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Abstract

This paper presents an approach to posterior simulation and model comparison for
generalized linear models with multiple random effects. Alternative MCMC approaches
for posterior simulation and alternative parameterizations are considered and compared
in the context of panel data and multiple random effects. A straightforward approach
for the calculation of Bayes factors from the MCMC output is developed. This ap-
proach relies on the computation of the marginal likelihood of each contending model.
Estimation of modal estimates based on Monte Carlo versions of the E-M algorithm is
also discussed. The methods are illustrated with several real data applications involving
count data and the Poisson link function.

Keywords: Bayes factor; Count data; Gibbs sampling; Importance s.-ampling; Marginal
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1 Introduction

This paper is concerned with the problems of fitting and comparing longitudinal generalized
linear models via simulation-based methods. The models of interest contain random effects
within a non-linear model form and are not easily analyzed. This has led to growing in-
terest in Markov chain Monte Carlo (MCMC) simulation methods and data augmentation
methods as organizing computational tools to fit generalized linear models [Albert (1992),

Bennett et al. (1996), Gamerman (1994), Wakefield et al. (1994) and Zeger and Karim

(1991)]. Gelfand, Sahu, and Carlin (1996), however, have pointed out that some identifi-

cation problems arise when the joint posterior distribution of the parameters and random
effects is simulated. These problems can severely compromise the performance of MCMC
methods. Our work is related to this literature but advances it in three important direc-
tions: first, we propose a simple parameterization of the model that is related to that in
Gelfand, Sahu and Carlin (1996); second, we provide and (systematically) compare several
alternative simulation methods for the random effects and isolate those that work well;
and third, we develop an approach for model selection based on the computation of Bayes
factors from the MCMC output.

Our interest in longitudinal GLM’s arose from the desire to fit longitudinal Poisson
regression models with random effects to a data set consisting of the number of absences
from work for a sample of 704 male German workers. A second application that motivated
our work is a data set on patents for a longitudinal sample of 680 firms in the United'States.
The purpose of the analysis is to explain the number of counts after allowing for regression
effects (such as R&D spending) and firm-specific coefficients. Another data set of interest
involves the effects of treating epilepsy with the drug progabide.

The estimation of these models raises several interesting problems. The new parame-

terization of the model proves to be important for the efficient simulation of the posterior




distribution. For contrast, we show that the MCMC output from the standard parame-

terization displays much higher serial correlation. Another general question concerns the

simulation of the random effects, especially in the context of numerous clusters with multi-
ple cluster-specific random effects. Existing approaches for simulating these random effects
(for example those based on the accept-reject method) are too slow, whereas those based
on the Metropolis-Hastings (M-H) algorithm (with Gaussian proposal densities) tend not
to mix well. We report on some simple modifications of the M-H algorithm, requiring a
multivariate-t proposal density as one component in a mixture proposal, that mitigate both
problems. Other proposal densities are also discussed and compared.

The problem of model comparison is clearly important but it has not received much
attention in the literature. Carlin and Chib (1995) and Green (1995) have developed model
indicator-MCMC approaches for model comparison, but the use of these methods for lon-
gitudinal GLM’s seems quite difficult. Lewis and Raftery (1994) have discussed another
approach and applied it binary logistic models with a single random effect. Their approach
relies on the Laplace method and consequently has an asymptotic justification that proves
unreliable for small cluster sizes. Chib (1995) has developed a more flexible and accurate
approach th_at forms the basis of the method in this paper. This approach leads to an
estimate of the marginal likelihood of each fitted model and requires an estimate at a single
point in the parameter space of the likelihood function, the prior density and the posterior
density. The approach is quite straightforward and represents, we believe, an important
advance in GLM model selection.

We also consider the use of MCMC methods for computing the maximum likelihood
(ML) estimate. It is shown that the Monte Carlo EM (MCEM) algorithm of Wei and
Tanner (1991) can be usefully applied for this purpose. We think that it important and
interesting that MCMC methods can also be used to deliver the ML estimate. The latter is

a useful summary of the likelihood function that can be used as a starting point for the full




Bayesian MCMC simulation. It turns out that the ML estimate (along with the posterior
mean) is an ingredient in the marginal likelihood computation.

The rest of the paper is organized as follows. In Section 2 we discuss the simulation
of the posterior distribution with the Metropolis-Hastings algorithm [Tierney (1994), Chib
and Greenberg (1995)]. We consider several different implementations, each defined by
a particular choice of proposal density in the M-H step. In Section 3 we show how the
marginal likelihood may be computed from the MCMC output. This section also takes up
the calculation of the maximum likelihood estimates and the computation of the likelihood
function. In Section 4 we consider applications of the techniques to the epilepsy data, the
patent data, and absentee data. The article ends with some concluding remarks in the final

section.

2 MCMC sampling methods
2.1 The model

Let y = {yi} be data on subjects ¢ = 1,...,n across time periods t = 1,...,T;. The

generalized linear model of interest assumes that

il B, b ~ p(yiel B, bi)

where p(-) is a member of the regular exponential family with conditional mean

e = E(yalB,b:) = h(z},8 + wih;)

b; ~ N:;(’I,D)

Here the parameters 8 € R* and 7 € R? are the fixed effects, b; € R9 are the random
effects, h is the link function, z; and wj; are vectors of covariates containing no variables in

common, and NV is the g-variate normal distribution. The form of A depends on the nature

of the observations. For Poisson count data, for example, p;; = exp(z!,8 + wi;b;).
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We complete the model by assuming that (8,7, D) follow the prior distributions
B~ N(bo,Bg"), n~N(m,My?'), D'~ Wish(vo, Ro),

where (8o, Bo,n0, Mo, vo, Rg) are known hyperparameters and Wish (-,-) is the Wishart
distribution with 1 degrees of freedom and scale matrix Ry [Press (1982)).

The likelihood function of this model is rather difficult to calculate although it may be
expressed formally as follows. Let y; = (yi1,-.-,¥7;) denote the observations on the ith
cluster. Then (under conditional independence)

T
F@ilB,b:) = T p(viel B, bs).

=1
The joint density of (y:,6: is f(vi,b:]8,n, D) = f(v:i|B, b:) ¢(biln, D), where ¢ is the density
of the normal distribution. The likelihood function of the parameters given y=(¥1,---,¥n)

may therefore be written as

Llg,n,0) = I [ fw.b16.n,D)a:
i=1

HLi(yi,ﬁ»rl)D)’ (1)
i=1

which is the product of the n likelihood contributions L;(y;]8,7, D).

Remark: The parameterization above may be contrasted with that of Laird and Ware
(1982) in which wj is a subset of z;; and E(b;) = 0. We do not recommend this parame-
terization with MCMC methods that rely on the simulation of the random effects. To see
this, suppose for simplicity that the only overlap between z; and w; is i, and define
Aitk = it — Tik (Br + bix) so that pyp = (B + bik)Titk + Aik. But the first term is observa-
tionally equivalent to bicZiuk, implying that By is not likelihood identified [0’Hagan (1995)].
Identification is, therefore, achieved entirely through the prior distribution of b;. Asaresult,
if the variance D is large, an MCMC algorithm that simulates both B and b; does not mix

well. Transferring the “common” effect of x4 to nx removes the nonidentified parameter
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Bk. This parameterization is related to hierarchical centering introduced by Gelfand, Sahu,
and Carlin (1995). It is easily shown by a change of variable that after integrating out
the b; the two parameterizations lead to identical likelihoods—our parameterization is thus

completely general.

2.2 Sampling the random effects

As mentioned in the foregoing discussion, an operational MCMC scheme for simulating the
posterior distribution requires data augmentation (Tanner and Wong (1987). The MCMC
algorithm is then based on the blocks b = (by,b2,...,b,), 8, 7 and D, and the associated

full conditional distributions

[819,8,D]; [Bly,mbl; [nld,D); [D~n,b]. )

Starting with an (arbitrary) point in the parameter space, these distributions are sampled
recursively, where the most recent values of the conditioning variables are used in the
simulation. To implement this procedure we require methods for sampling each of the full
conditional distributions. We show how this can done assuming for concreteness that the
link function is exponential and the {y;:} are count data distributed according to a Poisson
distribution:

The main computational problem arises in the sampling of the random effects from the

distribution (bly, 5,1, D). A little algebra shows that this amounts to the simulation of b;

one at a time from the n (unnormalizable) target densities m(b;|y;, 8,7, D),

71'(171'[1/1‘1 6: naD) x f(yhbilﬁanv D)
Ti
= ¢(biln, D) [T exp[— exp(zi,B + wiyb:)] [exp(}yB + wihi]¥*,
t=1
where ¢(b;|n, D) is the density of the normal distribution with mean n and covariance
D. We now discuss several methods for sampling this density. All these methods rely

on the Metropolis-Hastings algorithm [Tierney (1994) and Chib and Greenberg (1995)].




Alternative methods do not appear to be practical. For example, the accept-reject approach
(discussed by Zeger and Karim (1991) in a similar context) is generally difficult to apply
with numerous clusters and random effects.

Before proceeding, we include 2 brief description of the M-H algorithm to fix notation.
For a given target density f(s), the M-H algorithm is defined by (1) a proposal density
q(, ') that is used to supply a proposal value 1! given the current value Y and (2) a
probability of move defined as

f@he@t,¥) 1}_ ®)

f(#)a(¥,¢h)
The proposal value 9! is accepted with probability a(i,¥t); if rejected, the next sampled

a(%,%') = min {

value is taken to be 1. The different methods discussed next are defined by the choice of q.

Method I1: Random walk proposal

For this method let ql(b,-,bg) = ¢(bf|b,~,7’1D), i < n, where 7 is a scalar that is adjusted
in trial runs to obtain suitable candidates. With this choice, proposal values are obtained

with little effort, but the sample can display considerable serial correlation.

Method 2: Tailored proposal

In this case, the proposal density is tailored to the target density arouﬂd its modal value
[Gammerman (1994)]. Let b; denote the mode of In f(yi,bi|B,m, D) and Vo, = (—Hp,)™! the
curvature around the mode. By direct computation, it can be seen that the gradient vector

and Hessian matrix are given by

T

96 = =D7Mbi = 1) + D (vir — exp(f + wiybs)) wy (4)
t=1

T,
Hy, = =D7' = 3~ (exp(z},B + wiyphi)) wigwly, (5)
t=1

respectively. These form the basis of a Newton-Raphson scheme to deliver the relevant

quantities. We now define the (tailored) proposal density as g, = MVt(b;]b;, 72 Vb, V), where
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Ty is another scaling factor and MVt is the multivariate-¢ distribution with v degrees of

freedom. In this case, the probability of move reduces to

w(b}) 1} () = J@slBm, D)

;3

w(b;)’

- MVt(s|I3,~,1'2Vbi,u) ’

a(bi,bf) = min {

The adoption of the multivariate-t distribution is important. Gaussian proposals that have
been recommended in the literature lead to much lower acceptance rates due to the fact
that the weight f(y:,b:|8,7,D) /¢(b,‘l5§,f2%‘.) in a above is unbounded as a result of the
exponential decline of the Gaussian tails. Therefore, the probability of move is effectively
zero in those places where the Gaussian density is thin. This leads to stickiness and poor
mixing. Our suggestion (which is generally applicable) provides a simple and effective

remedy.
Method 3: Mizture proposal—tailored proposal

In this method the proposal values are drawn from a mixture of proposal densities q; and
¢2. To moderate the set up computations, gz is selected less frequently than ¢; (say every
fifth iteration). It is important that the selection of the components be not based on the

output of the chain so as to preserve the Markov property of the simulation.

Method j: Acceptance-rejection with tailored proposal

In this case, the proposal value is obtained by an acceptance-rejection procedure applied
to the pseudo-dominating function ;MVt(bibi, 2Vk;,v), where ¢; is a positive number (its
choice is discussed below). Note that we have again utilized the MVt distribution rather

than the multivariate normal. Let bg be a value generated from MVt(b;|5¢,72‘/,,i,u) that

satisfies the condition
u < f(vi,b}18,m, D)/eMV(¥l|bi, 12V, ),

where u ~ Unif(0,1). Let Cy = I(f(y:,4:]8,n, D) < c;MVe(bi|bi, 72V, ,v)) be an indicator

of whether the proposal density dominates the target at the current value b; , and let




Ca = I(f(y:,b}|8, D) < c;iMVi(b}|b;, 72Vh,, 1)) be an indicator of domination at the proposal
value bf - Then the probability of move [see Chib and Greenberg (1995, pg. 332)] is defined

as

(@) albibl)=1ifC =1;

(b) a(bi,bl) = cMVt(bilbi, m2Vh,, v)/ f (v, b:18, D) if C; = 0 and Cp = 1

() @(bi,bl) = min { 7 (ys, bl18, DYMVe(bilbi, 72Vh,, 1)/ £ (3, i1, DYMVE(BL B, 72 V5, ), 1 }
i C; = 0and C; =0.

Remark: We have developed a simple and automatic process for determining ¢; for use in

» this algorithm (the value of v is fixed at 15 in the examples). The recommendation is that

= 8 f(w,b18,1,D)
MVt(biln, D, v)

which can be explained in the following way. The term f(y,-,l;i[ﬁ,q, D)/MVt(E;[n, D,v)
forces the ordinates of the pseudo-dominating density and the (unnormalized) target density
to agree at the mode b;. The factor .6 (other values might be tried) decreases the ordinates
of the pseudo-dominating density at all values of b; to improve the probability of generating

values away from the mode and thereby attain greater mixing.
2.3 Sampling 8,7, and D

Given the random effects, the remaining simulations are actually quite straightforward with
both 7 and D being simulated from standard distributions. For B, the sampling requires
the use of a M-H algorithm with an easily constructed (tailored) proposal density. In this

case, the target density is proportional to

n T;
(B1Bo, Bo_x) H H exp[— exp(z}, 8 + wib;)] [exp(z}e8 + wiybi]¥ie.
i=1t=1

It turns out that the mode f and curvature Vs = [-Hp] ™! of the logarithm of this function at

the mode are readily obtained, usually through a few Newton-Raphson steps. The required
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gradient vector and Hessian matrix are given by

n T

95 = —Bo(B = Bo) + Y 3 _lyic — exp(zieB + wiybi))zic

i=1t=1

n T
Hp=-Bo—Y_ 3 [exp(zief + wibi))zuzst',

i=1t=1

respectively. A tailored MVt density can now be constructed. We suggest that the proposal
be obtained by the method of reflection. The general idea is to reflect the current value
around the modal value before adding a Gaussian increment with variance 75Vp. It is easy
to check that the resulting proposal density is given by q(8,8) = ¢(B -B- B),T;;Vp).
This density is symmetric. Chib and Greenberg (1995) have documented the importance of
reflection in other problems. We do not think that it is necessary to use a mixture proposal
density in this case because the computational burden of finding the tailored density is
minimal.

To complete one cycle of the MCMC simulation one now samples 7 from
w(nlb, D) = MVt(nld, M, v),

where 7 = M} (Mono + Yy D~'b;) and My = (Mp +nD?), and D! from

w(D6) = fuw (D~ + v, (B3 + 3 (b = 1) — )],

i=1

where fw(-|a, A) denotes a Wishart density with a degrees of freedom and scale matrix A.

This completes the derivation and simulation of the full conditional densities required in

the MCMC sampling.

3 Marginal likelihood by MCMC

From a practical viewpoint, the problem of model choice is one of the most important in

fitting generalized linear models. We now show how this problem can be tackled given one




of the posterior simulator techniques discussed in the previous section. We focus on one of
the central quantities in Bayesian model choice - the marginal likelihood of a model and
show how it may be computed from the MCMC output. The marginal likelihood of given
model M is the integral of the likelihood with respect to the prior densit); of the parameters,

ie.,

m@Mﬂ=/MmMﬁmﬁmeMﬂwﬂl @

where 7(3,7, D| M) is the model specific prior density (Jeffreys (1961) and Kass and Raftery
(1995)). On the basis of the marginal likelihood one may compute the Bayes factor in favor

of model M, (and against model M;) as

_ mylMe)
) ©

Chib (1995) discusses’an alternative representation of the marginal likelihood

L(ylM, 6%)m(6°|M)

=T My

leading to the estimate
In(y|M) = In L(y|M, 6*) + In7(6*|] M) - In (%M, y). (10)

where 6* = (8*,7*, D*) is some point in the parameter space, #(6*|M,y) is an estimate of
the posteric-)r ordinate at 8% and all the functions on the right hand side ére normalized. To
gain some insight into the relevance of this approach, we note that the choice of point 6* is
arbitrary since the expression above is an identity in 6. Still, it has been suggested in Chib
(1995) that the identity be evaluated at a high density point, such as the posterior mean of
6 or the maximum likelihood estimate (whose computation is discussed below).

We now consider the calculation of each term in (10) from the MCMC output.

3.1 Likelihood function

We begin with the computation of the likelihood function at the point 6*. It should be noted

that this estimate is required at only a single point, which minimizes the computational
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burden. Consider now the contribution of y; to the likelihood at the point 6*,
Liwil6") = [ FlaslbesB7) 86, D) s, (ay

where the normalizing constants for both of the functions that appear under the integral are
known. If b; is of low dimension it is possible to compute this integral numerically by the
method of quadrature. The likelihood contribution can also be computed by the Laplace

approximation [see Tierney and Kadane (1986)] if the cluster size T; is large. Then,
In L:(4:16°) = In{f(wilb:, 8*)(biln*, D*)} + 0.5¢1In(27) + 0.5In | — H; Y|,

where b; denotes the mode of In{f(yi|bi, B*)¢(biln*, D*)}, Hy, the Hessian at the mode, and
q is the dimension of ;. These quantities are obtained by the methods discussed earlier in
connection with the simu,lation of b;.

The accuracy of the Laplace method depends crucially on T3, the size of the ith cluster.
To see how the asymptotic approximation can fail for small T;, consider Poisson count data
generated from the following model in which there are n = 200 clusters, two random effects

(g =2), and two fixed effect parameters and T; = 5. Let

B=05 n=(-.5-28), and D= ( _'31 ‘2'1 )

and assume that zy; ~ N(0,1), win = 1, and wiz ~ N(0,1). The very accurate estimate
of the log likelihood function based on quadrature is — 1215.30, while the Laplace approx-
imation is — 1435.78, which is clearly in error. '

An alternative method that is more reliable for small cluster sizes is importance sampling
[see Geweke (1989)]. If g(b:) denotes an importance sampling function, the importance

sampling estimate of L;(y;|6*) is

M () e () ,x e
: . 1 f(ildy”, 87) (b’ In*, D*)
Liwiloy=M"1Y" A
j=1 g(b?))




where bf-j) (4 = 1,...,M) are i.i.d. draws from g(b;). A convenient choice for the latter
is a multivariate-t distribution with location b;, scale matrix (—Hy,)™! and v degrees of
freedom. The log-likelihood function is obtained by adding the In L;(y:|6*).

For the simulated data set described above, we let M = 2000 and specify 10 degrees
of freedom for the multivariate-t importance function (the result are not sensitive to these
choices). The importance sampling estimate of the likelihood is —1215.32, which agrees
with the quadrature estimate up to the first decimal place. Thus, in this example with
small cluster sizes, the importance sampling estimate of the likelihood is far more accurate

than that based on the Laplace approximation.
3.2 Estimation of #(8*|y)

We now develop a methodology for estimating the posterior density at §*. This approach is
adapted from Chib (1995) where more details may be found. First, write the denominator

of (9) as
ln7(8"ly) = Ina(D~"|y) +Ina(n’ly, D) + Inw(B*|y,n", D7), (12)

and note that

"D =[O oG s, (19)
n(r'ly, D) = [ n(o7lb,D*)x(bly, D) db, and (1)

7Bl D7) = [#(8ly,b, D7) (bly, ", D) . (15)

The second step is concerned with the estimation of each of these ordinates from the MCMC
output. A little reflection shows that to estimate (13) one simply requires output from the

initial MCMC run consisting of the distributions

(Bly, b}, [bly,B,n,D), [nlb,D), [D~|n,b)

The draws {b, n} from this run are distributed according to 7(b, nJy). Therefore, an estimate

of m(D~1*|y) is given by averaging the Wishart density x(D~1*[b,7) in (13) over these
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simulated draws. Next, a reduced MCMC simulation consisting of the distributions

[Bly,8], [bly,B,n,D*], [nlb, D],

where D is set equal to D*, produces draws of {b} that are distributed according to
7(bly, D*). These draws can be used to average the Gaussian full conditional density

7(n*|b, D*) in (14) at the point n*. Finally, a reduced Gibbs run consisting of
(Bly,8), [bly,8,n", D*]

leads to draws of 3 from the density 7(8ly,7*, D*). Kernel smoothing an be applied to these
draws to estimate the density at the point 8*.

Given these estimates, the marginal likelihood is estimated as
In(y) = In L(y|6*) + In7n(6%) — (ln #(D~'*|b,n) + In#(nly, D*) + In#(3* ly,n*, D‘)) .
The numerical standard error of this estimate may be derived.

3.3 Computation of modal estimates

We now turn to the question of finding the modal estimate, which, along with the posterior
mean, may serve as 6* for the marginal likelihood calculation. We are interested in the ML
estimate because it provides (i) an approximate summary of the posterior density; (i) an
input into the AIC or BIC model information functions, and (iii) a starting point for the
full MCMC iterations.

The E-M algorithm [Dempster, Laird, and Rubin (1987)] requires the recursive imple-
mentation of two steps: the expectation or E-step and the maximization or M-step. In the

E-step, given the current guess of the maximizer §0) = (), (3, DU)), one computes

Q,0) = [1n{s(y,bl8)} m(bly, 6 b

J (S Priulo,6) + oo, DY) n(ety, 6N s, (16)

i=1
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which is the expectation of the log of the complete data density with respect to the condi-
tional density of b; given the data and the current guess of the maximizer §0), Although
the Q function cannot be calculated in closed form, it can be estimated by Monte Carlo
as suggested by Wei and Tanner (1990). Let {b(),... ()} where bU) ~ [bly, 69)], be
a sample obtained by one of the methods discussed in Section 2. Wei and Tanner (1990)
recommend that K depend on j - a small value of K is used at the start of the iterations
and increased as the maximizer is approached. Then
K n

Q69,0 = K~ 23 {inPr(us18,5%) +1n 45?1 D) } (17)
is an ergodic average that, under regularity conditions, converges to Q as K — co. (The
Q function may alsq be estimated from a (synthetically) independent sample constructed
by using every Ith draw of the sequence {b(!),...,5(5)}.) In the M-step, the Q function is

maximized to obtain a revised guess of the maximizer §0+1), jee.,
oUtD) = arg max Q(69,9).
This maximization is accomplished in a sequence of two conditional maximization steps:

* Given the current value of D, Q(6%),) is maximized over f and 7 to produce gG+1)
and nU*+1). The latter is seen to be nU+D) = (nK)~1 oK 77 | ) (the sample mean
of all the draws), whereas SU+1) is obtained by the Newton-Raphson method applied

to the function K~1 YK | " | InPr(y:|8, bgk) )- The gradient and Hessian for the N-R

i=]
algorithm, similar to those of Section 3, are given by
n T

K
K1 Z ZZ (yi! — exp(z},8 + witb.(k))) Tit

k=1i=1t=1

K n T:

_K—lz

k=11

(exp(atyB + wipd) ) zaa,
1t=1

respectively.




o Given 8U+1) and nU+1), the random effects {b;} are drawn from 7 (bly,n"/+1), D),
and the update of D is obtained from the revised O function

DU*Y = (nK)™? \Zj i (6 = 740 (o) — nU+D) 1,
k=1i=1

which is found by equating to zero the derivative of O with respect to D.
The calculation of Q and the maximization over § are terminated when the change in
successive parameter values is sufficiently small. The value 6* at the end of these iterations
is the maximum likelihood estimate. Standard errors of the estimate 6* can be obtained

from Louis (1982), where it is shown that the observed information matrix (the negative of

626‘9,) is given by

8% In{f(y,bl6) d1In{f(y,b]6)
"E[ 2096 ]'V‘“[ 26 ]‘

the expectation and variance are taken with respect to [bly,6*]. Although direct evaluation
is not feasible, each of these terms can be estimated by using the M-H step to produce a
sample (), ..., b}, where b3 ~ [bly,8"]. The observed information matrix is estimated
as

(k) |9+ )19* N ’
J_lzazln{)ar%; bjo°) J-lz(axn{ﬂy,b“‘ 107 m) <6ln{f(g;b<’°)le)_m>

(18)

where m = J'S, aﬂ{ﬂgéﬁﬂ@‘ The derivatives of In f(y,5*)|8*) can be computed

analytically or by numerical differentiation via a packaged routine. The relevant standard
errors are given by the square root of the diagonal elements of the inverse of the estimated
information matrix.

The constants K and J can be chosen pragmatically, motivated by the speed of the
computing environment and the accuracy desired. We allow K to increase gradually as
a function of the iterations and, near the mode, usually set K to be about 1000, which
appears to be satisfactory for most problems. A value of J about 5000 has been found to

be adequate.




A variant of the MCEM algorithm can also be used to find §*. This variant, called the
simulated EM (SEM) algorithm, is based on the algorithm of Celeux and Diebolt (1985).
Unlike the MCEM algorithm, the SEM generates a Markov chain sample, and the mean of
the simulated sample can be used as an estimate of the modal value. In this algorithm the
evaluation of Q is replaced by a maximization of the complete data log-likelihood. Specif-
ically, given the current sample of the random effects %), the next item in the parameter

sequence is obtained by maximizing

>~ {InPe(ul6,4) + 1n 6}y, D))
i=1

over the parameter space. The random effects are then simulated as described above,
and the process is iterated. From the MLE and In L(y|6*) (through the approach in Sec-
tion 2.1), it is possible to compute the AIC and BIC information functions: Subtracting
the penalty 2n~!dim(6) from In f(y|6*) produces the AIC, and subtracting the penalty

n~1dim(6) log(n) produces the BIC.
4 Examples -

We next present three applications of the methods developed above to count data. The
first is to data on treatment for epilepsy, the second to the patent data, and the third to

workplace absences.
4.1 Epilepsy data

Diggle, Liang, and Zeger (1995) consider the data on four successive two-week seizure counts
(yi;) for each of 59 epileptics (i = 1,... ,99;7 = 0,...,4), some of whom are treated with
progabide (observation 49 is eliminated from the computations because of the “unusual pre-

and post-randomization seizure counts”). The covariates are

0 if control 0 if baseline

{ 1 if treatment group { 1 if wvisit 1,2,3 or 4
Zil = y Tig =
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Table 1: Epilepsy data

and t;; (the offset term) which equals 8 if j = 0 and 2 if j = 1,2,3, or 4. The complete
data set appears in Table 1. Following Diggle, Liang, and Zeger, we model the counts by a

Poisson link with mean
log E(yi;18,b:) = log tij + B + Boxijy + Ba3Tije + PazijiTijz + bir + biaZijn.

The intercept and z;; (time) variables are thus treated as random effects.

We specify the following vague priors on 3, 7 and D:
B~ Na(0,1072 x I), 7~ Np(0,1072 x I), D' ~ W(4,I)
and experiment with the four alternative proposal generating densities for b discussed in
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Section 2. Any tuning constants in these methods (such as 7; and T2) are obtained by
short, preliminary runs, by focusing on the acceptance rates and the serial correlations of
the output. The values of these adjustable constants are included in our tabular output. The

final MCMC iterations are then run for 10,000 cycles beyond a burn-in of 1000 iterations.

Table 2 contains a set of results for this data in (8,7) parameterization. The table

contains the posterior mean (mean), the posterior standard deviations (s.d.), the acceptance
rates in both the b; and 3 steps, and the autocotrelation‘at lag 20 of the generated sample for
each of the alternative methods. Because there are a large number of acceptance rates in the
case of b;, we report the minimum and maximum rates achieved in the sampling. We have
found that this diagnostic is a useful summary of the performance of the M-H simulations
given that the acceptance rate for each random effect cannot be sensibly monitored in real
time.

From these results we conclude that all four methods for simulating b yield similar pos-
terior means and standard deviations. These, in turn, are close to the maximum likelihood
estimators reported in Diggle, Liang, and Zeger (1995) and to those obtained from the
MCEM algorithm developed above. The posterior point estimates of D;; also 'agree with
the maximum likelihood estimates. The results indicate an important time x treatment
interaction effect and substantial heterogeneity in the intercepts.

We now examine the effect of parameterization and apply each of the four methods
anew after setting 7 = 0 and letting w;; be a subset of z;;. The prior on B in these
runs is now Ny(0,10~2 x I))For brevity we focus on method 4 and simulate 10,000 draws
from the posterior distribution using 75 = 1.5 and 7, = 1.5. We summarize the results
obtained in Figure 1 for (8, 84, D11, Daz). The figure contains Q-Q and autocorrelation
plots for output from the recommended (8, 7) parameterization [second column] and from
the no n parameterization [third column]. From these figures we can conclude that the Q-Q

plots are linear, and that the chain displays generally less serial correlation in the (B,n)
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Method 1 Method 2 Method 3 Method 4

M-H const
T3 1.5 1.5 1.5 1.5
EsY 7 n.a. 7 n.a.
T2 1.5 1.5 1.5 1.5
Param
Const 1.093 (.128) | 1.076 (.134) | 1.080 (.143) | 1.066 (.134)
Treat -.051 (.170) | -.023 (.180) | - .029 (.204) | - .002 (.185)
Time .017 (.101) .016 (.115) .021 (.108) .013 (.114)
Interact -.370 (.133) | - .363 (.166) | - .373 (.147) | - .360 (.159)
Dn 474 (.099) .478 (.100) .481 (.100) .476 (.100)
D2y .017 (.056) .015 (.058) .013 (.058) .014 (.057)
D22 .241 (.062) .245 (.065) .244 (.063) .246 (.064)
Acf(20)
Const 429 .435 395 .368
Treat 872 779 .804 721
Time 421 .276 .362 195
Interact 686 47 .580 321
Dy 042 .010 024 024
D2 .096 017 .018 .003
D22 124 .005 .045 .012
Accpt rate
B 392 401 .401 .399
b; min .084 .587 187 895
b max 429 610 466 911

Table 2: Epilepsy data: M-H tuning constants, posterior moments and performance sum-
maries in the (8,7) parameterization. Results are based on G = 10,000 samples beyond an
initial transient stage of a 1000 cycles.

parameterization.

In terms of the methods, the best results overall are obtained when the random effects
are simulated by the accept-reject method with a pseudo-dominating density (Method 4)
in the (8,7) formulation. It is interesting to note that even the random-walk chain for
simulating the random effects (Method 1), yields point estimates that are similar to the
others, although its autocorrelations are quite large. This suggests that exploratory work
can be done with this rather fast approach, and final results can be computed with one of
the slower, but more satisfactory, methods.

We also consider the question of model choice for these data and compute the log

marginal likelihoods for the model discussed above and for an alternative model in which
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the intercept is the only random effect. The marginal likelihoods are computed from the
(B,m) parameterization. Method 4 is used to simulate the random effects. Each of the
reduced MCMC iterations are run for 10,000 iterations and the marginal likelihood identity
is evaluated at the maximum likelihood estimate. We obtain Inm(y) = —915.404 for the
former model and —969.824 for the latter. This is very strong evidence in favor of including

the second random effect.

4.2 Patent data

We next illustrate the methods using data on patents. This data has previously been

analyzed by Hausman, Hall, and Griliches (1984) and Blundell, Griffith and Van Reenen
(1995) by classical means. The data set contains information on the research and develop-
ment (R&D) expenditures of 642 firms and the number of patents received over the time
period 1975-1979. Letting y;; denote the number of patents received by firm 7 in year ¢, the

model of interest specifies that
log E(yi;|8,b:) = B + Bazijn + Bazije + Pazijs + by + biaTijn,

where z;j; is the logarithm of R&D spending (log Ro) and zij; to z;j4 are lagged values of
the logarithm of R&D spending (log R-1,log R_2,log R_3). The intercept and log Ro are
thus treated as random effects. The model also contains time dummies for 1976-1979 but
these are suppressed here and in the output for notational and visual convenience. The
data set contains additional variables - a dummy variable for whether or not a firm is in a
group of scientifically based industries and the inflation adjusted book value of the firm in
1971 - but these cannot be not included as covariates in the model because they exhibit no
within variation and hence are indistinguishable from the random intercept.

The MCMC design and the priors for this model correspond to those discussed above.
Once again we investigate the efficacy of the four methods for simulating the random effects

and of the alternative parameterizations. The first set of results (based on 10,000 simulations
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after dropping the first 2,000) appear in Table 3.

Method 1 Method 2 Method 3 Method 4

78 7 1.0 7 1.0
T 7 n.a. 1.0 n.a.
T2 1.0 2.5 1.5 2.0
Param
constant 776 (.075) | .772 (.077) | .747 (.076) [ .733 (.076)
log Ro 694 (.030) | .697 (.040) | .621 (.035) .572 (.036)
log R, -.043 (.031) | -.055 (.033) | .005 (.032) .046 (.033)
logR-2 .128 (.036) | .130 (.036) .138 (.038) .144 (.037)
logR_3 .092 (.030) { .089 (.030) .113 (.030) .129 (.031)
Dy 2.588 (.259) | 2.668 (.256) | 2.594 (.248) | 2.547 (-252)
D2y -.578 (.072) | -.618 (.079) | -.597 (.076) | -.585 (-076)
D22 .215 (.027) | .293 (.035) .287 (.034) .282 (.032)
Acf(20)
Constant .153 .026 .048 .031
log Ro 480 .322 221 171
logR-, .186 .263 .045 .185
log R—2 .034 .034 -.009 .007
log R-a 182 .083 .050 .042
Dy, .515 117 .204 .011
D2y .550 .182 .253 .019
D22 630 290 -385 .032
Accpt rate
B 377 222 .387 " 233
b min .015 259 121 .818
bi max .590 .291 482 925

Table 3: Patent data: M-H tuning constants, posterior moments and performance sum-
maries in the (f,7) parameterization. Results are based on G = 10, 000 samples beyond an
initial transient stage of a 1000 cycles. ’

We find that the results are broadly consistent across methods. The magnitudes of the
posterior means and standard deviations of D lead us to conclude that there is considerable
variation across firms and that firms with large intercepts have a smaller effect from current
R&D expenditures. Furthermore, the posterior moments of the fixed effects reveal that the
effect of the first lag in log R&D is close to zero, while those from the remaining lagged

values of log R&D are positive but smaller than that of current R&D.

It is also interesting to mention that this data clearly illustrates the advantages of using

a MVT tailored proposal as opposed to the Gaussian tailored proposal in the generation of
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the random effects. The latter proposal was found to give minimum acceptance rates of 0
and poor mixing in some cases.

Next we report on the rmﬁlts from the no 7 parameterization by fitting the above model
using Method 3 (setting 75 = .7, 71 = 1 and 72 = 1.5). For simplicity we consider the pa-
rameters B, and B, (the coefficients of our two random effects, the intercept and log Rp)
and compare the marginal posterior distributions of these parameters from the alternative
parameterizations. We also examine the autocorrelation plots of the sampled values. The
results appear in Figure 2 where the first column corresponds to the recommended parame-
terization. It can be seen that the marginal posterior distributions for §; are different but
those of B, are roughly identical. It appears that the distribution of the intercept in the
no 7 parameterization has not converged even after 12,000 iterations due to the high serial
correlation. For each parameter, the autocorrelation patterns are much better behaved in
the (B,7) parameterization. This is the kind of improvement we expected given the pattern
of heterogeneity in the data. A more extensive experiment with the other methods gave
similar results.

Finally, we note that method 3 (which appears to inherit the strengths of method 2
without the drawbacks of method.l) gives results that are comparable to the more sophis-
ticated method 4. This is potentially very useful because in the context of large data sets,

method 3 can deliver an order of magnitude reduction in computing time.

4.3 Absence data

Our final illustration is with a data set on the number of absences from work for a random

sample of 704 full-time workers in Germany covering the period 1986-1989. The data are
drawn from the German Socio-Economic Panel [see Wagner, Burkhauser, and Behringer
(1993)]. This is an interesting data set because, as noted by Brown and Sessions (1996),

days lost due to absences can exceed those lost as a result of unemployment.
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The response variable y;; is the count of the number of days a worker has been absent
from work during the calendar year ¢t. In the survey, this qugstion is asked in year t +1
retrospectively for year t. Some summary statistics of this data are as follows. The average
number of absent days in the sample is 4.6, with a standard deviation 8.3. An important
feature of the data is the high proportion of zeros: 59 percent of all observations are zero,
and 23 percent of workers report no absent day in any of the four years. Both the high
variability of the dependent variable and the excess of zeros suggest that the standard
Poisson regression model without random effects is likely to be inappropriate. We therefore
fit and compare alternative Poisson models with multiple random effects.

Potential covariates to explain the response variable include: years of job tenure in
the current job; job satisfaction (an ordinal response coded 0,1,...,10, where 0 stands
for “completely dissatisfied” and 1 stands for “completely satisfied”); the lagged number of

absent days; the size of the employees’ firm (1 if it is a large firm with 200 or more employees,

0 otherwise); the marital status of the worker (1 if married); the presence of children at

home (1 if children are present); and the nature of the work contract (1 if limited time
contract). These covariates fall into two categories. The first consists of the variables job
tenure and job satisfaction that have within-variation for most workers. The second consists
of the remaining variables with no within-variation for most workers. This distinction is
important since it affects identification. In the presence of a random intercept, any variable
with a random coefficient must have within variation for each individual in order to identify
b;. We ensure this by including only individuals for which the (4 x 3) matrix formed by the
constant, job tenure and job satisfaction has full column rank.

We specify four models for this data. The first three models include the same set of
covariates: tenure, satisfaction, and lagged absent days with a different assignment of the
random effects in each case. The fourth model has job tenure and job satisfaction as the

random effects and a different set of covariates. To summarize, the random effects in the

25




four models are specified as

— Model 1. Constant.
— Model 2. Constant, tenure.
— Model 3. Constant, satisfaction.

— Model 4. Job tenure, Job satisfaction.

For each model, we simulate the posterior density in 7-parametrization, obtain the maximum
likelihood estimator as a high density point using the MCEM algorithm, and then estimate

the log marginal likelihood at the ML estimate.

Variable : Model 1 Model 2 Model 3 Model 4

B:
Constant 1.116 (.092)
Job tenure 0.035 (.002) | 0.055 (.001)
Job satisfaction | -0.044 (.004) -0.037 (.003)
Absent days; | -0.024 (.001) | -0.030 (.001) | -0.053 (.002) | -0.040 (.001)
Firm size 0.145 (.061)
Married -0.311 (.067)
Children -0.157 (.042)
Limited contract -0.102 (.122)
n:
Constant 0.047 (.008) | -0.046 (.045) | -0.106 (.051)
Job tenure 0.100 (.034) | 0.004 (.024)
Job satisfaction -0.007 (.056) -0.076 (.035)
D:
D 0.038 (.003) | 0.851 (.084) | 1.364 (.142) | 0.252 (.039)
D2 -1.039 (.101) | -0.811 (.079) | -0.301 (.046)
Dz, 1.368 (.125) | 0.654 (.056) | 0.569 (.082)

Table 4: Absence data: Maximum likelihood estimates and standard errors from the Markov
chain Expectation Maximization algorithm. The results are the final iterate values at
convergence. The standard errors are computed using M = 1000 random effects draws
after convergence.

The prior densities and the MCMC design is again similar to that used in the earlier

examples. Based on our experience from those runs, we use method 3 to simulate the

random effects. To achieve a balanced D matrix, the constant term is scaled by a factor
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10. We start the MCEM algorithm with K = 4 draws for b, and later increase K to 1000.
Again, the tuning constants are adjusted in order to produce acceptance rates between 0.3
and 0.5.

Table 4 displays the results from the MCEM estimation, while Table 5 shows the pos-
terior means, the posterior standard deviations and the log marginal likelihoods from the

MCMC simulation.

Variable Model 1 Model 2 Modei 4

B
Constant 1.034 (.177)
Job tenure 0.035 (.005) | 0.060 (.008)
Job satisfaction -0.045 (.007) -0.021 (.010)
Absent days_, -0.024 (.001) | -0.029 (.001) | -0.053 (.002) | -0.040 (.001)
Firm size 0.161 (.136)
Married -0.188 (.108)
Children -0.141 (.064)
Limited contract -0.156 (.145)

n:
Constant 0.046 (.013) | -0.060 (.046) | -0.122 (.054)
Job tenure 0.101 (.037) | 0.004 (.023)
Job satisfaction -0.004 (.056) -0.085 (.036)
D:
D 0.040 (.003) | 0.879 (.076) | 1.384 (.120) | 0.254 (.022)
Dz -1.065 (.093) | -0.822 (.072) | -0.302 (.029)
D2 1.401 (.120) | 0.665 (.053) | 0.583 (.051)

Log marginal likelihood -11606.84 -9663.58 -9648.52 -9693.72

Table 5: Absence data: Posterior moments and marginal likelihoods. Random effects are
simulated using Method 3. Results are based on G = 10,000 samples beyond an initial
transient stage of a 2000 cycles.

We note that both maximum likelihood estimator and estimated standard errors are very
similar to the posterior means and standard deviations. The number of reported absent
days increases with job tenure and decreases with job satisfaction. The preferred model is
Model 3 with a marginal likelihood of -9648.5; this model with random individual specific
intercept is better than Model 4: the included time invariant covariates are not able to

explain the between individual variation in the absence intensity.




5 Conclusions

This paper has shown how MCMC methods make possible the analysis of rather complex
variants of the generalized linear model. We have discussed several different M-H based
approaches for simulating the (augmented) posterior distribution. One useful approach for
sampling the random effects is based on a mixture proposal density. The first component
of this mixture is a random walk chain and the second is a tailored MVT density. We
have found that it is important to use a MVT proposal density instead of one based on
the Gaussian distribution. Another method was shown to be even more effective (though
computationally more demanding). This is the M-H accept-reject algorithm with a pseudo-

dominating density. The use of this method in the context of our models is quite promising.

The paper also documents the value of a new parameterization that is related to the idea

of hierarchical centering.

In addition, we have considered the problems of ML estimation and model choice. It
is interesting that access to a MCMC random effects simulator is sufficient to find the
ML estimate and the associated standard errors, due to a Monte Carlo version of the
EM algorithm. Interest in this algorithm can be expected to increase. Finally, we have
developed a’practical methodology for the computation of marginal likelihoods and Bayes
factors without constraining assumptions about the size of the clusters and number of

random effects. This advance is useful and important as well.
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