves. The possibly transhmte ordinal number « is the generahzatlon
of the natural number N in Kénig’s theorem.

In the summary of his paper, Kalmaér gives a clear and concise formulation
of what is referred to today as Zermelo’s theorem, as stated in the first
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interpretation above.

“Each position of the game S belongs either to the set of the winning
positions of A, G4 or to the set of winning positions of B, Gp or it belongs
to the set R of draw positions, i.e. positions where A as well as B can avoid
a loss by using an appropriate non losing tactic. For each position which
belongs to Ga (Gs), there is a winning tactic (also in the strict sense) G4
(Gs) which depends only on the game S by which players A (B) can enforce
a win. For each position which belongs to R there is a non-losing tactic (also
in the strict sense) R4 (Rp) which depends only on the game S by which A
(B) can avoid a loss.” (Kalmér (1928/9, p.84))

Kalmér’s generalization of both Zermelo’s and Konig’s frameworks is the
last contribution in a line of research which was mainly concerned with the
following question: Given a winning position, how quickly can a win be
enforced? His paper proves the claim made by Zermelo, but doubted by
Konig, that winning without repetition is possible if winning is possible ‘at
all.

In a recent book by Dimand and Dimand (1996) some comments on the
work of Kalmar are included, which are however mostly incorrect. They claim
that “ ..Kalmér attempted to show that a game of perfect information has
a solution by giving a more general proof of non-repetition which, unlike
Konig’s, did not depend on any finiteness assumption. The original thought
process followed by Kalmér was, in fact, backwards induction. Kalmar’s
proof of non-repetition by backward induction (a concept which in itself
makes non-repetition intuitive) rested on defining the types of positions which
could be reached in play as winning, non-losing or losing. Unfortunately,
Kalmir did not show that the types of positions he defined must appear on
every branch of the potentially infinitely and thus infinitely branched game
tree. Without this sort of spanning argument for the types of nodes defined,
Kalmar’s proof was not valid. Interesting features of Kalmar’s approach were
his definition of the ‘script game’ (what we call a subgame) and his definition
of strategy.” (p.124-5)

First, it was not Kalmar’s intention to show that a solution for this class of
games exists, but that if a player can win, he can do so without repetition and
that there is an upper bound to the number of moves necessary. His proof is
not an existence proof. Secondly, Zermelo’s original thought process was not
backward induction but the idea of non-repetition. Thirdly Kalmar’s proof of
non-repetition is not by backward induction, but by characterizing the set of
winning positions and by showing that the set of winning positions without
repetition is equal to this set. Fourthly, his proof does not rest on defining
the types of positions as winning, non-losing or losing. The characterization
of a winning position is sufficient for the proof of non-repetition. He does
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not need any spanning argument and his proof is perfectly valid. Finally, the
concept of a ‘script game’ is not the same as a subgame in the modern sense
but a position in the game with its history. A subgame looks ‘forward’ from
a given position while a script game looks ‘back’.

5 Conclusion

This short survey on the work of Zermelo, Konig and Kalmér shows, that
these early game theorists were dealing with what today would be called
two-person zero-sum games with perfect information. The common starting
point for their analysis was the concept of a winning position, defined in a
precise mathematical way: If a player is in a winning position, then he can
always enforce a win no matter what strategy the other player may employ.

Zermelo, Konig, and Kalmdr’s main interest was to find an answer to
the question: Given that a player is in a winning position is there an upper
bound on the number of moves in which he can enforce a win? Or, for the
case of being in a losing position, how long can a loss be postponed?

Thus, the problem of strategic interaction and the problem of an equi-
librium were not concerns for Zermelo, Kdnig, and Kalmdr. They did not
ask the question: How should a player behave to achieve a good result?
This was the main question von Neumann asked in his paper ‘Zur Theo-
rie der Gesellschaftsspiele’ (1928) (On the Theory of Strategic Games). In
contrast to the work of Zermelo, Konig, and Kalmdr, von Neumann’s main
concerns were the strategic interaction between players and the concept of
an equilibrium. These two ideas have become the building blocks of modern
noncooperative game theory. The concerns of Zermelo, Konig, and Kalmér
have been answered at a very high level of generality in the paper by Kalméar
and thus have not generated an ongoing research agenda.
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Appendix

Ernst Zermelo: On an Application of Set
Theory to the Theory of the Game of Chess

The following considerations are independent of the special rules of the game
of chess and are valid in principle just as well for all similar games of reason, in
which two opponents play against each other; for the sake of determinateness
they shall be exemplified by chess as the best known of all games of this
kind. Also they do not deal with any method of practical play, but only
with the answer to the question: can the value of an arbitrary position,
which could possibly occur during the play of a game as well as the best
possible move for one of the playing parties be determined or at least defined
in a mathematically-objective manner, without having to make reference to
more subjective-psychological notions such as the ‘perfect player’ and similar
ideas? That this is possible at least in singular special cases is shown by the
so called ‘chess problems’, i.e. examples of positions in which it can be proved
that the player whose turn it is to move can enforce checkmate in a prescribed
number of moves. However, it seems to me worth considering whether such an
evaluation of a position is at least theoretically conceivable and does make any
sense at all in other cases as well, where the exact execution of the analysis
finds a practically insurmountable obstacle in the enormous complication of
possible continuations, and only this validation would give the secure basis
for the practical theory of the ‘endgames’ and the ‘openings’ as we find them
in textbooks on chess. The method used in the following for the solution of
the problem is taken from the ‘theory of sets’ and the ‘logical calculus’ and
shows the fertility of these mathematical disciplines in a case, where almost
exclusively finite totalities are concerned.

Since the number of squares and of the moving pieces is finite, so also is
the set P of possible positions po,p1, P2, . - .,pt, where positions always have
to be considered as different, depending on whether white or black has to
move, whether one of the parties already has castled, a given pawn has been
‘promoted’ etc.

Now let ¢ be one of these positions, then starting from g, ‘endgames’
q = (¢,91,,--.) are possible, that is sequences of positions, which begin
with ¢ and follow each other in accordance with the rules of the game, so
that each position g) emerges from the previous one gy-; by an admissible

9Translation by Ulrich Schwalbe and Paul Walker. In our translation we tried to stay
as close as possible to the German original.
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move of either white or black in an alternating way. Such a possible endgame
q can find its natural end either in a ‘checkmate’ or in a ‘stalemate’ position
but could also - at least theoretically - go on forever in which case the game
would without doubt has to be called a draw or ‘remis’. The totality Q of
all these ‘endgames’ q associated with g is always ‘a well defined, finite or
infinite subset of the set P*, which comprises all possible countable sequences
formed by elements p of P.1°

Among these q endgames some can lead to a win for white in  or less
‘moves’ (i.e. simple changes of position pa—1 — px, but not double moves)
however this also depends in general on the play of the opponent. What
properties does a position g have to have so that white, independently of how
black plays, can enforce a win in at most 7 moves? I claim, the necessary
and sufficient condition for that is the existence of a non-vanishing subset
U,(q) of the set @ with the following properties:

1. All elements q of U,(g) end in at most r moves with a win for white,
such that no sequence contains more than r + 1 elements and U.(g) is
definitely finite.

. If q = (¢,q1,9,-..) is an arbitrary element of U.(g), gx an arbitrary
element of this sequence which corresponds to a move carried out by
black, i.e. always one of even or odd order, depending on whether
at g it is white’s or black’s turn to move, and finally ¢} a possible
variant, such that black could have moved from gx—; to g as well as
to gy, then U,(q) contains in addition at least an element of the form
dy = (¢,q1,---,9xr-1,4\, - - -), which shares with q the first A elements.
Indeed in thxs and only in this case white can start with an arbitrary
element ¢ of U, (¢) and in every case, where black plays g, instead of
g white can carry on playing with a corresponding g, i.e. win under
all contingencies in at most r moves.

Of course there can be several such subsets U, (g), but the sum of any two
always has the same properties and also the union U,(g) of all such U,(g),
which is uniquely determined by g and r and definitely has to be different
from 0'%, i.e. has to contain at least one element if such U;(g) exist at all.

Thus, U,(q) # 0 is the necessary and sufficient condition such that white
can enforce a win in at most r moves. If r < 1’ then U.(q) is always a subset
of Un(q) since every set U,(q) definitely satisfies the conditions imposed on
U.(g), i.e. has to be contained in U.(g), and to the smallest r = p, for

107, modern terminology, P® would be called the game tree and Q a subgame.
HTo denote an empty set, Zermelo uses the symbol 0 instead of 0.
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which U,(q) # 0 corresponds the common component U*(q) = U,(q) of all
such U,(q); this contains all continuations such that white must win in the
shortest time. Now all these minimum values p = p, have on their part a
maximum 7 < t which is independent of g, where t + 1 denotes the number
of possible positions, thus U(g) = U-(g) # 0 is the necessary and sufficient
condition that in position ¢ some U,(g) does not vanish and white is ‘in a
winning position’ at all. Namely if in a position ¢ the.win can be enforced at
all, then it can be enforced in at most ¢ moves as we want to show. Indeed
every endgame q = (g,¢1,42,---,qn) With n > ¢ would have to contain at
least one position g. = gg 2 second. time and white could have played at the
first appearance of it in the same way as at the second and thus could have
won earlier than by move n, i.e. p <t.

If on the other hand U(g) = 0, so that white can only achieve a draw,
if the opponent plays correctly, but white can also be ‘in a losing position’
and will try in this case to postpone a checkmate as long as possible. If he
should hold out until the sth move there must exist a subset V;(q) with the
following properties:

1. There is no endgame contained in V;(g) where white loses before the
sth move.

. If q is an arbitrary element of V;(g) and if in q the element g, can be
replaced with g} by black using an allowed move, then V,(g) contains
at least one element of the form

ql)\ = (qula . "aq)\—laq’}\)-‘ )

that coincides with q up to the Ath member and then continues with
G-

Also these sets V,(g) are all subsets of their union V;(g) which is uniquely
determined by ¢ and s and which has the same property as V;(q) itself, and
for s > s’ now V;(g) becomes a subset of Vi (g). The numbers s for which
X-/s(q) differs from 0 are either infinite or < o < 7 < ¢, since the opponent, if
he can win at all, must be able to enforce a win in at most 7 moves'2. Thus
if and only if V(q) = V;41(g) # 0 white can obtain a draw and in the other
case, by virtue of V*(q) = V,(g) he can postpone the loss for at least o < 7
moves. Since every U,(q) certainly satisfies the conditions imposed on V(q),
each U,(q) is a subset of each set Vi(q), and U(g) is a subset of V(g). The
result of our examination is thus the following:

3 - .
12Zcrnclo doesn’t define the mumber @ it denotes, the smallest number of moves for
which white can postpone his loss.
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To each of the positions g that are possible during play, there correspond
two well-defined subsets U(g) and V/(q) of the totality of the endgames be-
ginning with g where the second contains the first. If U(g) is different from
0, then white can enforce a win, independently of how black might play and
can do so in at most p moves by virtue of a certain subset U*(q) of U(q),
but not for certain in fewer moves. If U(g) = 0 but V(g) # 0, then white
can at least enforce a draw by virtue of the endgames contained in V(g).
However, if V/(g) vanishes also and the opponent plays correctly, white can
postpone the loss up until the oth move at best by virtue of a well defined
subset V*(q) of continuations. In any case only the games contained in U*
respectively V* have to be considered as ‘correct’ for white, with any other
continuation he would, if in a winning position, forfeit or delay the certain
win or otherwise make possible or accelerate the loss of the game given that
the opponent plays correctly. Of course an exact analogy exists for black
and only those games that satisfy both conditions simultaneously could be
considered as played ‘correctly’ until the end, in any case they form a well
defined subset W(g) of Q.

The numbers ¢ and r are independent of the position and only determined
by the rules of the game. To each possible position there corresponds a
number p = pg or 0 = o, smaller than 7, depending on whether white or

black can enforce a win in p respectively o moves but not less. The special
theory of the game would have, as far as possible, to determine these numbers
or at least include them within certain boundaries, which hitherto has only
been possible for special cases such as the ‘problems’ or the real ‘endgames’.
The question as to whether the starting position pg is already a ‘winning
position’ for one of the parties is still open. Would it be answered exactly,
chess would of course lose the character of a game at all.










