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Abstract

This paper presents an approach to posterior simulation and model comparison for
generalized linear models with multiple random effects. Alternative MCMC approaches
for posterior simulation and alternative parameterizations are considered and compared
in the context of panel data and multiple random effects. A straightforward approach
for the calculation of Bayes factors from the MCMC output is developed. This ap-
proach relies on the computation of the marginal likelihood of each contending model.
Estimation of modal estimates based on Monte Carlo versions of the E-M algorithm is
also discussed. The methods are illustrated with several real data applications involving
count data and the Poisson link function.
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1 Introduction

This paper is concerned with the problems of fitting and comparing longitudinal generalized

linear models via simulation-based methods. The models of interest contain random effects

within a non-linear model form and are not easily analyzed. This has led to growing in-

terest in Markov chain Monte Carlo (MCMC) simulation methods and data augmentation

methods as organizing computational tools to fit generalized linear models [Albert (1992),

Bennett et al. (1996), Gamerman (1994), Wakefield et al. (1994) and Zeger and Karim

(1991)]. Gelfand, Sahu, and Carlin (1996), however, have pointed out that some identifi-

cation problems arise when the joint posterior distribution of the parameters and random

effects is simulated. These problems can severely compromise the performance of MCMC

methods. Our work is related to this literature but advances it in three important direc-

tions: first, we propose a simple parameterization of the model that is related to that in

Gelfand, Sahu and Carlin (1996); second, we provide and (systematically) compare several

alternative simulation methods for the random effects and isolate those that work well;

and third, we develop an approach for model selection based on the computation of Bayes

factors from the MCMC output.

Our interest in longitudinal GLM's arose from the desire to fit longitudinal Poisson

regression models with random effects to a data set consisting of the number of absences

from work for a sample of 704 male German workers. A second application that motivated

our work is a data set on patents for a longitudinal sample of 680 firms in the United States.

The purpose of the analysis is to explain the number of counts after allowing for regression

effects (such as R&D spending) and firm-specific coefficients. Another data set of interest

involves the effects of treating epilepsy with the drug progabide.

The estimation of these models raises several interesting problems. The new parame-

terization of the model proves to be important for the efficient simulation of the posterior
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distribution. For contrast, we show that the MCMC output from the standard parame-

terization displays much higher serial correlation. Another general question concerns the

simulation of the random effects, especially in the context of numerous clusters with multi-

ple cluster-specific random effects. Existing approaches for simulating these random effects

(for example those based on the accept-reject method) are too slow, whereas those based

on the Metropolis-Hastings (M-H) algorithm (with Gaussian proposal densities) tend not

to mix well. We report on some simple modifications of the M-H algorithm, requiring a

multivariate-t proposal density as one component in a mixture proposal, that mitigate both

problems. Other proposal densities are also discussed and compared.

The problem of model comparison is clearly important but it has not received much

attention in the literature. Carlin and Chib (1995) and Green (1995) have developed model

indicator-MCMC approaches for model comparison, but the use of these methods for lon-

gitudinal GLM's seems quite difficult. Lewis and Raftery (1994) have discussed another

approach and applied it binary logistic models with a single random effect. Their approach

relies on the Laplace method and consequently has an asymptotic justification that proves

unreliable for small cluster sizes. Chib (1995) has developed a more flexible and accurate

approach that forms the basis of the method in this paper. This approach leads to an

estimate of the marginal likelihood of each fitted model and requires an estimate at a single

point in the parameter space of the likelihood function, the prior density and the posterior

density. The approach is quite straightforward and represents, we believe, an important

advance in GLM model selection.

We also consider the use of MCMC methods for computing the maximum likelihood

(ML) estimate. It is shown that the Monte Carlo EM (MCEM) algorithm of Wei and

Tanner (1991) can be usefully applied for this purpose. We think that it important and

interesting that MCMC methods can also be used to deliver the ML estimate. The latter is

a useful summary of the likelihood function that can be used as a starting point for the full
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Bayesian MCMC simulation. It turns out that the ML estimate (along with the posterior

mean) is an ingredient in the marginal likelihood computation.

The rest of the paper is organized as follows. In Section 2 we discuss the simulation

of the posterior distribution with the Metropolis-Hastings algorithm [Tierney (1994), Chib

and Greenberg (1995)]. We consider several different implementations, each defined by

a particular choice of proposal density in the M-H step. In Section 3 we show how the

marginal likelihood may be computed from the MCMC output. This section also takes up

the calculation of the maximum likelihood estimates and the computation of the likelihood

function. In Section 4 we consider applications of the techniques to the epilepsy data, the

patent data, and absentee data. The article ends with some concluding remarks in the final

section.

2 MCMC sampling methods

2.1 The model

Let y = {yit} be data on subjects i = 1, , n across time periods t = 1.....1.The

generalized linear model of interest assumes that

Yit 10, bi P(Yit 10, bi)

where p(-) is a member of the regular exponential family with conditional mean

Pit = bi) = h(xlitO + w:tbi)

and

bi Arc, (77, D).

Here the parameters f3 E Rk and 71 E alg are the fixed effects, b E ar are the random

effects, h is the link function, xit and wit are vectors of covariates containing no variables in

common, and Arq is the q-variate normal distribution. The form of h depends on the nature

of the observations. For Poisson count data, for example, !Lit = exP(403 + w:tbi).
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We complete the model by assuming that D) follow the prior distributions

0 — MO0, BO-1), — M770, lic1), D-1 wish(vo, Ro),

where (00, Bo, no, Mo, vo, Ro) are known hyperparameters and Wish (-, -) is the Wishart

distribution with vo degrees of freedom and scale matrix Ro [Press (1982)].

The likelihood function of this model is rather difficult to calculate although it may be

expressed formally as follows. Let yi = (yii,...7 yiz) denote the observations on the ith

cluster. Then (under conditional independence)

f (yi113, bi) =

The joint density of (yi, bii) is f (yi, D) = f bi) D), where 0 is the density

of the normal distribution. The likelihood function of the parameters given y = (y17.: . ,y,.)

may therefore be written as

1(y10, ii, D) = fil f 777 D) dbi

a-- H Li(Yi10,717 D), (1)

which is the, product of the n likelihood contributions L1(y40, 77, D). .

Remark: The parameterization above may be contrasted with that of Laird and Ware

(1982) in which wit is a subset of xit and E(b2) = 0. We do not recommend this parame-

terization with MCMC methods that rely on the simulation of the random effects. To see

this, suppose for simplicity that the only overlap between xit and wit is Xitk and define

Aitk = P-it Xit(fik bik) so that git = (Ok + bik)xitk + Aitk. But the first term is observa-

tionally equivalent to bikxitk, implying that Ok is not likelihood identified [O'Hagan (1995)].

Identification is, therefore, achieved entirely through the prior distribution of bi. As a result,

if the variance D is large, an MCMC algorithm that simulates both fi and bi does not mix

well. Transferring the "common" effect of xk to nk removes the nonidentified parameter
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Olc. This parameterization is related to hierarchical centering introduced by Gelfand, Sahu,

and Carlin (1995). It is easily shown by a change of variable that after integrating out

the bi the two parameterizations lead to identical likelihoods—our parameterization is thus

completely general.

2.2 Sampling the random effects

As mentioned in the foregoing discussion, an operational MCMC scheme for simulating the

posterior distribution requires data augmentation (Tanner and Wong (1987). The MCMC

algorithm is then based on the blocks b = (b1,b2,- —,bn), 71 and D, and the associated

full conditional distributions

[big, ; [nib, [D-1171,6] - (2)

Starting with an (arbitrary) point in the parameter space, these distributions are sampled

recursively, where the most recent values of the conditioning variables are used in the

simulation. To implement this procedure we require methods for sampling each of the full

conditional distributions. We show. how this can done assuming for concreteness that the

link function is exponential and the {yid are count data distributed according to a Poisson

distribution:

The main computational problem arises in the sampling of the random effects from the

distribution (by, 0,77, D). A little algebra shows that this amounts to the simulation of bi

one at a time from the n (unnormalizable) target densities 7r(b1ly203,77,D),

7r(bilY1,fil77,D) °C f(Y17b1l0)771 13)

Ti

= gbiln,D) H exp[— exp(xfl + tv:tbi)1 [exp(x i8 + w:tbilY",
t=i

where 4(b1177, D) is the density of the normal distribution with mean ri and covariance

D. We now discuss several methods for sampling this density. All these methods rely

on the Metropolis-Hastings algorithm [Tierney (1994) and Chib and Greenberg (1995)].
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Alternative methods do not appear to be practical. For example, the accept-reject approach

(discussed by Zeger and Karim (1991) in a similar context) is generally difficult to apply

with numerous clusters and random effects.

Before proceeding, we include a brief description of the M-H algorithm to fix notation.

For a given target density AO), the M-H algorithm is defined by (1) a proposal density

&, 1pt) that is used to supply a proposal value ipt given the current value b and (2) a

probability of move defined as

40, Ot) = min f “bt)qOPt, '0) 
f(0)q(1,b,ipt) ' • (3)

The proposal value Ot is accepted with probability a(tP, Of); if rejected, the next sampled

value is taken to be 0. Tle different methods discussed next are defined by the choice of q.

Method I: Random walk ilroposal

For this method let qi(bi, bti) = < n, where Ti is a scalar that is adjusted
in trial runs to obtain suitable candidates. With this choice, proposal values are obtained

with little effort, but the sample can display considerable serial correlation.

Method 2: Tailored proposal

In this case, the proposal density is tailored to the target density around its modal value

[Gammerman (1994)]. Let bi denote the mode of ln f (N, D) and vb, = (—Hbirl the

curvature around the mode. By direct computation, it can be seen that the gradient vector

and Hessian matrix are given by

and

gbi = —D' (b1 — 77) + E (yit exp(xita + tditbi)) wit (4)
t=1

T,

Hbi = —D' — E (exp(4,3 + w:tbi)) witw:t,t=1 (5)

respectively. These form the basis of a Newton-Raphson scheme to deliver the relevant

quantities. We now define the (tailored) proposal density as q2 = MVt(bilbi, T2 Vbs, v), where
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T2 is another scaling factor and MVt is the multivariate-t distribution with v degrees of

freedom. In this case, the probability of move reduces to

a(bi,bti) = min uS-b-11 1} w(s) —  f(Yi' sifi' 77' D) 
w(bi) ' ' mvt(sibi, T2 vb, ,

The adoption of the multivariate-t distribution is important. Gaussian proposals that have

been recommended in the literature lead to much lower acceptance rates due to the fact

that the weight f(yi,bil0,77,D)10(bilbi,T2Vbi) in a above is unbounded as a result of the

exponential decline of the Gaussian tails. Therefore, the probability of move is effectively

zero in those places where the Gaussian density is thin. This leads to stickiness and poor

mixing. Our suggestion (which is generally applicable) provides a simple and effective

remedy.

Method 3: Mixture proposal—tailored proposal

In this method the proposal values are drawn from a mixture of proposal densities qi and

q2. To moderate the set up computations, q2 is selected less frequently than qi (say every

fifth iteration). It is important that the selection of the components be not based on the

output of the chain so as to preserve the Markov property of the simulation.

Method 4: Acceptance-rejection with tailored proposal

In this case, the proposal value is obtained by an acceptance-rejection procedure applied

to the pseudo-dominating function ciMVt(b21b2,r2Vbi,v), where ci is a positive number (its

choice is discussed below). Note that we have again utilized the MVt distribution rather

than the multivariate normal. Let 14 be a value generated from MVt(b11b1,r2Vb„ v) that

satisfies the condition

u < f(yi,bn13,71,13)/CiMVt(0,i,r2Vbi,V),

where u Unif(0, 1). Let Ci = 5_ cimvt(bilbi,T2Vbi ,v)) be an indicator

of whether the proposal density dominates the target at the current value bi , and let
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C2 = I(f(yi, btilo7D)<qmvt(btirbi,T2vb1, v)) be an indicator of domination at the proposal
value bti. Then the probability of move [see Chib and Greenberg (1995, pg. 332)) is defined

as

(a) &(b, b,) = 1 if C1 = 1;

(b) a(bi,q) = ciMVt(bi T2Vbi, v) D) if C1 = 0 and C2 = 1;

(C) bti = min { f 14 10, D)MVt(bJS1, 72171,00 lif(y1,bib@ D)MVt(btilbi T2Vbi, Obi}

if C1 = 0 and C2 = O.

Remark: We have developed a simple and automatic process for determining ci for use in

this algorithm (the value of v is fixed at 15 in the examples). The recommendation is that

-6 x 77, D)=
MVt(biln, D,v)

which can be explained in the following way. The term f , 77, Dvmvt(biln, D, v)
forces the ordinates of the pseudo-dominating density and the (unnormalized) target density

to agree at the mode gi. The factor .6 (other values might be tried) decreases the ordinates

of the pseudo-dominating density at all values of bi to improve the probability of generating

values away from the mode and thereby attain greater mixing.

2.3 Sampling fi, 77, and D

Given the random effects, the remaining simulations are actually quite straightforward with

both n and D being simulated from standard distributions. For 0, the sampling requires
the use of a M-H algorithm with an easily constructed (tailored) proposal density. In this

case, the target density is proportional to

n 7,0031,30,13,-,i) exp[— exp(Zitfi + wbi)] [exp(Zio3 + w:tbilY".
i=1 t=1

It turns out that the mode /3 and curvature Vs = [—Ho]l of the logarithm of this function at

the mode are readily obtained, usually through a few Newton-Raphson steps. The required
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gradient vector and Hessian matrix are given by

71 7;

90 = —130(13 — 130) E E[yi, — exP(xi3 + w:tbi))xit
i=1 t=1

and
n

Ha = —Bo — E Dexpcx:03 +i=1 t.1
respectively. A tailored MVt density can now be constructed. We suggest that the proposal

be obtained by the method of reflection. The general idea is to reflect the current value

around the modal value before adding a Gaussian increment with variance rollo. It is easy

to check that the resulting proposal density is given by q(O, at) = 0(4 — (0 — 13), roVp).

This density is symmetric. Chib and Greenberg (1995) have documented the importance of

reflection in other problems. We do not think that it is necessary to use a mixture proposal

density in this case because the computational burden of finding the tailored density is

minimal.

To complete one cycle of the MCMC simulation one now samples 77 from

7r(771b, D) = MVt(riii), MT' , v), (6)

where fi = (Mom + E7-1 D-lbi) and M1 = (M0 + nD-1), and D-1 from

7r(D-1(b) = fw(D-1In + vo, [RtTi + E(bi — 77)(bi —77)14),
i=1

where fw(-Ia, A) denotes a Wishart density with a degrees of freedom and scale matrix A.

This completes the derivation and simulation of the full conditional densities required in

the MCMC sampling.

3 Marginal likelihood by MCMC

From a practical viewpoint, the problem of model choice is one of the most important in

fitting generalized linear models. We now show how this problem can be tackled given one
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of the posterior simulator techniques discussed in the previous section. We focus on one of

the central quantities in Bayesian model choice - the marginal likelihood of a model and

show how it may be computed from the MCMC output. The marginal likelihood of given

model M is the integral of the likelihood with respect to the prior density of the parameters,

i.e.,

m(yl.A4) = L(yIM, /3, ri) 7(0, n, D(M) cli3 dD, (7)

where 7r(f3,17, DIM) is the model specific prior density (Jeffreys (1961) and Kass and Raftery

(1995)). On the basis of the marginal likelihood one may compute the Bayes factor in favor

of model Mk (and against model MI) as

M(yliVik) 
Bk =

M(YI-A41)

Chib (1995) discusses'an alternative representation of the marginal likelihood

L(YIA4,017r(9*IM)

leading to the estimate

m(Y1M) = 70* I.M,

ln fi2.(yl.A4) = ln L(y1M, 0*) ± In 7(01M) — ln fr(01M, Y)•

(8)

(9)

(10)

where 0* = (f3* ,77* , D*) is some point in the parameter space, ii-(01M,y) is an estimate of

the posterior ordinate at 0* and all the functions on the right hand side are normalized. To

gain some insight into the relevance of this approach, we note that the choice of point 0* is

arbitrary since the expression above is an identity in 0. Still, it has been suggested in Chib

(1995) that the identity be evaluated at a high density point, such as the posterior mean of

0 or the maximum likelihood estimate (whose computation is discussed below).

We now consider the calculation of each term in (10) from the MCMC output.

3.1 Likelihood function

We begin with the computation of the likelihood function at the point 0'. It should be noted

that this estimate is required at only a single point, which minimizes the computational
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burden. Consider now the contribution of yi to the likelihood at the point 0*,

Li(yilr) =1 f (Yilbi, 13*) 0(biln* , D*) db , (11)

where the normalizing constants for both of the functions that appear under the integral are

known. If bi is of low dimension it is possible to compute this integral numerically by the

method of quadrature. The likelihood contribution can also be computed by the Laplace

approximation [see Tierney and Kadane (1986)] if the cluster size Ti is large. Then,

ln .Li(yi 10* ) = ln{f(yiIi, )3* )0(bi Irr , D*) + 0.5q1n(27r) + 0.51n I — H'[,

where bi denotes the mode of ln{f(y21b1,13*)0(biln*, D*)}, Hbi the Hessian at the mode, and

q is the dimension of bi. These quantities are obtained by the methods discussed earlier in

connection with the simiilation of bi.

The accuracy of the Laplace method depends crucially on Ti, the size of the ith cluster.

To see how the asymptotic approximation can fail for small Ti, consider Poisson count data

generated from the following model in which there are n = 200 clusters, two random effects

(q = 2), and two fixed effect parameters and Ti = 5. Let

( .3
= 0.5, n = (—.5, —.8)1, and D =

—.1

and assume that xit N(0,1), w = 1, and wit2 N(0,1). The very accurate estimate

of the log likelihood function based on quadrature is — 1215.30, while the Laplace approx-

imation is — 1435.78, which is clearly in error.

An alternative method that is more reliable for small cluster sizes is importance sampling

[see Geweke (1989)]. If g(b) denotes an importance sampling function, the importance

sampling estimate of Li (yi10*) is

(Yilb!j) (1)(W) In*, D*) 
j=1 g(b1j))
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where b!-I) (j = 1.....M) are i.i.d. draws from g(bi). A convenient choice for the latter

is a multivariate-t distribution with location b, scale matrix (-Hbi)l and v degrees of

freedom. The log-likelihood function is obtained by adding the ln Li(yi101.

For the simulated data set described above, we let M = 2000 and specify 10 degrees

of freedom for the multivariate-t importance function (the result are not sensitive to these

choices). The importance sampling estimate of the likelihood is -1215.32, which agrees

with the quadrature estimate up to the first decimal place. Thus, in this example with

small cluster sizes, the importance sampling estimate of the likelihood is far more accurate

than that based on the Laplace approximation.

3.2 Estimation of 7401y)

We now develop a methodology for estimating the posterior density at O. . This approach is

adapted from Chib (1995) where more details may be found. First, write the denominator

of (9) as

1n7r(O*Iy) = 1n7r(D-11y) + 1n7r(77*Iy, D-1*) + in r(Oly,77*, D-1*), (12)

and note that

7r(D-141y) = I n(D-11b, 77)7*, My) db, (13)

7(rJ* ly, D*) = 7*/* (b, D*)r(bly, D*) db, and (14)

7r(P*Iy, 77., D.) = 7r(3ly, b, D*)7r(b)y,71* , D*) db. (15)

The second step is concerned with the estimation of each of these ordinates from the MCMC

output. A little reflection shows that to estimate (13) one simply requires output from the

initial MCMC run consisting of the distributions

[01y, bb [blY 0, n, In lb [D-117 , bJ

The draws 0,771 from this run are distributed according to 7r(b,nly). Therefore, an estimate

of 7r(D-11y) is given by averaging the Wishart density 7r(D-1*lb,n) in (13) over these
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simulated draws. Next, a reduced MCMC simulation consisting of the distributions

Ply, 13, 77, In Nib, ,

where D is set equal to D*, produces draws of {b} that are distributed according to

7(bly,D*). These draws can be used to average the Gaussian full conditional density

7r(nlb, D*) in (14) at the point 77*. Finally, a reduced Gibbs run consisting of

[01Y, bb [blY, n*,

leads to draws of from the density 7r(/3(y, n*, Di. Kernel smoothing an be applied to these

draws to estimate the density at the point 0*.

Given these estimates, the marginal likelihood is estimated as

ln ni(y) = ln L(y10*) +1n71-(0*) — fr(D-11b, 77) + ln (My , D*) + ln /V* ly, D*)) .

The numerical standard error of this estimate may be derived.

3.3 Computation of modal estimates

We now turn to the question of finding the modal estimate, which, along with the posterior

mean, may- serve as 0* for the marginal likelihood calculation. We are interested in the ML

estimate because it provides (i) an approximate summary of the posterior density; (ii) an

input into the AIC or BIC model information functions, and (iii) a starting point for the

full MCMC iterations.

The E-M algorithm [Dempster, Laird, and Rubin (1987)] requires the recursive imple-

mentation of two steps: the expectation or E-step and the maximization or M-step. In the

E-step, given the current guess of the maximizer OW = (f3(i), nu), DU)), one computes

Q (0(i) , 0) = ln{f (y, bli3)} 7(bly, OW) db

= {Din Pr(yi 10, bi) + ln 0(bilq, D)j} (bly , ) db, (16)
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which is the expectation of the log of the complete data density with respect to the condi-

tional density of bi given the data and the current guess of the maximizer OW. Although

the Q function cannot be calculated in closed form, it can be estimated by Monte Carlo

as suggested by Wei and Tanner (1990). Let {1)(1),... , WO} , where bU) fbjy, 0(i)), be

a sample obtained by one of the methods discussed in Section 2. Wei and Tanner (1990)

recommend that K depend on j - a small value of K is used at the start of the iterations

and increased as the maximizer is approached. Then

K n

-0(9(i), 0) = K-1 E E {In Pr(yi10, b!k)) + In 0(bSk)ID)}
k=1 i=1

(17)

is an ergodic average that, under regularity conditions, converges to Q as K oo. (The

Q function may also be erstimated from a (synthetically) independent sample constructed

by using every /th draw of the sequence {b(1), , b(K)}.) In the M-step, the e? function is

maximized to obtain a revised guess of the maximizer OU+1), i.e.,

0+1) = arg mr

This maximization is accomplished in a sequence of two conditional maximization steps:

• Given the current value of D, Q(0(2), 0) is maximized over 0 and 77 to produce 0U+1)

and 77(3+1). The latter is seen to be 77(i+1) = (nK)i Er_1 Eti.-1 le) (the sample mean
of all the draws), whereas 0U+1) is obtained by the Newton-Raphson method applied

to the function K-1 Elk‘_1 a_ilnPr(y110, le)). The gradient and Hessian for the N-R

algorithm, similar to those of Section 3, are given by

and

respectively.

K n

K-1 E E E(Yet — exp(40 + w:tb!k))) X it
k=1 i=1 t=1

K n

-IC 

(exp(xO iditbck) ))
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• Given 3(+1) and n(j+1), the random effects {b1} are drawn from 7r(bly, n(j+1), D(')),

and the update of D is obtained from the revised function

K n

DU+1) = (nK)1 EE (le) _ n(i+1)) (b!k) _
k=1 i=1

which is found by equating to zero the derivative of Q with respect to D.

The calculation of Q and the maximization over 0 are terminated when the change in

successive parameter values is sufficiently small. The value 0* at the end of these iterations

is the maximum likelihood estimate. Standard errors of the estimate 0* can be obtained

from Louis (1982), where it is shown that the observed information matrix (the negative of

 ) is given by

E 
[821n{f(y,b10)1

Var [8 in{f(Y' -—
8080' 80

the expectation and variance are taken with respect to [b]y,0*]. Although direct evaluation

is not feasible, each of these terms can be estimated by using the M-H step to produce a

sample lb(1),... ,b(J)}, where b(j) [bly, 9*]. The observed information matrix is estimated

as

821n{f(y,b(k)10*) j (81n{f(y,b(k)10*) 
m 

(81n{f(y,b(k)10*) my
J-1 E

k=1 
8080' k=1 

80 ao
(18)

where m = j--). ELI a in{ f (r(k)  The derivatives of ln f(y, b(k)10*) can be computed

analytically or by numerical differentiation via a packaged routine. The relevant standard

errors are given by the square root of the diagonal elements of the inverse of the estimated

information matrix.

The constants K and J can be chosen pragmatically, motivated by the speed of the

computing environment and the accuracy desired. We allow K to increase gradually as

a function of the iterations and, near the mode, usually set K to be about 1000, which

appears to be satisfactory for most problems. A value of J about 5000 has been found to

be adequate.
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A variant of the MCEM algorithm can also be used to find 0*. This variant, called the

simulated EM (SEM) algorithm, is based on the algorithm of Celeux and Diebolt (1985).

Unlike the MCEM algorithm, the SEM generates a Markov chain sample, and the mean of

the simulated sample can be used as an estimate of the modal value. In this algorithm the

evaluation of Q is replaced by a maximization of the complete data log-likelihood. Specif-

ically, given the current sample of the random effects b(k), the next item in the parameter

sequence is obtained by maximizing

Efln Pr(y2)f3, br)) + Inck(b k)177, D)}
i=1

over the parameter space. The random effects are then simulated as described above,

and the process is iterated. From the MLE and in L(y10) (through the approach in Sec-

tion 2.1), it is possible to compute the AIC and BIC information functions: Subtracting

the penalty 2n-1 dim(0) from In j(y10*) produces the AIC, and subtracting the penalty

n-1 dim(0) log(n) produces the BIC.

4 Examples

We next present three applications of the methods developed above to count data. The

first is to data on treatment for epilepsy, the second to the patent data, and the third to

workplace absences.

4.1 Epilepsy data

Diggle, Liang, and Zeger (1995) consider the data on four successive two-week seizure counts

(yii) for each of 59 epileptics (i = 1, , 59; j = 0, , 4), some of whom are treated with

progabide (observation 49 is eliminated from the computations because of the "unusual pre-

and post-randomization seizure counts"). The covariates are

Ii if treatment group _ 1 if visit 1,2,3 or 4 ;; xi2 —xil = 0 if control 0 if baseline
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Obs yd yi2 yo yia Treat Base Obs yil 7/i2 9i3 yia Treat Base

1 5 3 3 3 0 11 31 0 4 3 0 1 19

2 3 5 3 3 0 11 32 3 6 - 1 3 1 10

3 2 4 0 5 0 6 33 2 6 7 4 1 19

4 4 4 1 4 0
.

8 34 4 3 1 3 1 24

5 7 18 9 21 0 66 35 22 17 19 16 1 31

6 5 2 8 7 0 27 36 5 4 7 4 1 14

7 6 4 0 2 0 12 37 2 4 0 4 1 11

8 40 20 23 12 0 52 38 3 7 7 7 1 67

9 . 5 6 6 5 0 23 39 4 18 2 5 1 41

10 14 13 6 0 0 10 40 2 1 1 0 1 7
11 26 12 6 22 0 52 41 0 2 4 0 1 22

12 12 6 8 5 0 33 42 5 4 0 3 1 13

13 4 4 6 2 0 18 43 11 14 25 15 1 46
14 7 9 12 14 0 42 44 10 5 3 8 1 36
15 16 24 10 9 0 87 45 19 7 6 7 1 38

16 11 0 0 5 0 50 46 1 1 2 4 1 7

17 0 0 3 3 0 18 47 6 10 8 8 1 36

18 37 29 28 29 0 111 48 2 1 0 0 1 11

19 3 5 2 5 0 18 49 102 65 72 63 1 151

20 3 0 6 7 0 20 50 4 3 2 4 1 22

21 3 4 . 3 4 0 12 51 8 6 5 7 1 42

22 3 4 3 4 0 9 52 1 3 1 5 1 32

23 2 3 3 5 0 17 53 18 11 28 13 1 56

24 8 12 2 8 0 28 54 6 3 4 0 1 24
25 18 24 76 25 0 55 55 3 5 4 3 1 16

26 2 1 2 1 0 9 56 1 23 19 8 1 22

27 3 1 4 2 0 10 57 2 3 0 1 1 25
28 13 15 13 12 0 47 58 0 0 0 0 1 13

29 11 14 9 8 1 76 59 1 4 3 2 1 12

30 8 7 9 4 1 38

Table 1: Epilepsy data

and tij (the offset term) which equals 8 if j = 0 and 2 if j = 1,2,3, or 4. The complete

data set appears in Table 1. Following Diggle, Liang, and Zeger, we model the counts by a

Poisson link with mean

log E(yij If3, bi) = log tii + + 132xii1 + 03xii2 + 04xii1xii2 + bil + bi2xiii •

The intercept and xil (time) variables are thus treated as random effects.

We specify the following vague priors on [3, n and D:

(3 N2(0,10-2 x I), r N2(o,10-2 x I), D-1 — W(4,/)

and experiment with the four alternative proposal generating densities for b discussed in
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Section 2. Any tuning constants in these methods (such as 7-1 and 72) are obtained by

short, preliminary runs, by focusing on the acceptance rates and the serial correlations of

the output. The values of these adjustable constants are included in our tabular output. The

final MCMC iterations are then run for 10,000 cycles beyond a burn-in of 1000 iterations.

Table 2 contains a set of results for this data in (0, 77) parameterization. The table
contains the posterior mean (mean), the posterior standard deviations (s.d.), the acceptance

rates in both the bi and steps, and the autocorrelation at lag 20 of the generated sample for

each of the alternative methods. Because there are a large number of acceptance rates in the

case of bi, we report the minimum and maximum rates achieved in the sampling. We have

found that this diagnostic is a useful summary of the performance of the M-H simulations

given that the acceptance rate for each random effect cannot be sensibly monitored in real

time.

From these results we conclude that all four methods for simulating b yield similar pos-

terior means and standard deviations. These, in turn, are close to the maximum likelihood

estimators reported in Diggle, Liang, and Zeger (1995) and to those obtained from the

MCEM algorithm developed above. The posterior point estimates of Dij also *agree with

the maximum likelihood estimates. The results indicate an important time x treatment

interaction effect and substantial heterogeneity in the intercepts.

We now examine the effect of parameterization and apply each of the four methods

anew after setting 77 = 0 and letting wit be a subset of zit. The prior on 3 in these

runs is now N4(0, 10-2 x /))For brevity we focus on method 4 and simulate 10,000 draws

from the posterior distribution using To = 1.5 and T2 = 1.5. We summarize the results

obtained in Figure 1 for (01, 04, D11, D22). The figure contains Q-Q and autocorrelation

plots for output from the recommended (f3, n) parameterization [second column] and from
the no n parameterization [third column]. From these figures we can conclude that the Q-Q
plots are linear, and that the chain displays generally less serial correlation in the (0,77)
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Method 1 Method 2 Method 3 Method 4

M-H const
To 1.5 1.5 1.5 1.5

Ti .7 n.a. .7 n.a.

T2 1.5 _ 1.5 1.5 1.5

Param
Const 1.093(.128) 1.076(.134) 1.080 (.143) 1.066 (.134)

Treat - .051 (.170) -.023(.180) - .029 (.204) - .002 (.185)

Time .017(.101) .016(.115) .021 (.108) .013 (.114)

Interact - .370(.133) - .363(.166) - .373 (.147) - .360 (.159)

Dn. .474(.099) .478(.100) .481 (.100) .476 (.100)

D21 .017(.056) .015(.058) .013 (.058) .014 (.057)

D22 .241 (.062) .245(.065) _ .244 (.063) _ .246 (.064)

Acf(20)
Const .429 .435 .395 .368

Treat .872 .779 .804 .721

Time .421 .276 .362 .195

Interact .686 .471 .580 .321

D11 .042 .010 .024 .024

D21 .096 .017 .018 .003

D22 .124 .005 _ .045 _ .012

Accpt rate
0

,
.392 .401 .401 .399

Is, min .084 .587 .187 .895

bi max .429 _ .610 .466 .911

Table 2: Epilepsy data: M-H tuning constants, posterior moments and performance sum-

maries in the (j3, 77) parameterization. Results are based on G = 10,000 samples beyond an
initial transient stage of a 1000 cycles.

parameterization.

In terms of the methods, the best results overall are obtained when the random effects

are simulated by the accept-reject method with a pseudo-dominating density (Method 4)

in the (13,77) formulation. It is interesting to note that even the random-walk chain for

simulating the random effects (Method 1), yields point estimates that are similar to the

others, although its autocorrelations are quite large. This suggests that exploratory work

can be done with this rather fast approach, and final results can be computed with one of

the slower, but more satisfactory, methods.

We also consider the question of model choice for these data and compute the log

marginal likelihoods for the model discussed above and for an alternative model in which
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the intercept is the only random effect. The marginal likelihoods are computed from the

(0,77) parameterization. Method 4 is used to simulate the random effects. Each of the

reduced MCMC iterations are run for 10,000 iterations and the marginal likelihood identity

is evaluated at the maximum likelihood estimate. We obtain ln m(y) = —915.404 for the

former model and —969.824 for the latter. This is very strong evidence in favor of including

the second random effect.

4.2 Patent data

We next illustrate the methods using data on patents. This data has previously been

analyzed by Hausman, Hall, and Griliches (1984) and Blundell, Griffith and Van Reenen

(1995) by classical means. The data set contains information on the research and develop--

ment (R&D) expenditures of 642 firms and the number of patents received over the time

period 1975-1979. Letting yit denote the number of patents received by firm i in year t, the

model of interest specifies that

log E(yij 10, bi) = 01 + 02xij1 + 03xi32 + i34xi33 + bil +

where x231 is the logarithm of R&D spending (log Ro) and Xij2 to x224 are lagged values of

the logarithm of R&D spending (log R_1, log R_2, log R_3). The intercept and log Ro are

thus treated as random effects. The model also contains time dummies for 1976-1979 but

these are suppressed here and in the output for notational and visual convenience. The

data set contains additional variables - a dummy variable for whether or not a firm is in a

group of scientifically based industries and the inflation adjusted book value of the firm in

1971 - but these cannot be not included as covariates in the model because they exhibit no

within variation and hence are indistinguishable from the random intercept.

The MCMC design and the priors for this model correspond to those discussed above.

Once again we investigate the efficacy of the four methods for simulating the random effects

and of the alternative parameterizations. The first set of results (based on 10,000 simulations
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after dropping the first 2,000) appear in Table 3.

Method 1 . Method 2 T Method 3 Method 4
M-H const
To .7 1.0 .7 1.0
ri .7 n.a. 1.0 n.a.
T2 1.0 2.5 1.5 2.0
Param
constant .776(.075) .772(.077) .747(.076) .733(.076)
log Ro .694(.030) .697(.040) .621 (.035) .572(.036)
log R-1 -.043(.031) -.055(.033) .005(.032) .046(.033)
log R_2 .128(.036) .130(.036) .138(.038) .144(.037)
log R-3 .092(.030) .089(.030) .113(.030) .129(.031)
D11 2.588(.259) 2.668(.256) 2.594(.248) 2.547(.252)
D21 -.578(.072) -.618(.079) -.597(.076) -.585(.076)
D22 .215(.027) i .293(.035) .287(.034) .282(.032)
Acf(20)
Constant .153 .026 .048 .031
log Ro .480 .322 .221 .171
log R_I .186 .263 .045 .155
log R72 .034 .034 -.009 .007
log R-3 , .182 .083 .050 .042

.515 .117 .204 .011
-D21 .550 .182 .253 .019
D22 .630 .290 _ .385 .032
Accpt rate
ig .377 .222 .387 . .233
bi min .015 .259 .121 .818
bi IllaX .590 _ .291 .482 .925

Table 3: Patent data: M-H tuning constants, posterior moments and performance sum-
maries in the (f3,77) parameterization. Results are based on G = 10,000 samples beyond an
initial transient stage of a 1000 cycles.

We find that the results are broadly consistent across methods. The magnitudes of the

posterior means and standard deviations of D lead us to conclude that there is considerable

variation across firms and that firms with large intercepts have a smaller effect from current

R&D expenditures. Furthermore, the posterior moments of the fixed effects reveal that the

effect of the first lag in log R&D is close to zero, while those from the remaining lagged

values of log R&D are positive but smaller than that of current R&D.

It is also interesting to mention that this data clearly illustrates the advantages of using

a MVT tailored proposal as opposed to the Gaussian tailored proposal in the generation of
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the random effects. The latter proposal was found to give minimum acceptance rates of 0

and poor mixing in some cases.

Next we report on the results from the no n parameterization by fitting the above model

using Method 3 (setting To = .7, ri = 1 and 72 = 1.5). For simplicity we consider the pa-

rameters 131 and /32 (the coefficients of our two random effects, the intercept and log Ro)

and compare the marginal posterior distributions of these parameters from the alternative

parameterizations. We also examine the autocorrelation plots of the sampled values. The

results appear in Figure 2 where the first column corresponds to the recommended parame-

terization. It can be seen that the marginal posterior distributions for 01 are different but

those of 02 are roughly identical. It appears that the distribution of the intercept in the

no ij parameterization has not converged even after 12,000 iterations due to the high serial

correlation. For each parameter, the autocorrelation patterns are much better behaved in

the (Om) parameterization. This is the kind of improvement we expected given the pattern

of heterogeneity in the data. A more extensive experiment with the other methods gave

similar results.

Finally, we note that method 3 (which appears to inherit the strengths of method 2

without the drawbacks of method 1) gives results that are comparable to the more sophis-

ticated method 4. This is potentially very useful because in the context of large data sets,

method 3 can deliver an order of magnitude reduction in computing time.

4.3 Absence data

Our final illustration is with a data set on the number of absences from work for a random

sample of 704 full-time workers in Germany covering the period 1986-1989. The data are

drawn from the German Socio-Economic Panel [see Wagner, Burkhauser, and Behringer

(1993)]. This is an interesting data set because, as noted by Brown and Sessions (1996),

days lost due to absences can exceed those lost as a result of unemployment.
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The response variable yit is the count of the number of days a worker has been absent

from work during the calendar year t. In the survey, this question is asked in year t + 1

retrospectively for year t. Some summary statistics of this data are as follows. The average

number of absent days in the sample is 4.6, with a standard deviation 8.3. An important

feature of the data is the high proportion of zeros: 59 percent of all observations are zero,

and 23 percent of workers report no absent day in any of the four years. Both the high

variability of the dependent variable and the excess of zeros suggest that the standard

Poisson regression model without random effects is likely to be inappropriate. We therefore

fit and compare alternative Poisson models with multiple random effects.

Potential covariates to explain the response variable include: years of job tenure in

the current job; job satisfaction (an ordinal response coded 0, 1, , 10, where 0 stands

for "completely dissatisfied" and 1 stands for "completely satisfied"); the lagged number of

absent days; the size of the employees' firm (1 if it is a large firm with 200 or more employees,

0 otherwise); the marital status of the worker (1 if married); the presence of children at

home (1 if children are present); and the nature of the work contract (1 if limited time

contract). These covariates fall into two categories. The first consists of the variables job

tenure and job satisfaction that have within-variation for most workers. The second consists

of the remaining variables with no within-variation for most workers. This distinction is

important since it affects identification. In the presence of a random intercept, any variable

with a random coefficient must have within variation for each individual in order to identify

bi. We ensure this by including only individuals for which the (4 x 3) matrix formed by the

constant, job tenure and job satisfaction has full column rank.

We specify four models for this data. The first three models include the same set of

covariates: tenure, satisfaction, and lagged absent days with a different assignment of the

random effects in each case. The fourth model has job tenure and job satisfaction as the

random effects and a different set of covariates. To summarize, the random effects in the
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four models are specified as

- Model 1. Constant.

- Model 2. Constant, tenure.

- Model 3. Constant, satisfaction.

- Model 4. Job tenure, Job satisfaction.

For each model, we simulate the posterior density in n-parametrization, obtain the maximum

likelihood estimator as a high density point using the MCEM algorithm, and then estimate

the log marginal likelihood at the ML estimate.

- Variable • Model 1 Model 2 Model 3 Model 4

fl:
Constant 1.116(.092)
Job tenure 0.035(.002) 0.055(.001)
Job satisfaction -0.044 (.004) -0.037(.003)
Absent dayst_i -0.024(.001) -0.030(.001) -0.053(.002) -0.040(.001)
Firm size 0.145(.061)
Married -0.311 (.067)
Children -0.157(.042)
Limited contract -0.102(.122)
77:

,

Constant 0.047(.008) -0.046(.045) -0.106(.051)
Job tenure 0.100(.034) 0.004.(.024)
Job satisfaction -0.007(.056) , -0.076(.035)
D:
D11 0.038(.003) 0.851 (.084) 1.364 (.142) 0.252(.039)
D12 -1.039(.101) -0.811 (.079) -0.301 (.046)
D22 _ 1.368(.125) _ 0.654(.056) 0.569(.082)

Table 4: Absence data: Maximum likelihood estimates and standard errors from the Markov
chain Expectation Maximization algorithm. The results are the final iterate values at
convergence. The standard errors are computed using M = 1000 random effects draws
after convergence.

The prior densities and the MCMC design is again similar to that used in the earlier

examples. Based on our experience from those runs, we use method 3 to simulate the

random effects. To achieve a balanced D matrix, the constant term is scaled by a factor
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10. We start the MCEM algorithm with K = 4 draws for b, and later increase K to 1000.

Again, the tuning constants are adjusted in order to produce acceptance rates between 0.3

and 0.5.

Table 4 displays the results from the MCEM estimation, while Table 5 shows the pos-

terior means, the posterior standard deviations and the log marginal likelihoods from the

MCMC simulation.

Variable Model 1 Model 2 Model 3 Model 4

P:
Constant 1.034 (.177)
Job tenure 0.035 (.005) 0.060 (.008)
Job satisfaction -0.045 (.007) -0.021 (.010)
Absent days,i -0.024 (.001) -0.029 (.001) -0.053 (.002) -0.040 (.001)
Firm size 0.161 (.136)
Married -0.188 (.108)
Children . -0.141 (.064)
Limited contract , -0.156 (.145)

Tr
Constant 0.046 (.013) -0.060 (.046) -0.122 (.054)
Job tenure 0.101 (.037) 0.004 (.023)
Job satisfaction _ -0.004 (.056) _ -0.085 (.036)

D:
0.040 (.003) 0.879 (.076) 1.384 (.120) 0.254 (.022)

D12 -1.065 (.093) -0.822 (.072) -0.302 (.029)
D22 1.401 (.120) _ 0.665 (.053) 0.583 (.051)

I Log marginal likelihood I -11606.84 I -9663.58 -9648.52 I -9693.72 I

Table 5: Absence data: Posterior moments and marginal likelihoods. Random effects are
simulated using Method 3. Results are based on G = 10,000 samples beyond an initial
transient stage of a 2000 cycles.

We note that both maximum likelihood estimator and estimated standard errors are very

similar to the posterior means and standard deviations. The number of reported absent

days increases with job tenure and decreases with job satisfaction. The preferred model is

Model 3 with a marginal likelihood of -9648.5; thi's model with random individual specific

intercept is better than Model 4: the included time invariant covariates are not able to

explain the between individual variation in the absence intensity.
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5 Conclusions

This paper has shown how MCMC methods make possible the analysis of rather complex

variants of the generalized linear model. We have discussed several different M-H based

approaches for simulating the (augmented) posterior distribution. One useful approach for

sampling the random effects is based on a mixture proposal density. The first component

of this mixture is a random walk chain and the second is a tailored MVT density. We

have found that it is important to use a MVT proposal density instead of one based on

the Gaussian distribution. Another method was shown to be even more effective (though

computationally more demanding). This is the M-H accept-reject algorithm with a pseudo-

dominating density. The use of this method in the context of our models is quite promising.

The paper also documents the value of a new parameterization that is related to the idea

of hierarchical centering.

In addition, we have considered the problems of ML estimation and model choice. It

is interesting that access to a MCMC random effects simulator is sufficient to find the

ML estimate and the associated standard errors, due to a Monte Carlo version of the

EM algorithm. Interest in this algorithm can be expected to increase. Finally, we have

developed a practical methodology for the computation of marginal likelihoods and Bayes

factors without constraining assumptions about the size of the clusters and number of

random effects. This advance is useful and important as well.
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