|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Giannini FDN L

||I|||| it

005631

Department of Economics, University of Canterbury
Christchurch, New Zealand

Discussion Paper No. 9406

November 1994

LINEAR PROGRAMMING WITH
MATHEMATICA

Michael Carter

Abstract

We exploit the symbolic manipulation capability of Mathematica to elucidate
the simplex algorithm of linear programming clearly and intuitively. We then
develop a set of tools for conducting sensitivity analysis of the optimal solution.
In order to utilize Mathematica’s efficient linear programming routine, we de-
velop a function which can deduce the final tableau from the Spartan output
of ConstrainedMax. This final tableau contains all the information usually
provided by a good linear programming package, which can than be explored
using the techniques of sensitivity analysis developed in the paper. This enables
the package to be applied to a substantive problem, relying on Mathematica’s
native code for intensive computation. To illustrate, we apply the package to
analyse a classic problem in efficient nutrition.

Address for correspondence: Michael Carter
Department of Economics

University of Canterbury

Christchurch, New Zealand

internet: m.carter@econ.canterbury.ac.nz

Linear Programming
with Mathematica

Michael Carter
Department of Economics
University of Canterbury

Christchurch, New Zealand

The subject of linear programming is surrounded by notational and
terminological thickets. Both of these thorny defenses are lovingly
cultivated by a coterie of stern acolyles who have devoted themselves
to the field. Actually, the basic ideas of linear programming are quite
simple.

Press, Teukolsky, Vetterling and Flannery (1992: 431)

1 Introduction

In his book Methods of Mathematical Economics, Joel Franklin relates a visit
to the headquarters of the Mobil Oil Corporation in New York in 1958. The
purpose of his visit was to study Mobil’s use of computers. In those days,
computers were rare and expensive and Mobil’s installation had cost millions of
dollars. Franklin recognized the person in charge; they had been post-doctoral
fellows together. Franklin asked his former colleague how long he thought it
would take to pay off this investment. “We paid it off in about two weeks”
was the surprise response. Elaborating, he explained that Mobil were able
to make massive cost savings by optimizing production decisions using linear
programming, decisions which had previously been made heuristically.

It would be hard to exaggerate the importance of linear programming in
practical optimization, in applications such as production scheduling, trans-
portation and distribution, inventory control, job assignment, capital budgeting
and portfolio management. Franklin’s anecdote highlights the enormous bene-
fits which can accrue from optimizing recurrent decisions.

There are two main reasons for the practical success of linear programming.
First, many production processes and economic systems are linear or nearly
so. Linear programming provides an appropriate mathematical model for such

*1 gratefully acknowledge the assistance of John George, Department of Management,
University of Canterbury in negotiating the thickets of linear programming. He is of course
completely exonerated for any breach in my defenses. I also acknowledge my considerable
debt to the book by Vaiek Chvatal (1983), whose refreshing approach to linear programming
illuminated my path.

processes. Second, there exists of a very efficient algorithm (the simplex algo-
rithm) for solving most linear programming problems. The postwar conjunction
of the availability of digital computers and the discovery of the simplex algo-
rithm by George Dantzig paved the way for successful industrial application as
exemplified by Mobil’s experience.

Linear programming is also important to economists and game theorists.
Although most economic models are nonlinear, linear models of exchange, pro-
duction and capital accumulation serve an important didactic role (Dorfman,
Samuelson and Solow, 1958). Furthermore, an understanding of the simplex
algorithm and the duality theorem enhances comprehension of nonlinear opti-
mization, mastery of which is central to economic analysis. In game theory, the
solution of zero sum games is a linear programming problem and the minimax
theorem is formally equivalent to the fundamental duality theorem of linear
programming. The efficient solution of non-zero sum games uses a modification
of the simplex algorithm called the complementary pivot algorithm (Lemke and
Howson, 1964; Wilson, 1992). Much of cooperative game theory reduces to the
application of linear programming theory and techniques (Carter, 1993).

Despite recent discoveries alternative “interior point” algorithms, the sim-
plex method and its variants remain by far the most common practical method
for solving linear programming problems. The simplex algorithm is based upon
a very simple intuitive idea of successive improvement. However, because most
textbook treatments aim at describing a mathematical formulation suitable for
implementation by conventional programming languages, their discussion tends
to hide the intuitive simplicity of the algorithm. The symbolic manipulation
capability of Mathematica enables the simplex algorithm to be elucidated more
clearly and intuitively, and significance of all the results understood. This is the
first objective of this paper.

Mathematica already includes an implementation of the simplex method
(ConstrainedMax) as part of its native code. Though fast, the output from
this routine is rather Spartan. The second objective of this paper is to work
backwards, manipulating the output of ConstrainedMax to recover the “fi-
nal tableau” and hence to deduce all the information which is usually provided
by a good linear programming package. This can then be used to conduct a
sensitivity analysis of the optimal solution. In this way, the paper enhances the
utility of the in-built linear programming facility.

Since our implementation of the simplex algorithm is designed for explanation
rather than execution, our code emphasizes clarity rather than efficiency.

2 The problem

To make the exposition easier to follow, we start with a simple specific example.
A furniture maker can produce three products, bookcases, chairs and desks.
Each product requires machining, finishing and some labor. The supply of
these resources is limited. Unit profits and resource requirements are listed in
the following table.

Bookcases Capacity
Finishing 2 2 1
Labor 1 2 3
Machining 2 1 1
Net profit 3 1 3

The problem of maximizing profit can be specified as the following linear
program. Maximize

profit = 3x([b] + x([c] + 3x[d];

subject to the

constraints =

{ 2x[b] + 2x[c] + =x[d] <= 30,
x[b] + 2x[c] + 3x[d] <= 25,
2x[b] + x[c] + x[d] <= 20
}i

and z; > 0

For analysis, inequalities are more difficult to manipulate than equations. By
introducing slack variables, we can transform the inequalities into a correspond-
ing system of equations. This is called the standard form. The slack variables
measure the unused capacity of a resource at any given production plan. For
convenience, we label the spare capacities of finishing, labor and machining s,
s; and sy, respectively.

StandardForm[constraints_, labels_List] :=
Transpose @

{labels,constraints} /.
{i_, 1lhs_ <= rhs_}:> 8[i] == rhs - lhs

StandardForm[constraints, {(£,1,m}]

{s[£f] 30 - 2 x[b] - 2 x[c] - x[d],
s[1] 25 - x[b] - 2 x[c] - 3 x([d],

s[m] == 20 - 2 x[b] - x[c] - x[d]}

For example, if the furniture maker was to produce 1 bookcase, 2 chairs and 3
desks, the unused capacities would be

% /. {x[b] -> 1, x[c] ->2, x[d] -> 3}

{s[f) == 21, s[l1l] == 11, s(m] == 13}

The linear programming problem can be succinctly summarized by prepending
the objective function to the constraints. To ensure that the result is nicely
formatted, we can set $PrePrint to apply MatrixForm automatically to any
system of equations (tableau).

TableauQ[_] := False
TableauQ[{_Equal..}] := True
$PrePrint = If[TableauQ(#], TableForml[#],#]&;

problem=Prepend[StandardForm[constraints, {f,1,m}],
z == profit]

z == 3 x[b] + x[c] + 3 x[dl]

s[{f) == 30 - 2 x[b] - 2 x[c] - x[d]
s[l] == 25 - x[b] - 2 x[c] - 3 x[d]
s(m] == 20 - 2 x[b] - x[c] - x[d]

We can also use TableauQ to preclude applying StandardForm to a system
which is already in standard form.

StandardForm[constraints_?TableauQ,labels_List] := constraints

PROGRAMMING NOTE: We use Mathematica functions, for example z[b], s[l], to
represent variables rather than simple variable names like z1,z2 or b, c,d. This faci-
iltates manipulation in Mathematica, for example in the use of pattern matching and
automatic generation of variable names. It more closely resembles the subscript nota-
tion used in many presentations and would enable the use of more descriptive variable
names, such as z[desks] if required. We adopt the convention of using z[j] to de-
note decision variables and s[i] to denote slack variables. We rely on this convention
occasionally in the code.

3 Searching for a solution

Are there any feasible solutions to the production problem? Yes, an obvious
possibility is to produce nothing (z; = 0) but it is not very profitable. Another
feasible solution was cited in the previous section. The production plan

productionPlan = (x[b] -> 1, x[c] -> 2, x[d] -> 3};

is feasible

constraints /. productionPlan

{True, True, True}

and produces a profit of

profit /. productionPlan

14

A better plan is

{profit, constraints} /.
(productionPlan = {x[b] -> 2, x[c] -> 4, x[d] -> 5})

(25, {True, True, True})

Unfortunately, we cannot produce

{profit, constraints} /.
(productionPlan = {x[b] -> 5, x[c] -> 4, x[d] -> 5})

{34, {True, False, True}}

since the requirements of 5 bookcases, 4 chairs and 5 desks exceeds the available
labor supply. If we eliminate the chairs, we can produce

{profit, constraints} /.
(productionPlan = {x[b] -> 5, x[c] -> 0, x[d] -> 5})

{30, {True, True, True}}

This is the most profitable plan which we have considered so far, but is it the
best? How can we tell? We could continue to explore various permutations,
but it is not clear how we would know when we have reached the optimum plan
or even that an optimum plan exists. Clearly, we need some systematic way in
which to explore the various alternatives.

A sensible starting point would be to produce as much as possible of the
most profitable item. Bookcases (z3) and desks (z4) are equally profitable.
Arbitrarily, let us choose bookcases. What is the maximum number of book-
cases z3 which can be produced with the available resouces? Inspection reveals
that machining capacity is the limiting factor in the production of bookcases.
Each bookcase requires 2 hours of machining. A total of 20 hours is available.
Therefore, we can produced a maximum of 10 bookcases. Our first tentative
production plan is

productionPlan = {x[b] -> 10, x[c] -> 0, x[d] -> 0};
This plan exhausts the machining capacity but leaves spare capacity in finishing

and spare labor, resulting in a profit of $30.

problem /. productionPlan

zZ ==
s(f] 10
s[1] 15

s [m] 0

Is this an optimal solution? It is not immediately obvious. Sure, we have
spare resources. But we know that we cannot produce any more bookcases.
Furthermore, since the machining constraint is binding, any output of the other
goods can only be accomplished by contracting the production of bookcases. In
other words, any production of chairs or desks involves a tradeoff against the
production of bookcases. Is such a tradeoff profitable?

The tradeoff imposed by the limited supply of machining capacity is repre-
sented by the third constraint, which is called the pivot row.

pivotRow = First @ Cases|[problem, s[m] == _]

s[m] == 20 - 2 x[b] - x[c] - x[d]

This equation imposes a constraint on the total production of bookcases which
can be highlighted by solving this constraint for z5.

RevisedPivotRow =
Roots[pivotRow, x[bl] // ExpandAll

s[m]} x[c]) x[d]
x[b] == 10 - ==== - —=== - ———-
2 2 2

This equation expresses the machining constraint in terms of the production
of bookcases. It reveals two important technological facts. The intercept is the
number of bookcases which can be produced by devoting all of the machining
resource to the production of bookcases. The coefficients on the other goods,z.
and z4 indicate that, while the machining constraint remains binding, every chair
and desk produced reduces the available output of bookcases by 1/2 unit. This

is the technological tradeoff imposed by the machining constraint. The revised
constraint reveals that (1) a maximum of 10 bookcases can be produced by
concentrating on bookcases alone and (2) every chair or desk produced would
reduce the potential number of bookcases by 1/2. This is the fundamental
technological tradeoff.

The economics of this tradeoff is revealed by substituing the technological
tradeoff into the objective function. To do this, we first express the revised pivot
row as a transformation rule

pivotRule = ToRules[RevisedPivotRow]

s(m] x[c] x[d]
{x[b] -> 10 - ---- - —=—- - ----}
2 2 2

and use this to transform the objective function

RevisedObjective = profit /. pivotRule //
ExpandAll

3 s(m] x[c] 3 x([d]
2 2

This revised objective function reflects the economic position at the tentative
production plan (z3) = 10,z, = 0,24 = 0). The intercept 30 represents the net
profit earned by this plan. The coefficients on z. and z4 evaluate the marginal
benefit of producing chairs or desks, while taking account of the need to reduce
correspondingly the output of bookcases (the technological tradeoff). This re-
veals that the marginal benefit of substituting chairs for desks is negative, while
the marginal benefit of producing a desk, after accounting for the corresponding
reduction in the output of bookcases, is positive. Some substitution of desks for
bookcases is desirable. Producing one less bookcase would enable the firm to
produce 2 desks, increasing net profit by $3. At the margin, each desk is worth
$3/2. Note that bookcases and desks have the same selling price, $3. The reason
that it is more profitable to produce a combination of bookcases and desks (as
opposed to bookcases alone) is that desks require less of the scarce machining
capacity.

The coefficient of z4, 3/2, measures the true opportunity cost of the produc-
ing all 10 bookcases, which is the foregone opportunity to produce some desks.
Similarly, the coefficient —3/2 on the slack variable s, measures the opportunity
cost of the machining constraint — the foregone potential output of bookcases
and/or desks. Its inverse (negative), 3/2 is called the shadow price of machining
capacity. It indicates that profit could be increased by 3/2 if this constraint were
relaxed by one unit. Similarly, the coefficient 3/2 on the z[d] can be interpreted
as the shadow price of the negativity constraint on this variable. Shadow prices
play a central role in the solution of linear programming problems. As we will

shortly demonstrate, they guide the process of sequential improvement leading
to the optimal solution. At the optimal solution, the shadow prices provide
important information about the sensitivity of the solution to changes in the
parameters of the problem.

The revised objective function reveals that our tentative plan (10,0,0) is not
optimal; some substitution of desks for bookcases is desirable. How many desks
should we produce? Linearity implies that we should exploit any profitable
substitution as far as resources allow. The impact on machining is implicitly
taken account of by the pivot row. We should substitute desks for bookcases
until we run out of some other resources. The impact of this substitution on
resource requirements can be obtained by using the pivot rule to rewrite the
other resource constraints.

RevisedConstraints = Rest[problem] /.
{pivotRow :> RevisedPivotRow,

otherRow_Equal :> (otherRow /. pivotRule)} //
ExpandAll

s(f] == 10 + s[m] - xl[c]

3 x[c] 5 x[d]
s[1]

x[c] x[d]
x[b) 10 = ---= = === - e
2 2 2

The absence of x4 from the first equation indicates that substituting desks for
bookcases will have no impact on the utilization of finishing capacity. (Although
desks are less demanding of finishing than bookcases, the machining constraint
allows us to substitute 2 desks for every bookcase.) The second equation reveals
that substitution will utilize spare labor capacity, since desks are considerably
more labor intensive than bookcases. Each desk will utilize 5/2 units of spare
labor capacity. Available spare capacity is 15 units, allowing the substitution of
six desks for three bookcases. Therefore, our second tentative production plan
is

productionPlan = {x[b] -> 7, x[c] -> 0, x[d] -> 6};

problem /. productionPlan

s[1] 0

sm] == 0

This plan exhausts both labor and machining capacity and produces of a profit
$39, compared to $30 with the earlier plan. This certainly represents an im-
provement over our first production plan. Is this now an optimal solution? This
is the same question we asked of the first production plan and we could repeat
the same analysis from a new starting point. This is the pivotal step in linear
programming. Let us formalize this procedure.

4 Formalizing this procedure - pivoting

Let us review what we have just done. Faced with the linear programming
problem

problem

z == 3 x[b] + x[c] + 3 x[d]
s[f] 30 - 2 x[b] - 2 x[c] - x[d]
s(1] 25 - x[(b] - 2 x[c] - 3 x[d]

s[m] == 20 - 2 x[b] - x[c] - x[d]

we proposed a tentative production plan which involved maximum production
of the most profitable good, in this case bookcases. Examining the resource con-
straints, we deduced that machining capacity would most limit the production
of bookcases. The insightful step was rewriting the specification of the prob-
lem to more clearly represent the technological and economic tradeoffs entailed
by the maximum production of bookcases. This rewritten specification clearly
indicated that the tentative production plan of 10 bookcases was not optimal,
and also indicated the direction of improvement.

The tentative production plan (10,0, 0) producing as many desks as possible
a basic feasible solution. It is a basic solution in that no more than the minimal
number of variables are non-zero. In this case, the basis variables are x[b], s[1]
and s[3). The process of moving from one basic feasible solution to another
and rewriting the specification of the problem to fully reflect the technologi-
cal and economic tradeoffs from the perspective of a the new basic solution is
called pivoting. This procedure was carried out in the preceding section and is
summarized in the function Pivot.

Pivot[tableau_?TableauQ,x_[j_1,8_[1i_1]1 := Module[{pivotRow},
pivotRow = First @ Cases[tableau, s[i] == _];
tableau /. {pivotRow :> Roots[pivotRow,x[3j]1],
otherRow_Equal :> (otherRow /.
Flatten @ Solvel[pivotRow,x[311)} //
ExpandAll
1

The function Pivot returns the revised constraints together with the revised
objective function. These summarize the optimization problem from the view-
point of the tentative production plan (the basic feasible solution). The left
hand side of the revised constraints indicates the values of the positive decision
variables and the positive slack variables, which measure spare resource capac-
ity. The coefficient of the revised objective function measure the shadow prices
of the fully used resources and the zero decision variables. In the linear pro-
gramming literature, the revised objective function and constraints constitute
what is called a tableau. The tableau is a very compact representation of the
technological and economic tradeoffs which pertain at any tentative solution.!

In the production planning example, our first basic feasible solution is ob-
tained by concentrating on the production of bookcases. The maximum number
of bookcases is limited by the machining constraint. The revised specification
at this basic solution is

tableau = Pivot([problem,x[b],s[m]]

3 s[m] x[c] 3 x[d]
2 2
10 + s[m] - x[c]

s(m] 3 x[c] 5 x[d]

s(m] x[c] x[d]
x[b] 10 = =mm= = —mm— = ——mm
2 2 2

Our next step was to substitute some desks for bookcases. The extent of the
substitution was limited by the labor resource. Making this substitution leads
to the revised tableau.

Pivot [tableau,x[d],s[1]] // TableForm

3 s[1) 6 s[m] 7 x[c]

s(f] == 10 + s[m] - xl[c]

1In fact, the linear programming literature usually reserves the term “tableau” for the
matrix of coefficients of the preceding equations. The full system of equations was called a
dictionary by Strum (1972), whose approach was fully developed by Chvatal (1983).

11

2 s[1) s [m] 3 x[c]

s[1] 3 s(m]} x(c]
x [b] T 4+ —mmm = mmemmm - —mee
5 5 5

The revised objective function (top row) reveals that this is now an optimal pro-
duction plan, since all the coefficients are negative. Any move which increases
the currently zero variables (s;, sm,z.) must reduce profit below $39. There is
no further profitable improvement. The optimal plan requires the production of
7 bookcases and 6 desks. It leaves spare finishing capacity of 10, which cannot
be utilized profitably.

The procedure we have followed in seeking an optimal solution is one of
sequential improvement. At each tentative production process, we looked for
a profitable improvement. The potential for profitable improvement was sum-
marized in the revised objective function. Having identified a potential im-
provement, we then made that improvement to the full extent possible (which
is profitable because of linearity), while accounting for all the tradeoffs neces-
sary to adhere to the binding constraints. Finally, we revised the formulation
of the problem to account for any new tradeoffs inherent in the new tentative
production plan. This stepwise improvement procedure is known as pivoting.

To automate the pivoting process, we need to identify the critical resource
which limits the extent of any potential improvement, that is the resource which
most limits the extent to which the variable z; can be increased. This is done by
comparing the ratio of the available surplus (the constant term) of the resource
to the unit requirements of the activity (the coefficient of z;) and selecting the
smallest. This is implemented in the function LimitingResource, which makes
use of pattern matching to parse the components of each constraint. Expansion-
Ratios is a list comprising each resource (represented by teh corresponding slack
variable) and its expansion ratio. MinPairs selects the mimimum element in
this list.

MinPair([pairs_List] :=
Fold[I£[#1[[2]] <= #2[[2]],#1,#2]%,
First[pairs],Rest[pairs]]

LimitingResource[tableau_,var_] := Module[{ExpansionRatios},
ExpansionRatios = (Rest[tableau] /.
{resource_ == (b_ ? NumberQ) + a_. var + x_:>
{resource,b/Abs[al}/; a < 0O,
resource_ == a_. var + x_ :> {resource,0} /; a < 0,
resource_ == x_ 3> {resource,Infinity}});
First @ MinPair[ExpansionRatios]
]

PROGRAMMING NOTE: This calculation is applied only to the constraints (Rest[tableau]).
The usual convention in the linear programming literature is to put the objective

12

function at the bottom of the tableau. We have reversed this convention, putting the
objective at the top, to facilitate separating the objective function and the constraints
when required.

For example, we found above that the first resource (machining) was the
limiting factor in the production of bookcases, while labor is the critical resource
in making desks.

LimitingResource[problem,x[b]]

s[m]

LimitingResource[problem,x[d]]

s(1)

We use LimitingResource to augment the function Pivot to find the critical
resource limiting the extent of any potential improvement.

Pivot [tableau_?TableauQ,x_[j_]] :=
Pivot [tableau,x[j],LimitingResource[tableau,x([j]1]]

In the production planning example, bookcases and desks are equally profitable.
We arbitrarily chose to focus initially on bookcases. To illustrate the function
Pivot, let us investigate what would have happened if we had made the other
choice. Concentrating on the production of desks leads to

Pivot [problem, x[d]]
z == - s[1] + 2 x[b] - x[c]

65 s[1] 5 x[b] 4 x[c]
s[f] --
3

25 x[b] 2 x[c]

3 3 3

35 5 x[b] x[c]
s [m] - —————— = ——--
3 3 3 3

The revised objective function indicates that this is not optimal, some substi-
tution of bookcases for desks is indicated.)

Pivot([%,x[b]l]

3 s(1] 6 sm]

10 + s[m] - x[c]

2 s[1] s[m]

s(1] 3 s(m)
x[b] T 4 o= = mmmmmm = ——e
5 5 5

The top row indicates that this is an optimal solution and indeed it is the same
solution as we arrived at earlier.

Now consider the situation if we begin with the production of chairs. Con-
centrating on the production of chairs yields a profit of only $12.50.

Pivot [problem, x[c]]

25 s[1] 5 x[b] 3 x[d]

2 2
== 5 + s[1] - x[b] + 2 x[d]

25 s[1] x[b] 3 x(d]

2 2 2 2

15 s[1) 3 x[b) x[d]
s [m]

This tableau indicates that producing chairs alone does not use the available re-
sources very efficiently. Producing some bookcases or desks would be profitable.
Substituting some desks for chairs yields

Pivot[%, x[d]]
z == - s[1] + 2 x[b] - x[c]

s[1l] 5 x[b]
s[f]

25 s[l) x(b]

3 3 3 3

35 s(1] 5 x[b] x[c]

sm)] == == + —=== = ———--— - ————

3 3 3 3

This looks better, but adding some bookcases would be even better. One more
step gives the optimal solution.

Pivot[%,x[b]]

3 s[1] 6 slm]

10 + s[m] - x[c]

2 s[1] s[m]

s[1] 3 s[m]
x[b] T 4 —mmm = mmm—mm = -
5 5 5

From this experiment, it would seems that all paths of sequential improvement
lead eventually to the optimal solution. Later, we will consider whether this
is always true. Our experiment also reveals that some paths are quicker than
others. Starting with bookcases or desks, we require two steps to reach the
optimal solution. Beginning with chairs required three steps. The remaining
component of the simplex algorithm is a criterion for guiding the process of
sequential improvement efficiently.

5 The simplex algorithm

As we have just seen, the process of sequential improvement leading to an op-
timal solution can follow different paths. The basic simplex algorithm uses the
shadow prices at each stage to guide the process of sequential improvement.
The has proved to be an extremely efficient procedure in practice.

The shadow prices are the negatives of the coefficients of the variables in
the revised objective function. Consequently, any variable which has a negative
shadow price has a positive coefficient in the revised objective function and
offers potential for improvement. Arguably, the variable with the lowest (most
negative) shadow price offers the greatest potential for improvement.

The function ShadowPrice determines the shadow price of any given vari-
able. ShadowPrices extracts the shadow prices from the revised objective
function, returng a list of variables and their shadow prices. (Since the names
are so similar, we reassure Mathematica that we have not made a spelling mis-
take.)

Off [General::spelll];
ShadowPrice[objective_,var_]:= -Coefficient[objective,var]

15

ShadowPrices[objective_] :=
{#, ShadowPrice[objective,#]}& /@ Variables[objective]
On[General::spelll];

ShadowPrices[First [Pivot [problem,x[bl1][[2]]]

3 1 3
{{s[m], -}, {x[c], -}, {x[d]l, -(-)}}
2 2 2

Candidates for pivoting are those variables which have negative shadow prices.
NextPivot identifies the that variable with the most negative shadow price,
which becomes the pivot variable. It returns None if all shadow prices are
‘positive. The function Simplex iterates the pivoting procedure until there is
no further potential for improvement, stopping when there is no variable with
a negative shadow price in the revised objective function. It returns the final
tableau.

NextPivot [tableau_?TableauQ] := Module([
{minshadow = MinPair[ShadowPrices[First[tableaul[[2]]1]},
If[minshadow[[2]] < O,minshadow[[1]],None]

]

By augmenting the function pivot to select the next pivot when none is specified,

Pivot [tableau_?TableauQ] := Pivot[tableau,NextPivot[tableau]]
the problem can be solved by repeated application of the function Pivot.

Pivot @ Pivot([problem]

3 s(1] 6 s[m]

10 + s[m] - x[c]

2 s[1] s(m]

s[1] 3 s(m]
x[b] 7 4 mmmm - mmmmme = ———-
5 5 5

Provided we provide an appropriate stopping rule, the simplex algorithm can
be encoded surprisingly elegantly.

Pivot[tableau_?TableauQ,None] := tableau

16

Simplex[tableau_?TableauQ] := FixedPoint[Pivot,tableau]
finalTableau = Simplex[problem]
3 s(1) 6 s[m]

10 + s(m] - x[c]

2 s[1] s [m]

s[1] 3 s(m]
x[b] T+ === = —m——m = —m--
5 5 S

We can easily equip Simplex to recognize alternative representations of the
linear programming problem. For example, to match the calling sequence of
ConstrainedMax, we provide

simplex[objective_,constraints_] :=
simplex[Prepend[StandardForm[constraints],
z == objective]]

The output of the function Simplex is the final tableau, comprising the revised
objective function and constraints at the optimal solution. The final tableau
is a very compact summary of useful information regarding the optimal solu-
tion of a linear programming problem. It tells us the optimal values of the
decision variables, the amounts of unused resources and the optimal value of
the objective function. It indicates whether the optimal solution is unique. It
also includes the solution of a related linear programme, the dual, and yields a
wealth of information about the sensitivity of the optimal solution to changes
in the specification of the problem. Mining this information is the taken up
in the following section on Sensitivity Analysis. First, we must confront some
potential problems with our implementation and extend the algorithm to deal
with minimization and other problems.

6 Potential problems

Our description of the simplex algorithm glossed over some potential problems
which we now confront. Our algorithm began at a feasible solution, and then
made a sequence of potential improvements until no further improvements could
be made. Disregarding questions of efficiency, there are only two ways in which
our procedure can fail to produce an optimal solution eventually. It will only fail
if (1) there is no optimal solution or (2) the algorithm gets stuck in an infinite
loop and fails to terminate. There are two reasons why an optimal solution may
not exist - either the feasible set in empty or the feasible set is unbounded. We
consider each of these possibilites in turn.

Before proceding, we need to augment the function StandardForm to pro-
vide default constraint labels when none are specified.

17

StandardForm[constraints_] :=
StandardForm[constraints, Range[Length[constraints]]]}

6.1 Unboundedness

At each pivoting step, we presumed that the amount of potential improvement
would be limited by some resource. If this is not the case, we could repeat that
improvement and obtain an infinite return. For example consider the problem

maxz; + T2

subject to
zfl]-z[2] <0

Any nonnegative pair (21, z7) is feasible provided zy < z2. There is no limit
to how big we can make the return. The feasible set is unbounded. Clearly
there is no optimal solution.

To handle this possibility, we need to extend the function LimitingRe-
source to recognise cases in which there is no critical resource and the feasible
set is unbounded.

LimitingResource[tableau_,var_] := Module[{ExpansionRatios},
ExpansionRatios = (Rest[tableau] /.
{resource_ == (b_ ? NumberQ) + a_. var + x_:>
{resource,b/Abs(al}/; a < 0,
resource_ == a_. var + x_ :> {resource,0} /; a < 0,
resource_ == x_ :> {resource,Infinity}});
IE[#[[2]] < Infinity,#[[1]],None] & @
MinPair[ExpansionRatios]
]

problem = Prepend[StandardForm[{x[1] - x[2] <= 10}],
z == x[1] + x[2]]

z == x[1) + x[2]

s[1] == 10 - x[1] + x[2]
LimitingResource[problem,x[2]]
None

We must also amend the function Pivot to recognise when the problem is
unbounded.

Pivot[tableau_?TableauQ,x_[j_],None] := (
Print ["The problem is unbounded"];
Return([tableau])

Simplex[problem]

The problem is unbounded

z == 10 - s[1] + 2 x[2]

x[1] == 10 - s[1] + x[2]

6.2 Empty feasible set

The other reason why an optimal solution may fail to exist is that there may be
no feasible solutions. In other words, the constraints are inconsistent. At first
sight, this poses an insurmountable problem for applying the simplex algorithm,
which requires an initial solution from which to make sequential improvements.
In the preceding example, we used the trivial solution as a starting point. How-
ever, if the feasible set is empty, this is not feasible and hence not a valid starting
point.

Fortunately, we can apply the simplex method to any problem to ascertain
whether or not the feasible set is empty. Furthermore, this test also provides an
initial feasible solution from which to initiate the search for an optimal solution.

Consider the following problem.

objective = x([1] - x[2] + x[3];

constraints =

{ 2x[1] - =x[2] + 2x[3]
2x[1] - 3x[2] + x[3]
-x[1] + x[2] - 2x[3]

and z; >=0

problem=Prepend[StandardForm[constraints],
z == objective]

z == x[1] - x[2] + x[3]
s[1] == 4 - 2 x([1] + x(2] - 2 x(3]
s(2] == -5 - 2 x[1] + 3 x[2] - x[3]

s3] == -1 + x[1) - x[2] + 2 x[3]

19

Note that the origin is not a feasible solution.
constraints /. {x[1] -> 0, x[2] -> O, x[3] -> 0}

{True, False, False}

If there is no feasible solution, this is because the constraints are too restrictive.
We investigate the consistency of the constraints by relaxing them until we find
a feasible solution. We can ensure that the feasible set is non-empty by adding
a sufficiently large positive quantity ag to the right hand side of the constraints.

Relax[ineq_,epsilon_] := ineq /.
{lhs_ <= rhs_ :> lhs<= rhs + epsilon,
lhs_ == rhs_ :> lhs == rhs + epsilon})

Relax[constraints,a(0]]

{2 x[1) - x[2] + 2 x[3]) <= 4 + a[0],

2 x[1] - 3 x[2] + x[3] <= -5 + a[0],

-x[1] + x[2] - 2 x[3] <= -1 + al0]}
We can find the minimum value of ap which allows a feasible solution by solving
the linear programming problem min; ag subject to the relaxed constraints. The
original problem is feasible if and only if the minimum perturbation ay is zero.
Moreover, the optimal solution to the relaxed problem is a feasible solution
to the original problem, and provides a suitable starting point for the simplex

algorithm.
The relaxed problem is

relaxed = Prepend[StandardForm[Relax[constraints,a[0]]],
z == -af0]]

z == -al[0]

s[1] == 4 + a[0] - 2 x[1]) + x[2] - 2 x[3]

s[2] == -5 + al0] - 2 x[1] + 3 x[2] - x[3]

s[3] == -1 + al0] + x[1] - x[2] + 2 x[3]

We can readily obtain a feasible solution to this problem by pivoting on the
perturbation ag. The most stringent constraint is the one with the most negative
intercept. The intercepts of the constraints are

20

Intercept[form_] := If[NumberQ[form],form,0]
Intercept [form_Plus] := Intercept[First @ form]
Rest [relaxed] /. lhs_ == rhs_ :> {lhs,Intercept(rhs]}

{{sl1]1, 4}, {sl[2], -5}, {s(3], -1}}

The smallest (most negative) intercept is —5 associated with the second con-
straint.

MinPair([%]

{s(2], -5}

A feasible solution to the relaxed constraints can be generated by pivoting on
ap using the second constraint.

Pivot [relaxed,a[0],8[2]]

z == - s(2] - 2 x[1] + 3 x[2] - xI[3]
s[1] 9 + s[2] - 2 x[2] x[(3]
al[0] 5 + s[2] + 2 x[1] 3 x[(2] + x[3]

s[3] 4 + s[2) + 3 x[1] - 4 x(2] + 3 x[3]

This indicates that the relaxed problem has a feasible solution with ap = 5
and z; = zo = z3 = 0. Now we can apply the simplex algorithm to find the
minimum feasible value of ao.

phaseI = Simplex[%]

+ 2 al0] - s[3] - x[1]

4 al0) s[2] 3 s(3] x[1]

- 4 —m—— 4

5 5 5

11 3 al0] 2 s[2] s[3] 3 x[1)

B

5 5 5

The minimum value of ag is zero, and is achieved where z2 = 11/5 and z3 = 8/5.
This is a feasible solution to the original problem, which indicates that the
feasible set is not empty and which can serve as the starting point for applying
the simplex algorithm to solve the original problem.

The revised constraints (in standard form) are obtained by setting ap = 0
in the phase I tableau.

RevisedConstraints = Rest[phaseI] /. a[0]->0

s[1) - s[3] - x[1]

s[2] 3 s[3) x[1]
x[3]
5

11 2 s{2] s[3] 3 x([1)
x[2]
S

which indicates the initial feasible solution. The revised objective function,
updated to recognise the tradeoffs at the initial feasible solution is

RevisedObjective = objective /.
Flatten @ (ToRules /@ RevisedConstraints)

s[2] 2 s[3) x[1]

5

Together, these give the initial tableau for the original problem, to which the
simplex algorithm can be applied. This is called phase II.

InitialTableau = Prepend[RevisedConstraints,
z == RevisedObjective]

s([2] 2 s3] x[1]
5
- s[3] - x[1]
s[2] 3 s[3] x[1]
5
2 s[2] s[3] 3 x[1]

5

Simplex([InitialTableau]

3 2 s[1] s(2) x[1]
s s s 5
3 - s[1] - x[1]
17 3 s[1) s(2] 4 x[1]
5 5
s[1] 2 s[2] 2 x[1]

x(2]
5

The optimal value of 3/5 is obtained at (0,14/5,17/5). We implement this two
stage procedure in the function LP.

LP[tableau_Z?TableauQ] := Module[{},

smallest = MinPair[Rest[tableau] /.
rhs_ == lhs_ :> {rhs,Intercept[lhs]}];

If([smallest[[2]] >= O, (* origin feasible ? *)
Simplex{tableau], (* single phase ¥*)

(* 2 phase required *)
relaxed = Prepend[Relax[Rest[tableau],a[0]],
z == -a[0]];
phaseI = Simplex @
Pivot [relaxed,a[0],smallest[[1]]];
If[Intercept[First[phaseI][[2]]]==0, (* feasible? *)
(* phaseII *)
RevisedConstraints = Rest([phaseIl] /. a[0]->0;
RevisedObjective = First[tableau][[2]] /.
Flatten @ (ToRules /@ RevisedConstraints) //
ExpandAll;
Simplex @ Prepend[RevisedConstraints,
z == RevisedObjective],
(* infeasible *)
Print ["The problem is infeasible"]
]
1

LP[problem]
3 2 s(1) s[2] x([1]

Z == = = mmmmm= = —mmm — —mmm

5 5 5 5
s[3] == 3 - s[1] - x[1]

3 s(1) s[2] 4 x[1]

s[1] 2 s[2] 2 x[1]

5
As with Simplex, we can easily provide an alternative invocation for LP.

LP[objective_,constraints_] :=
LP[Prepend[StandardForm[constraints],
z =a objective]]

In the following problem, the constraints are inconsistent and there is no feasible
solution.

constraints = (x[1] - x[2] <= -1,
-x[1] - x[2] <= -33,

2x[1] + x[2] <= 2};

objective = 3x[1] + x[2];

LP[objective,constraints]
The problem is infeasible

Actually, we have brushed over another potential problem above. We have
implicitly assumed that ao will be nonbasic at the solution of phase 1. However,
if phase I is degenerate, it is possible that ap remains basic with the value
zero. This implies that, in the penultimate iteration, ap was equally eligible
as some other variable as the “critical resource”. We need to ensure that ag is
always driven out of the basis first. We can do this by amending the function
LimitingResource to select ag whenever it is one of the critical resources. This
can be achieved elegantly by sorting the expansion ratios prior to selecting the
minimum. This will ensure that the artificial variable ag always comes before
any slack s; or decision z; variable.

LimitingResource[tableau_?TableauQ,var_] := Module[{ExpansionRatios},
ExpansionRatios = (Rest[tableau] /.

{resource_ == (b_ ? NumberQ) + a_. var + x_:>

{resource,b/Abs[a]}/; a < O,

resource_ == a_. var + x_ :> {(resource,0} /; a < O,

resource_ == x_ :> {(resource,Infinity}});
IE[#[[2]] < Infinity,#[[1]1],None] & @

MinPair[Sort @ ExpansionRatios]]

24

PROGRAMMING NOTE: The user should be aware that the natural order of variable
names is assumed at this point and avoid any variables which are alphabetically prior
to ao.

6.3 Degeneracy and Cycling

Provided an optimal solution exists, is our algorithm guaranteed to find it?
Not necessarily. In rare examples, it is possible for the algorithm we have de-
scribed to become stuck in an infinite loop. Cycling can be prevented by chang-
ing the way in which the pivoting variable is selected (amending the function
NextPivot), at the cost of slower convergence in normal problems (See for ex-
ample Chvital (1980). Cycling is such a rare phenomenon that most computer
implementations ignore the possibility.?

There we have it. Barring rare examples, the simplex algorithm has imple-
mented here will either find the optimal solution of a maximization problem or
demonstrate that no solution exists. Furthermore, the procedure can easily be
extended to deal with minimization problems and equality constraints.

6.4 Minimization problems

Since min; f(z) = max; —f(z), any minimization can be converted into an
equivalent maximization problem by reversing the sign of the objective func-
tion. Similarly, inequalities of the form z > ¢ can be converted into equivalent
equations by subtracting a nonnegative surplus variable. For example, consider
the problem of minimizing

objective = 30 x[1] + 25 x[2] + 20 x[3];

subject to

constraints = {2 x[1] + x[2] + 2 x[3] >= 3,
2 x[1] + 2 x[2] + x[3] >= 1,
x[1] + 3 x[2] + x[3] >= 3};

This problem is the dualof the production planning example. It will be discussed
further below.

We can easily extend the function StandardForm to transform > inequal-
ities

StandardForm[constraints_, labels_List] :=
Transpose @
{labels,constraints} /.
{{i_, lhs_ <= rhs_}:> s8[i] == rhs - lhs,
{i_, 1hs_ >= rhs_}:> s[i] == lhs - rhs}

StandardrForm[constraints]

2With rational data, Mathematica uses exact or infinite precision arithmetic. This may
increase the incidence of cycling, since rounding error is thought to mitigate the incidence of
cycling when using real arithmetic.

s[1] -3 + 2 x[1] + x[2] + 2 x[3]
s[2] -1 + 2 x[1] + 2 x[2] + x[3]

s{3] == -3 + x[1] + 3 x[2] + x[3]

Applying the two phase procedure to the negative of the objective function, the
solution of the dual problem is

LP[-objective,constraints]

-39 - 7 s{1] - 6 s[3] - 10 x[1]
s[1] 2 s(3]
5
s[1] 3 s3]
5
3 s[1] s[3]

x[3] I 18
5 5

Note that the optimal solution to the dual problem gives the final shadow prices
of the production planning problem. The optimal value of the dual objective
function, $39, is equal to the maximum profit of the production planning prob-
lem. This is an illustration of the duality theorem of linear programming.

6.5 Equalities and Artificial Variables

Often, linear programming problems involves equations as well as inequalties.
For example, consider the problem of maximizing

objective = x[1] + 3 x[2];

subject to two inequalities and two equations.

constraints =
{ x[1] + =x[2] + =x[3]
2x(1] + =x[2] - 2x[3]
x[1) + 2x[2]
x[1] - 2x[3]

One way to handle such problems is to replace every equation with a pair of
inequalities as follows

constraints /. lhs_ == rhs_ :> {lhs >= rhs,
lhs <= rhs} //

Flatten // TableForm

x[1] + x[2] + x[3] <= 10

2 x[1] + x[2] - 2 x([3] >= 2

x[1] + 2 x[2]

x([1] 2 x[2]

x[1] 2 x[3]

x[1] - 2 x[3] <=

and solve as before

LP[objective, %]

z == 4 - s[2) - 2 s[4] - s[6]
s[4] 5 s[6]
s{1] == 3 - 2 s[2] - ---= = —-=---
2 2
s[4] 3 s[6]
x[3] == 3 + s[2] + ---- +
2
x[1] == 4 + 2 s[2] + s[4] + 2 s[6]
s3] == -s(4]
s[5] == -s[6]

x[2] == -s[2] - s[4) - s[6]

The optimal solution is 3 = 4,22 =0,z3 = 3.

The drawback of this procedure is that it increases the dimensionality of the
problem by introducing two slack variables for every equation. A more com-
mon approach to handling equations involves replacing these two slack variables
with a single variable, called an artificial variable, which is allowed to adopt both
positive and negative values. The artificial variable is driven to zero during the

27

solution procedure. The variable ag introduced previously was an artificial vari-
able. It would be relatively straightforward to amend LP to handle additional
artificial variables. However, the effort is probably not warranted as we will
later show how to take advantage of Mathematica’s inbuilt linear programming
facility to obtain the final tableau of a linear programming problem.

Instead, we extend the function StandardForm to treat equations as above.

StandardForm[constraints_, labels_List] :=
Transpose @ {labels,constraints} /.
{{i_, lhs_ <= rhs_}:> s8[i] == rhs - lhs,
{i_, 1hs_ >= rhs_}:> s8[i] == lhs - rhs,
{i_, lhs_ == rhs_}:> (8l[i] == rhs - lhs,
sg[i] == 1lhs - rhs}} // Flatten

StandardForm[constraints]

s{1) == 10 - x[1) - x[2] - x[3]
s[2] -2 + 2 x[1] + x[2]) - 2 x[3]
s1l(3] 4 - x[1] - 2 x[2]

sg(3] -4 + x[1] + 2 x[2]

sl[4] -2 - x[1] + 2 x[3]

sgl4] 2 + x[1] - 2 x[3]

LP[objective, constraints]

z == 4 - s[2] - 2 s1[3] - sl[4]
sl([3] 5 s1[4]
== 3 - 2 s[2] - —---= = —mmmme
2 2
s1([3] 3 s1(4]
== 3 + s[2] +
sg[3] == -s1(3]
x[1] == 4 + 2 s[2] + sl[3] + 2 sl[4)

x[2] == -s[2] - sl[3] - sl[4]

sgl4] == -sll[4]

7 Sensitivity Analysis

The data in any real optimization problem are seldom known with absolute
precision. Consequently, it is important to be able to estimate the sensitivity of
the optimal solution to changes in the specification of the problem. Fortunately,
it is possible to deduce a great deal about the sensitivity of the optimal solution
to a linear programming problem from the final tableau. This is known as
sensitivity analysis.

In the next subsection, we explore the anatomy of the final tableau, outlining
the range of information which it embodies. We also show how this information
is related to the solution of a related linear programming problem, which is
called the dual. In following subsections, we analyze more systematically the
sensitivity of the optimal solution to changes in the parameters of the problem.
First, we elaborate the role of shadow prices in the analysis of changes in resource
availability and derive bounds on their validity. Then, we explore the sensitivity
of the optimal solution to changes in the objective function.

Although the previous instalment outlined a complete implementation of the
simplex algorithm, it was intended for pedagogical rather than computational
purposes. Mathematica’s built-in linear programming facility is significantly
more efficient at solving substantive problems, but it’s output is too concise to
allow for sensitivity analysis. Therefore, in Section 4, we show how the final
tableau can be reconstructed from the output of Mathematica’s built-in linear
programming facility. The paper concludes with a sensitivity analysis of a classic
problem of nutrition, which was first posed by George Stigler before the simplex
algorithm was available.

7.1 Interpreting the final tableau

The production planning example involved maximizing the function

profit = 3x[b] + x[c] + 3x[d];

subject to the constraints

constraints =

{ 2x[b] + 2x[c] + =x[d] <= 30,
x[b] + 2x[c] + 3x[d] <= 25,
2x[b] + x[c] + =x[d] <= 20
};

The optimal solution can be computed using the function LP, which yields the
final tableau.

finalTableau = LP[profit,
StandardForm[constraints, {£,1,m}]]

3 s(1] 6 s(m] 7 x[c]

== 10 + s[m] - x[c]

2 s[1] s[m] 3 x[c]

s[1] 3 sm] x[c]
x[b] T 4 mmmm = mmmmem oo
5 5 5

The final tableau not only indicates the optimal solution to a particular problem.
It contains a wealth of information regarding the sensitivity of the optimal
solution to changes in the parameters of the problem. It indicates whether
the optimal solution is unique, and implicitly contains the solution of a host of
related linear programming problems. In this section, we explore the range of
information contained in the final tableau.

Those variables which appear on the left hand of the final tableau are called
basic variables. The right hand side variables are the non-basic variables.

BasicVariables[tableau_ ?TableauQ] := First /@ Rest[tableau]
basic = BasicVariables[finalTableau]
{s(f], x[d], x[bl}

NonBasicVariables[tableau_] := Union @@
(variables([#[[2]]1]& /@ tableau)

nonbasic=NonBasicVariables{finalTableau]
{s{1], sim], xl[c]}

The nonbasic variables are all zero at the optimal solution. Each belongs to
a binding constraint - either a resource constraint (s; = 0) or a nonnegativity
constraint (z; = 0). The basic variables are typically positive at the optimal
solution. If not, that is if one or more of the basic variables are zero, the
solution is called degenerate. A degenerate solution indicates that one or more
of the constraints are redundant in the sense that they could be relaxed without
changing the solution. The values of the objective function and the basic variable
can be highlighted by evaluating the final tableau with the nonbasic variables
set to zero.

SetAttributes(Zero,Listablel;
Zero[x_] := x -> 0

solution = finalTableau /. Zerol[nonbasic]

The optimal plan produces 7 bookcases and 6 desks for a total profit of $39.
The optimal values of the slack variable s; measure the utilization of resources.
In this case, the optimal plan leaves spare finishing capacity of 10 units, but
fully utilizes all the labor and machining capacity (since s; = s, = 0).

The first row of the final tableau is the revised objective function, which
embodies the economic tradeoffs which pertain at the optimal solution. The
coefficients of the nonbasic variables indicate the shadow prices of the binding
constraints.

RevisedObjective = First[finalTableau]

3 s[1] 6 s[m) 7 xl[c]

We augment the definition of ShadowPrices to extract the shadow prices of
the nonbasic variables from the final tableau.

ShadowPrices[tableau_?TableauQ] :=
ShadowPrices[First [tableau] [[2]]]

ShadowPrices[finalTableau]

3 6 7
{{s[1], -}, {sim], -}, {x[c]l, -}}
5 5 5
Shadow prices measures the economic consequences of marginal changes in re-
sources. The shadow prices of basic variables are always zero.

ShadowPrice[tableau_?TableauQ,var_] :=
ShadowPrice[First[tableau] [[2]],var]

ShadowPrice[finalTableau,s[f]]

0

To determine the shadow prices of a set of variables, we define

ShadowPrices[tableau_?TableauQ,vars_List] :=
{#,ShadowPrice[First [tableau] [[2]],#]}& /@ vars

For example, the shadow prices of the resource constraints are

ShadowPrices [finalTableQu, {slf],s[1l],s8[m]}]

31

3 6
{{s[£]1, 0}, (s(1l], -}, {sim], -}}
5 5

The significance of the shadow prices is that they enable us to evaluate the
impact hypothetical changes in the parameters of the problem without solving
the problem afresh. The reason was elucidated in the discussion of the simplex
algorithm. The revised objective function fully embodies the economic ramifi-
cations of all the technological constraints viewed from the perspective of the
optimal solution. In this sense, the final tableau summarizes the solution of a
whole family of related optimization problems. We elaborate this point in the
following sections. .

The changes in resource constraints may not be hypothetical. The marginal
value of an additional hour of labor supply is $3/5. Consequently, if additional
labor can be obtained for less than $3/5 an hour, it would be profitable to
purchase additional labor. Similarly, if machining capacity can be let for more
than $6/5, the furniture maker would increase total profit by reducing her own
production and leasing some capacity. Shadow prices are the imputed values of
the resources in terms of the objective function, and can be directly compared
with market prices. The producer should buy those resources whose shadow
price (value to her) is greater than the market price and sell those resources
which the market values more highly than her own production opportunities.

The shadow prices can also be used to evaluate the profitability of new
activities. Suppose that the furniture maker is contemplating adding a new
product, an executive desk, to her range. Each executive desk would require
2 hours each of machining and finishing and 3 hours of labor. The economic
cost of producing an executive desk (with fixed resources) is the value of the
displaced production of bookcases and ordinary desks, which can be measured
by the shadow prices of these resources. This cost is

Cost of executive desk = 2(0) + (g) + 2(2) = %

The executive desk will only be profitable if it can be sold for at least 21/56 =
$4.20.

The shadow prices attached to the resource constraints are in fact the solu-
tions of a related linear programming problem called the dual. The dual of the
production planning example poses the problem of finding the minimum price
at which the furniture manufacturer would be willing to sell the her resources
(finishing, machining and labor) given that their opportunity cost is determined
their alternative use in the production of bookcases, chairs and desks for sale.

Formally specified, the dual of the production planning example is

min 30z(1] + 25z(2] + 20z(3]
subject to 2z[1]+ z[2] + 2z[3] > 3
2z[1]+ 2z[2) + z[3] > 1
z(1]+ 3z[2] + z[3] > 3
The solution represent the imputed or shadow prices of the resource. We
solved this problem using LP in the section of minimization problems above,

32

obtaining the solution z; = 0,z2 = 3/5,z3 = 6/5. The shadow prices of
finishing, machining and labor are 0, 3/5 and 6/5 respectively, which exactly
correspond to the shadow prices derived from the original production planning
example (the primal). Furthermore, we note that the minimal value obtained
for dual problem was $39, which is exactly equal to the maximal profit obtained
for the primal problem.

These observations illustrate the fundamental duality theorem of linear pro-
gramming. If the primal linear programming problem has an optimal solution,
then so does its dual and the optimal value of the objective function is the same
for both problems. Furthermore, the optimal values of the decision variables in
the dual problem are equal to the shadow prices of the resource constraints at
the optimal solution of the primal problem. Therefore, the final tableau for the
primal problem includes the optimal solution of the related dual problem.

At the optimal solution, shadow prices are always nonnegative. (Recall that
the simplex algorithm terminates when the shadow prices are nonnegative. A
negative shadow prices indicates the possibility of a profitable substitution, by
tightening a binding constraint.) The shadow prices of basic variables are always
zero. However, it is not necessary that the shadow prices of nonbasic variables
are strictly positive. A zero shadow price on a nonbasic variable indicates that
the optimal solution is not unique, since that variable can be “pivoted” into the
solution without changing the value of the objective function.

To illustrate, suppose the price of chairs is increased to 2%. The original
production plan of 7 bookcases and 6 desks remains optimal.

Simplex([3 x[b] + (12/5) x[c] + 3 x[d],
StandardForm[constraints, {£,1,m}]]

10 + s[m] - x[c]

2 s[1] s[m]

s[1] 3 s(m]
x[b] S
5 5 5

However, the absence of the z. from the revised objective function indicates
that there are multiple optimal solutions. At this price, desks and chairs are
equally profitable. Substituting chairs for desks reveals another optimal solu-
tion, producing 5 bookcases and 10 chairs. This substitution can be made by
pivoting.

Pivot[%,x[c]]

3 s[1] 6 s[m]

10 - s[f] + s(m]

3 s[f] 2 s[1] 2 s(m)

s(f] s(1]
x[b]
5

This is also an example of degenerate optimal solution, in which the basic vari-
able z4 is zero.

% /. Zero[NonBasicVariables([%]]

Zz ==
x[c]
x[d] 0

x[b] 5

Any convex combination of this solution and the previous solution will also be
optimal.

In summary, the intercepts of the equations in the final tableau indicate the
optimal value of the objective function and the values of the basic variables at
which the optimum is obtained. The coefficients of the nonbasic variables in the
first equation (the revised objective function) are the shadow prices, which indi-
cate the economic consequences of marginal changes in the quantity of resources.
Nonbasic variables with zero shadow prices indicate multiple optimal. As we will
show below, the coefficients of the nonbasic variables in the remaining equations
(the revised constraints) indicate how these consequences are obtained.

The final tableau is a very compact representation of the optimal solution
to a linear programming problem. It embodies all the economic and technolog-
ical tradeoffs which are pertinent at the optimal solution. It lists the maximal
value of the objective function, and the values of the decision variables nec-
essary to achieve this maximum. It also reveals the degree of utilization of
resources, highlighting any unused capacity. It indicates whether or not the
optimal solution is unique. The shadow prices appraise the imputed values of
limited resources, assessing the profitability of any sale or purchase of additional
resources. The tableau also indicates the optimal response to any change in re-
sources. In this sense, it summarizes the solution to a whole family of related
optimization problems. It is truly pregnant with information.

34

For future use, it is convenient to represent the final tableau as a set of
transformation rules.

rules = ToRules /@ Rest[finalTableau] // Flatten

{s[f] -> 10 + s[m] - x[c],

2 s[1]
x(d]

s[1] 3 s(m] x[c]
x[b] -> 7 + === = —---mm - ———-}
5 5 5

7.2 Sensitivity with respect to resources

In this subsection, we examine more closely the sensitivity of the optimal solu-
tion to changes in the constraints. The shadow prices measure the impact on
profit on changes in resource availability. For example, the shadow price of 3/5
on the labor constraint means that an additional hour of labor would increase
profit by $3/5. To verify this, let us re-solve the production planning problem
with an additional 5 hours of labor.

Simplex[profit, StandardForm|[
{ 2x[b] + 2x[c] + =x[d] <= 30,
x[b] + 2x[c] + 3x[d] <= 30,
2x[b] + x[c] + x[d] <= 20
},{£,1,m})] /. Zero[nonbasic]

z 42
s[f) 10
x[d] 8
x[b) == 6

An additional 5 hours of labor would allow the furniture maker produce 6 book-
cases and 8 desks for a total profit of $42. Compared to the previous plan of
7 bookcases and 6 desks, this involves substituting two desks for a bookcase,
increasing total profit by $3. Each additional hour of labor is worth $3/5.

Similarly, an additional 5 units of machining time would allow her to sub-
stitute 3 bookcases for a desk, increasing total profit by $6. Additional units of
machining are worth $6/5 each. Again, this can be confirmed by re-solving the
problem.

simplex[profit,StandardForm|[
{ 2x[b] + 2x[c] + =x[d] <= 30,
x[b] + 2x([c] + 3x[d] <= 25,
2x{b] + x[c] + x[d] <= 25
},{£,1,m}1]1 /. Zero[nonbasic]

z
s[f] 5
x(d] 5

x[Db] 10

The significance of the shadow price is that it indicates the impact on profit of
a change in resources without resolving the problem. We can also deduce how
this is achieved, by evaluating the final tableau while allowing the appropriate
slack variable to deviate from zero.

For example, increasing the labor resource is equivalent to allowing the slack
variable s; to assume negative values. Letting A; = —s; denote the increase in
labor resources, we find that

finalTableau /. s[l] -> -Delta[l] /. Zero[nonbasic]

3 Deltall]

x[b]

This indicates that each additional unit of labor will increase profit by $3/5,
increase the number of desks by 2/5 and decrease the number of bookcases by
1/5. Consequently, an additional 5 hours of labor would allow

% /. Delta[l] -> 5

z == 42

s(f]
x[d] 8
x[b] == 6

which is consistent with the result obtained above by re-solving the production
planning problem with labor supply equal to 30 hours. In this way, we can
estimate the impact of hypothetical changes in resources without re-solving
the problem. For large problems, this can represent a considerable saving in
computation.

Typically, shadow prices have a limited range of validity, which can also be
deduced from the final tableau. Just above, we assessed the impact on the basic
variables of small changes in labor supply, namely

Rest [finalTableau] /. s[1] -> -Delta[l)] /. Zero([nonbasic]

s[f]

x[d]

x[b] == 7

An optimal response to an increase in labor supply A; > 0 has no effect on
the utilization of finishing capacity, and requires the substitution of desks for
bookcases. We observe that this substitution can profitably continue until the
quantity of bookcases is reduced to zero, that is while A; < 35. Similarly, an
optimal response to a decrease in labor supply (A; < 0) requires substituting
bookcases for desks, which substitution can profitably continue until it reduces
the production of desks to zero, that is while A; > —15. This establishes the
range over which the shadow price of labor supply is valid, namely over the
range —15 < A; < 35, where A; is the change in the supply of labor.

Consider a similar calculation for the machining constraint. The optimal
response is for small changes

Rest [finalTableau] /. s[m] -> -Delta([m] /.
Zero[nonbasic]

s[f] == 10 - Delta[m]

Delta([m]

3 Delta(m]
x[b]

This response will remain optimal provided it does not violate any of other
(resource and nonnegativity) constraints, that is provided the basic variables
remain non-negative.

bounds = Cases([%,
_ == b_ + a_. Delta[m] :>
sign([a] Delta[m] >= -b/Abs[a]]

35
(-Delta[m] >= -10, -Delta[m] >= -30, Deltalm] >= -(--)}
3

Using the following function to simplify the inequalities

simplifyInequalities([ineq List,var_] :=
Max @ Join[Cases([ineqg, var >= a_ -> a],
cases[ineq, -var <= a_ -> -a]] <=

var <=

Min @ Join[Cases[ineq, var <= a_ -> a],
Cases[ineq, -var >= a_ -> -a]]

the valid range is

8implifyInequalities[bounds,Delta[m]]

35
-(--) <= Delta[m] <= 10
3

We summarize this facility in the function ShadowPriceRange.

ShadowPriceRange[tableau_?TableauQ,s_[i_]] :=
SimplifyInequalities|[
Select[Rest[tableau] /. s[i] -> -Deltaf[i] /.
Zero[NonBasicVariables[tableau]],
IFreeQ[#,Delta[il]&] /.
== b_ + a_. Deltaf[i] :>
signfa] Delta[i] >= -b/Absl[a],
Delta[i]]

ShadowPriceRange[finalTableau,s[1]]

-15 <= Delta[l] <= 35

ShadowPriceRange [finalTableau, s[m]]

35
-(--) <= Delta[m] <= 10
3

The preceding applies to the shadow prices of binding constraints. For non-
binding constraints (basic variables) , the determination of the range of validity
of the shadow prices is more straightforward. A surplus resource has a shadow
price of zero, which is the imputed value of additional resources. The shadow
price will remain zero as long as the constraint remains nonbinding, that is
provided the slack capacity is not reduced to zero.

In the production planning example, there is surplus finishing capacity of 10
units.

Cases [Rest[finalTableau] /. s[f] -> -Delta[f] /.
Zero[nonbasic],
-Delta(f] == rhs_ :> Delta[f] >= -rhs]

{Deltal[f] >= -10}
SimplifyInequalities|[%,Deltal[£f]]
-10 <= Delta[f] <= Infinity

Consequently, the shadow price of finishing capacity will remain zero for all
increases in finishing capacity and any decreases in capacity of less than 10
units. That is, range of validity of the shadow price of finishing capacity is

—10 £ Ay < o0. We extend the function ShadowPriceRange to deal with
basic variables.

ShadowPriceRange [tableau_?TableauQ,s_([i_]] :=
SimplifyInequalities(
Select [Rest [tableau] /. s[i] -> -Delta[i] /.
Zero [NonBasicVariables[tableaul],
IFreeQ[#,Deltafil]&] /.
{-Delta[i] == b_ :> Delta[i] >= -b, (* basic *)
_ == b_ + a_. Delta[i] :> (* nonbasic *)
Sign[a) Delta[i] >= -b/Abs(al},
Delta[i]]

ShadowPriceRange[finalTableau,s[f]]

-10 <= Deltal[f] <= Infinity

The function Sensitivity Analysis computes the shadow price and range of a
given variable.

SensitivityAnalysis[tableau_?TableauQ,s_[1i_]] :=
{s[i),ShadowPrice[tableau,s[i]],
ShadowPriceRange(tableau,s[i]]}

39

SensitivityAnalysis[finalTableau,s[£f]]

{s[f], 0, -10 <= Deltal[f] <= Infinity}

Provided we adhere to the convention of using s; to denote slack variables, we
can extend the domain of Sensitivity Analysis to compute the shadow prices
and ranges of all slack variables.

SensitivityAnalysis[tableau_?TableauQ] :=

SensitivityAnalysis[tableau,#]& /@

Cases[Join[BasicVariables[tableau],
NonBasicVariables[tableaul],s[i_]1]

SensitivityAnalysis[finalTableau] // TableForm

s[f] -10 <= Delta[f] <= Infinity

Delta[l] <= 35
35

-(--) <= Delta[m] <= 10
3

7.3 Sensitivity with respect to prices

In the production planning example, no chairs are produced because they are
not sufficiently profitable. By how much would the selling price of chairs have
to rise to make their production worthwhile? We can address this question by
varying the price of chairs. For example, if the price of chairs becomes 1+ A,
the profit function is

Deltaprofit = 3 x[b] + (1 + Deltalcl) x[c] + 3 x[d]

3 x[b] + (1 + Deltalc]) xlc] + 3 x[d]

At the current optimal production plan, the revised objective function is
RevisedObjective = Collect[Deltaprofit /. rules,nonbasic]

40

3 s[1) 6 s[m] 7
(-(-) + Deltalc]) xlc]
5

This reveals that production of chairs will not be profitable provided the co-
efficient of z. is negative. Alternatively, production of chairs is not profitable
provided the shadow price of chairs is positive, that is A, < 7/5

ShadowPrice[RevisedObjective,x[c]]

7
- - Deltalc]
5

The price of chairs would have to rise to 1+ % = 22 before their production is
profitable.

We can verify this conclusion by solving the production planning problem
with varying prices for chairs. For example, doubling the price of chairs does
not change the optimal solution.

Simplex[3 x[b] + 2 x[c] + 3 x(d],
StandardForm[constraints, (£,1,m}]]

== 10 + s[m] - x[c]

2 s[1] s[m] 3 xl[c]

s[1] 3 s(m] x[c]
x[b] T+ —mmem = mmmmem - e
5 5 5

However, at $3, chairs become more profitable than desks. Again, the solution
is degenerate.

Simplex([3 x([b] + 3 x[c] + 3 x[d],
StandardForm[constraints, (£,1,m}]]

3 s[f] 3 s[1] 3 s(m)

10 - s[f] + s[m]

3 s[f] 2 s(1] 2 s(m]

s(f] s[1] 4 s(m]
x(b]
5

Similarly, we might ask by how much the price of desks would have to fall to
render their production unprofitable. Letting A4 denote changes in the price of
desks, the profit function is

Deltaprofit = 3 x[b] + x[c] + (3 + Deltald]) xld]

3 x[b] + x[c] + (3 + Delta[d]) x[d]

and the revised objective function is

RevisedObjective = Collect[Deltaprofit /. rules,nonbasic]

3 2 Deltald] 6 Delta(d]
39 + 6 Deltald] + (-(-) - -=-=-------) s[1] + (-(-) +
5 5 5

7 3 Deltald]
(-(=) - -—=====--=) xlc)
5 5

ShadowPrices[RevisedObjective]

2 Deltald] Delta(d]
{{Deltald], -6}, {s[l],

3 Deltald]

The first component (Ag4,6) indicates the direct effect on profit of a change
in the price of desks. At the optimal production of 6 desks, every one dollar
increase in the price of desks increases profit by $6. The remaining terms can
be interpreted as follows. Whatever the change A4 in the price of desks, the
production plan (7,0, 6) remains optimal provided all these shadow prices are
positive. Inspection reveals this will be true provided —3/2 < A4 < 6. Let us
programme that evaluation.

First, we select those shadow prices which depend upon A4 and convert them
into inequalites, which can be simplified by the function SimplifyInequalities.

Cases [ShadowPrices[RevisedObjectivel,
{_,b_ + a_. Delta[d]} :> Sign[a] Delta[d] >= ~b/Abs[a]]

3 7
{Delta(d] >= -(-), -Deltald] >= -6, Deltald] >= -(-)}
2 3

SimplifyInequalities[%,Deltald]]

3
-(-) <= Deltald] <= 6
2

To determine the sensitivity to prices changes, we have to know the original
objective function, which was

objective = 3 x[b] + x[c] + 3 x[d]
3 x[b] + x[c] + 3 x[d]
We summarize this facility in the function PriceRange.

PriceRange[tableau_?TableauQ,objective_,x_[i_]1] :=
Module[{RevisedObjective},

RevisedObjective =

Collect[objective /.

a_. x[1] -> (a + Delta[i]) x([i] /.

(ToRules /@ Rest[tableau] // Flatten),
NonBasicVariables([tableaul];
SimplifyInequalities[Cases[ShadowPrices[RevisedObjective],
{_,b_ + a_. Delta[i)) :> Sign[a] Delta[i] >= -b/Abs[a] 1,
Delta[i]]

]

PriceRange[finalTableau,objective,x[d]]
3

-(-) <= Delta[d) <= 6
2

To verify this conclusion, we observe that increasing the price of desks by $5 to
$8 does not change the optimal production plan.

43

Simplex([3 x[b] + x[c] + 8 x[d],
StandardForm[constraints, (£,1,m}]]

13 s(1) s[m]
69

== 10 + s[m] - x[c]

2 s[1] s[m]

s[1] 3 s[m)
x[b) == 7 + —=== = ——-oem - -
5 5 5

However, if the price of desks falls by 50%, it is just as profitable to concentrate
on bookcases alone.

Simplex[3 x[b] + x[c] + (3/2) x[d],
StandardForm[constraints, {£,1,m}]]

3 s[m) x[c}

x[c] x[d]
x[b] == 10 - =-==- = —=-= - ———-
2 2 2

although the previous plan is equally profitable.

Pivot[%,x([d]]
3 s[m] x[c]
2 2

10 + s[m] - x([c]

2 s[1] s[m] 3 x[c]

s[1] 3 s(m] x[c]
x[b] == 7 + —=-- = o - -
5 5 5

At a lower price, desks are not profitable.

In line with the facilities developed in the previous section, we extend the
function Sensitivity Analysis to tabulate the price and applicable range of any
decision variable z;.

SensitivityAnalysis[tableau_?TableauQ,objective_Plus,x_ [i_]] :=
{x[1], Coefficient[objective,x[i]],
PriceRange[tableau,objective,x[i]])}

SensitivityAnalysis[finalTableau,objective,x[d]]

3
{x[d], 3, =-(-) <= Deltald] <= 6}
2

Its domain can then be extended to cover all the variables in the problem.

SensitivityAnalysis[tableau_?TableauQ,objective_Plus] :=
Join[SensitivityAnalysis[tableau,objective,#]& /@
Variables[objective],
SensitivityAnalysis[tableau,#]& /@
Cases[Join[BasicVariables([tableau],
NonBasicVariables[tableau]],s[i_]11]

The function Sensitivity Analysis extracts from the final tableau the prices
associated with each decision variable, the shadow price of each resource con-
straint and their respective ranges of validity.

SensitivityAnalysis[finalTableau,objective] // TableForm

-2 <= Delta[b] <= 3

7
-Infinity <= Deltalc] <= -
5

3
-(-) <= Delta(d] <= 6
2

-10 <= Delta[f] <= Infinity

-15 <= Delta[l] <= 35

6 35
- -(--) <= Delta[m] <= 10
s[m] 5 3

This does not exhaust the information which can potentially be extracted from
the final tableau. Before leaving this topic, we shall briefly outline some of the
ways in which sensitivity analysis could he extended. We could compute the
impact of changes in the technology, that is in the resource coefficients of the
various activities. For example, what would be the effect on the optimal solution
if the labour required for producing a desk was reduced from 3 to 2 hours? We
could also consider the impact of multiple changes. What would be the impact
of a simultaneous rise in the price of desks and chairs? What would be effect of
adding an additional shift, increasing finishing, machining and labour capacity
simultaneously? All these questions could be addressed utilizing information in
the final tableau.

8 Computing the final tableau

Although the preceding discussion presents a complete implementation of the
simplex algorithm for solving linear programming problems, it is not the most ef-
ficient way of doing so. Fortunately, Mathematica contains built-in functions for
linear programming — ConstrainedMax, ConstrainedMin and LinearPro-
gramming. However, the output from these built-in functions is brief and con-
cise. In this section, we show how the output of the built-in functions can be
mined to yield the final tableau and hence all the sensitivity information which
can be deduced from this tableau.
The usage message for ConstrainedMax reads

?ConstrainedMax

ConstrainedMax([f, {inequalities}, {x, y, ...}] finds the global
maximum of f in the domain specified by the inequalities. The
variables x, y, ... are all assumed to be non-negative.

Let us apply this function to the production planning example which involved
maximizing

profit = 3x[b] + x[c] + 3x[d];

subject to the

constraints =

{ 2x[b] + 2x[c] + =x[d] <= 30,
x[b] + 2x[c] + 3x[d] <= 25,
2x[b] + =x[c] + x[d] <= 20
}:

and z; >=0
In reconstructing the final tableau, it is more convenient to apply Con-
strainedMax to the standard form.

SFconstraints = StandardForm[constraints, (£,1,m}]

30 - 2 x[b] - 2 x[c] - x[d4]
25 - x[b] - 2 x[c] - 3 x[d]

20 - 2 x[b] - x[c] - x[d]

To find the variables, we extend the definition of the built-in function Variables
to handle equations.

Unprotect [Variables];
vVariables[equation_Equal] := Variables[List @@ equation]
Protect[Variables];

The variables are

vars = Union @@ Variables /@ SFconstraints

{s[f}, sl1l], s(m), x[{b]l, x[c], x[d])

Applying ConstrainedMax to the production planning example yields
solution=ConstrainedMax[profit, SFconstraints,vars]

(39, {(s(f] -> 10, s[l] -> 0, s(m] -> 0, x[b] -> 7, x[c] -> 0O,

x[d] -> 6}}

The output of ConstrainedMax is the optimal value of the objective function,
and the values of all the variables.

The first step is to separate the basic and nonbasic variables. Provided the
optimal solution is not degenerate?, this is straightforward. The basic variables
are nonzero, while all the zero variables are nonbasic. Since this example is not
degenerate, the nonbasic variables are .

3We treat the degenerate case below.

zerovars = Cases[solution[[2]], Rule[x_,0] -> x]

{s[1}], sim], x[cl}

and the rest are basic variables.

basic = Complement [vars,zerovars]

{s[f], x[b], x[d]}
The constraints of the final tableau are obtained by solving the original con-
straints for the basic variables.

FromRules[rules_List] := Apply[Equal,rules,1]

rules = Flatten @ Solve[SFconstraints,basic];
FromRules[rules] // ExpandAll

s(f] 10 + sim] - x[c]
s[1] 3 sm] x[c]
x[b] T+ ——-- = mmmm—m - —ee

5 5 5

2 s[1] s[m] 3 x[c]
x(d)

where FromRules converts a list of transformation rules back into equations.
PROGRAMMING NOTE: It is necessary to use Solve rather than Roots to solve
the constraints for the basic variables, since Roots only applies to a single equation.
This provides a list of transformation rules, to which we must apply FromRules,
which is the inverse of the built-in function ToRules.
The revised objective function is

profit /.rules // ExpandAll

3 s[1] 6 s[m] 7 x([c)

Thus the final tableau can be reconstructed

finalTableau = Prepend[FromRules[rules],
z == profit /. rules] // Expandall

3 s[1] 6 s[m] 7 xlc)

10 + s[m] - xl[c]

s[1] 3 sm] x[c]

T 4+ —=== = —mmemm = —-e-

5 5

2 s[1] s[m]
x[d]

We collect this procedure in the function FinalTableau, first removing the
variable finalTableau to avoid confusion.

FinalTableau[objective_,constraints_] :=
Module [{SFconstraints,vars, solution, zerovars,basic, rules)},
SFconstraints = StandardForm[constraints];
vars = Union @@ Variables /@ SFconstraints;
solution = ConstrainedMax[objective,SFconstraints,vars];
zerovars = Cases[solution[[2]], Rule[x_,0] =-> x];
basic = Complement [vars,zerovars];
rules = Flatten @
Solve [SFconstraints,basic];
Prepend [FromRules [rules],
z == objective /. rules] // ExpandAll
]

FinalTableau[profit, SFconstraints]

3 s[1) 6 s[m] 7 x[c)

10 + s[m) - x[c)

s[1] 3 s[m] x[c]

T 4 =mem = mmmmmm = —-ee

5

8.0.1 Degeneracy

Linear programming problems are degenerate when some of the basic variables
are zero at the optimal solution. To handle degeneracy, we have to modify
FinalTableau to select a suitable basis for inverting the initial tableau.* All
nonzero variables are basic. To these we add a sufficient number of zero variables
to complete the basis. However, not all of the nonzero variables can be basic,
and some trial and error is required.

To illustrate degeneracy, consider the following example

objective = x[1];

constraints { x[1] <=1,
x[1) + x[2] <=1,
x[1] + x[2] x[3] <= 1};

SFconstraints = StandardForm[constraints]

s[1}] 1 - x[1]
s(2] 1 - x[1] - x(2]

s[3] 1 - x[1) - x[2] - x[3]

vars = Union @@ Variables /@ SFconstraints

(s(1], s(2], s[3], x[1], x[2], x[3]}

The optimal solution is

solution=ConstrainedMax[objective, SFconstraints, vars]

{1, {sl1] -> 0, s(2] -> 0, s[3] -> 0, x[1] -> 1, x[2] -> O,
x[3] -> 0}}

The only nonzero variable is z; = 1. The remaining five variables are all zero.

zerovars = Cases([solution[[2]], Rule[x_,0] -> x]

{sl1], s(2], s[3], x[2], x[3]}

4 A basis comprises m distinct variables, the coefficients of which are linearly independent
(where m is the number of rows in the standard form).

50

nonzerovars = Complement[vars,zerovars]

{(x[1]}

Any basis must include z; and two of the five zero variables. However, not all
selections of zero variables form a basis. For example, the set z,,s;,s2 forms a
basis, since the constraints are solvable for these basis variables

Solve[SFconstraints, (x[1], s[1], s[2])}]

{({s[1] -> s[3) + x[2] + x[3], s[2] -> s[3] + x[3],

x[1] -> 1 - s[3] - x[2) - x[3]}}

However, the sets z1,z2,s, and z;,z3,53 do not form a basis, and cannot be
used to solve for the final tableau. For example

Solve[SFconstraints, (x[1], x[2], s[1]}]

¢}

where the empty set {} indicates no solution. To find a basis, we simply iterate
through subsets of zero variables until we find a set which, together with the

nonzero variables, forms a basis. To extract subsets of the appropriate size, we
adopt the function KSubsets from the package DiscreteMath‘Combinatorica‘,
which we repeat here for convenience.

KSubsets[l_List,0] := { {} }

KSubsets[l_List,1] := Partition[l,1]
KSubsets[l_List,k_Integer?Positive] := {1} /; (k == Length[l])
KSubsets[l_List,k_Integer?Positive] := {} /:; (k > Length[l])

KSubsets([l_List,k_Integer?Positive] :=
Join[
Map[(Prepend[#,First([1]])&, KSubsets[Rest[l],k-11],
KSubsets[Rest[1],k]
]

In the example, the subsets of size 2 of zero variables are

KSzerovars = KSubsets[zerovars, 2]

{{s(1], s(2]}, (sl1], s3]}, (s[1], x[2]}, {s[1]), x[3]},
{s[2], s[3]}, {sl2], x[2]}, {sl2], x(31}, {s(3], x[2]},

{s[3], x[3]}, {x[2], x[31}}

51

FindBasic successively tries the elements of this set until it constructs a suitable
basis.

FindBasic[SFconstraints_,nonzerovars_,KSzerovars_]:=
Module[{zrules},
rules = Solve[SFconstraints,
Join[nonzerovars,First [KSzerovars]ll;
If[rules != {},rules,
FindBasic[SFconstraints,nonzerovars,Rest [KSzerovars]]]
1

FindBasic[SFconstraints,nonzerovars,KSzerovars]

{{s{1] -> s3] + x[2] + x[3], s[2] -> s[3] + x[3],
x[1] -> 1 - s[3] - x[2] - x[3]}}
In this case, the first selection sy, sz are independent and sufficient to complete
the basis. However, if we reorder the subsets
RotateLeft [KSzerovars, 2] // Short
{{s(1), x[21}, (s[1), x([3]}, <<7>>, (sll], s[3]}}

FindBasic[SFconstraints,nonzerovars,%]

{{s{1] -> s[2] + x([2], x[3] -> s[2] - s(3], x[1] -> 1 - s[2] - x[2]}}

FindBasic deduces that the first pair sy, z2 is not basic, and chooses the second
pair sy, 3. Since the function KSubsets orders the subsets lexicographically,
FindBasic will select slack variables s; before decision variables ;. The former
are more likely to be basic, and FindBasic is likely to find a basis quickly.

A minor modification equips FinalTableau to handle degeneracy.

FinalTableau[objective_,constraints_] :=
Module| {SFconstraints,vars,solution, zerovars,nonzerovars,rules},
SPconstraints = StandardForm[constraints];
vars = Union @@ Variables /@ SFconstraints;
solution = ConstrainedMax[objective,SFconstraints,vars];
zerovars = Cases([solution[[2]], Rule[x_,0] -> x];
nonzerovars = Complement [vars,zerovars];
rules = Flatten @ FindBasic[SFconstraints,nonzerovars,
KSubsets[zerovars,Length[SFconstraints]-Length[nonzerovars]ll];
Prepend [FromRules[rules],
z == objective /. rules] // ExpandAll
1

FinalTableau[objective,constraints]

z == 1 - s[3] - x[2) - x[3]
s[1] == s[3] + x[2] + x[3]
s[2] == s[3] + x[3]

x[1] 1 - s3] - x[2] - x[3]

8.0.2 Nonexistence

To make FinalTableau robust, we need to equip it with the possibility that no
solution exists, because the feasible set is either empty or unbounded. This will
become evident when ConstrainedMax attempts to solve the problem, and
Mathematica will generate an error message. The easy way to provide for this
possibility uses the in built function Check to monitor ConstrainedMax, and
to abort if an error message is detected.

FinalTableau[objective_,constraints_] :=
Module [{SFconstraints,vars, solution, zerovars,nonzerovars,rules},
SFconstraints = StandardForm[constraints];
vars = Union @@ Variables /@ SFconstraints;
solution =
Check [ConstrainedMax[objective, SFconstraints,vars],
nonexistent];
(* stop if no solution exists *)
If[solution == nonexistent, Return([]];
(* else *)
zerovars = Cases[solution[[2]], Rule[x_,0] -> x];
nonzerovars = Complement [vars,zerovars];
rules = Flatten @ FindBasic[SFconstraints,nonzerovars,
KSubsets [zerovars,Length[SFconstraints] -Length[nonzerovars]ll;
Prepend [FromRules[rules],
z == objective /. rules) // ExpandAll
]

To illustrate, we saw earlier that the following problem is unbounded
FinalTableau[x[1] + x[2], {x[1] - x[2] <= 10}]
ConstrainedMax: :nbdd: Specified domain appears unbounded.
whereas the next problem is infeasible

FinalTableau[3x[1] + x[2],
{ x[1] - x[2] <= 1,
-x[1] - x[2] <= -33,

2x[1] + x[2) <= 2}]

ConstrainedMax::nsat: The specified constraints cannot be satisfied.

53

For simplicity, we rely on the native Mathematica error messages. These could
easily be converted to something more informative if required.

9 A classic example

One of the first applications of the simplex algorithm was to the determination
of an adequate diet of minimum cost. The nutrition problem had been posed by
George Stigler (1945), who gave a heuristic analysis. As a first step in his anal-
ysis of the problem, Stigler eliminated all foods whose nutritional contribution
was dominated by other commodities. This reduced the list of eligible foods
from 77 to 15. A further 6 foods were eliminated because they were dominated
by a linear combination of the remaining foods. He then derived an approxi-
mate solution by inspection.? In 1947, J. Laderman of the National Bureau of
Standards, utilized the problem to test the newly developed simplex algorithm.
Using desk calculators, the solution of the system involving 9 equations and 77
unknowns required 120 person-days to calculate (Dantzig, 1963:551). In 1953,
the problem was solved by Dantzig on an IBM 701 computer in about 4 minutes.

The reduced problem, comprising 9 foods and 9 constraints, poses a worth-
while test for our linear programming functions. The data for the problem, the
nutritive value per dollar of expenditure of the 9 foods and the minimum daily
allowance of nutrients, are listed in the following table.

Calories Protein Calcium
(1000) (grams) (grams)
Daily Allowance 70 0.8
Wheat Flour . 1411 2.0
Evaporated Milk . 422 15.1
Cheese (Cheddar) E 448 16.4
Liver (Beef) A 333 0.2
Cabbage K 125 4.0
Spinach . 106
Sweet Potatoes K 138 2.7
Lima Beans (Dried) E 1055 3.7
Navy Beans (Dried) 1691 11.4
Vitamin A Thiamine (B1) Riboflavin iaci Ascorbic Acid
(1000 1V) (mg) (mg) (mg)
Daily Allowance 5 . . 75
Wheat Flour .
Evaporated Milk 26 . . 60
Cheese (Cheddar) 28.1
Liver (Beef) 169.2
Cabbage 7.2
Spinach 918.4
Sweet Potatoes 290.7
Lima Beans (Dried) 5.1 .
Navy Beans (Dried) . 24.6

5Stigler did not anticipate the development of the simplex algorithm two years later, stating
“. .. there does not appear to be any direct method of finding the minimum of linear function
subject to linear conditions.” (p. 310) However, his approximate solution turned out to be
only 27 cent per year more costly than the optimum!

54

Since the nutritive values of the various foods are given per dollar of expen-
diture, the cost function is total expenditure

Off [General: :spelll];

cost = x[Flour] + x[Milk] + x[Cheese] + x[Liver] +
x[Cabbage] + x[Spinach] + x[Potatoes] +

x[Lima] + x[Navyl;

where Zpiour is the expenditure on Flour, and so on. The nutritional constraints
are

constraints =
{44.7x[Flour] + 8.4x[Milk] + 7.4x[Cheese] + 2.2x[Liver]
+ 2.6x[Cabbage] + 1l.1x[Spinach] + 9.6x[Potatoes] + 17.4 x[Lima)
+ 26.9x([Navy] >= 3,
1411x[Flour] + 422x[Milk] + 448x[Cheese] + 333x[Liver]
+ 125x[Cabbage] + 106x[Spinach] + 138x[Potatoes] + 1055 x[Lima]
+ 1691x[Navy] >= 70,
2x[Flour] + 15.1x[Milk] + 16.4x[Cheese] + 0.2x[Liver]
+ 4x[Cabbage] + 2.7x[Potatoes] + 3.7 x[Lima]
+ 11.4x[Navy] >= .8,
365x[Flour] + 9x[Milk] + 19x[Cheesel + 139x([Liver]
+ 36x[Cabbage] + 138x[Spinach] + 54x[Potatoes] + 459 x[Lima]
+ 792x([Navy] >= 12,
26x[Milk] + 28.1x[Cheese] + 169.2x[Liver]
+ 7.2x[Cabbage] + 918.4x[Spinach] + 290.7x[Potatoes] + 5.1 x[Lima]
>= 5, :
55.4x[Flour] + 3x([Milk] + 0.8x[Cheese] + 6.4x[Liver]
+ 9x[Cabbage] + 5.7x[Spinach] + 8.4x[Potatoes] + 26.9 x[Lima]
+ 38.4x[Navy] >= 1.8,
33.3x[Flour] + 23.5x[Milk] + 10.3x[Cheese] + 50.8x[Liver]
+ 4.5x[Cabbage] + 13.8x[Spinach] + 5.4x[Potatoes] + 38.2 x[Lima]
+ 24.6x[Navy] >= 2.7,
441x[Flour] + 11x[Milk] + 4x[Cheese] + 316x[Liver]
+ 26x[Cabbage] + 33x[Spinach] + 83x[Potatoes] + 93 x[Lima]
+ 217x[Navy] >= 18,
60x[Milk] + 525x[Liver]
+ 5369x[Cabbage] + 2755x[Spinach] + 1912x[Potatoes] >= 75};

Computing the final tableau we get

finalTableau=FinalTableau[-cost, StandardForm[constraints,
{Cals,Prot,Ca,Fe,A,B1,B2,Nia,C}]]

z == -0.108662 - 0.000400233 s[A] - 0.016358 s[B2] -
0.000144118 s([C] - 0.0317377 s[Ca] - 0.00876515 s[Cals] -
0.234905 x([Cheese] - 0.103139 x(Lima] - 0.0436664 x[Milk] -

0.349929 x[Potatoes]

s(Bl] == 2.32044 + 0.00178173 s{A]) + 0.0600855 s[B2] +
0.00070545 s[C] + 0.469462 s[Ca] + 1.17361 s[Cals] -
16.2528 x[Cheese] + 2.43788 x[Lima] - 15.4478 x[Milk] -
6.3254 x[Potatoes])
48.4669 + 0.231077 s[A] + 1.96333 s[B2] - 0.0384643 s[C] +
s[Cal + 4.23072 s[Cals] - 945.189 x[Cheese] +
104.768 x[Lima] - 910.712 x[Milk] - 140.033 x[Potatoes]
s[Nia] == 9.31598 - 0.0721403 s[A] + 6.22203 s[B2] +
0.00263721 s[C] - 7.52855 s[Ca] + 5.56742 s[Cals] +
24.2095 x([Cheese] 213.331 x[Lima) - 66.5855 x[Milk] +
32.2098 x[Potatoes]
s[Prot] == 77.4135 + 0.166875 s[A] + 5.18424 s[B2] - 0.0527498 s[C] +
80.247 s([Ca) + 24.1134 s[Cals] - 1104.58 x[Cheese] +
139.623 x[Limal - 1115.29 x[Milk] - 285.804 x[Potatoes]
x[Flour] == 0.0295191 - 0.000114638 s[A] - 0.000828639 s[B2] +
0.0000321396 s{C] - 0.0586491 s[Ca] + 0.0256128 s[Cals] +
0.784067 x[Cheese] - 0.196422 x[Lima] + 0.690979 x[Milk] -
0.111181 x[Potatoes]
x[Navy] == 0.0610286 + 0.000221774 s[A]) - 0.000205663 s[B2] -
0.0000712074 s([C] + 0.0981656 s[Ca] - 0.00423899 s[Cals] -
1.58266 x[Cheese] - 0.282729 x[Lima] - 1.44335 x[Milk] -

0.151564 x[Potatoes]

x[Spinach] == 0.00500766 + 0.00114747 s[A] - 0.00394299 s[B2] -

-7
9.3211 10 s[C] + 0.00176352 s([ca] + 0.00285849 s[Cals] -

0.0417057 x[Cheese] + 0.0885074 x[Lima] + 0.0122415 x[Milk] -

56

0.342698 x[Potatoes]

x[Cabbage] == 0.0112144 - 0.00056002 s[A] - 0.000069798 s([B2] +
0.000187016 s{C]) + 0.0000312175 s[Ca] + 0.0000506004 s([Cals] +
0.0155691 x([Cheese] + 0.00452643 x[Lima] + 0.00408336 x[Milk] -
0.19497 x[Potatoes]

x[Liver] == 0.00189256 - 0.000294355 s[A] + 0.0214051 s[B2] -

-6

2.89874 10 s[C] - 0.00957355 s[Ca] - 0.0155178 s(Cals] +

0.0596362 x([Cheese] - 0.510744 x[Lima] - 0.220284 x[Milk] +

0.150343 x[Potatoes]
On[General::spelll];

This is too much information to be readily absorbed. We can focus attention
on the optimal solution values by setting the nonbasic variables to zero.

finalTableau /. Zero[NonBasicVariables @ finalTableau]
z == -0.108662

s[B1] 2.32044

s [Fe] 48.4669

s[Nia] == 9.31598
s[Prot] == 77.4135
x[Flour] == 0.0295191
x[Navy] == 0.0610286
x[Spinach] == 0.00500766
x [Cabbage] 0.0112144

x[Liver] == 0.00189256

The minimum cost diet in not exciting fare, comprising just five foods: wheat
flour, navy beans, spinnach, cabbage and liver. Nutritional requirements could
be met at a cost (in 1939 prices) of 10.9 cents per day or $39.66 dollars per
year. This is only 27 cents (per year) less than the diet computed heuristically
by Stigler. Only five of the nine nutritional constraints are binding.

57

More useful information is provided by a sensitivity analysis.

SensitivityAnalysis([finalTableau, -cost]

{{x[Cabbage], -1, -0.714676 <= Delta[Cabbage] <= 0.770615},
{x[Cheese], -1, -Infinity <= Delta[Cheese] <= 0.234905},
{x[Flour], -1, -0.525087 <= Delta[Flour] <= 0.063195},
{x[Lima], -1, -Infinity <= Delta[Lima] <= 0.103139},
{x[Liver], -1, -0.198228 <= Delta[Liver] <= 0.764211},
{x[Milk], -1, -Infinity <= Delta[Milk] <= 0.0436664},
(x[Navy}, -1, -0.0302534 <= Delta[Navy] <= 0.323308},
{x[Potatoes], -1, -Infinity <= Delta[Potatoes] <= 0.349929},
{(x[Spinach], -1, -1.0211 <= Delta[Spinach] <= 0.348796},
{s[{B1}, 0, -2.32044 <= Delta[Bl] <= Infinity},

(s[Fel, 0, -48.4669 <= Delta[Fe] <= Infinity},
(s[Nia], 0, -9.31598 <= Delta[Nia] <= Infinity},
{s[Prot], 0, -77.4135 <= Delta[Prot] <= Infinity},
{s[A], 0.000400233, -6.42952 <= Delta[A] <= 4.36409},
{s[B2], 0.016358, -1.27002 <= Delta[B2] <= 0.0884161},
{s[C], 0.000144118, -652.89 <= Delta[C] <= 59.9651},
{s[ca], 0.0317377, -0.197686 <= Deltal[Ca] <= 0.62169},

{s[cals], 0.00876515, -0.121961 <= Delta[Cals] <= 1.15251}}

For example, sensitivity analysis reveals that the price of cheese would have to
fall nearly 25% before it would enter the optimal diet. A 3% rise in the price of
navy beans would eliminate them from the optimal diet, while spinach would
be retained even if the price rose 100%.

Since the nutritional constraints are measured in different units, it is worth-
while converting the shadow prices of the nutritional constraints to elasticities.
Economists use elasticities to relate the percentage change in one variable to
the percentage change in another, giving a measure of responsiveness which is
independent of the units of measurement.

The nutritional requirements are

requirements = StandardForm[constraints,
{Cals, Prot,Ca,Fe,A,Bl1,B2,Nia,C}] /.
lhs_ == rhs_ :> (lhs, Abs @ Intercept([rhs]}

{{slcals], 3}, {s[Prot], 70}, {slca], 0.8}, {s[Fe], 12}, {s(A], S5},

(s(B1]), 1.8}, ({s[B2], 2.7}, {s[Nia], 18}, ({s[C], 75}}
and their shadow prices are

shadowP = ShadowPrices[finalTableau,#[[1]]& /@
requirements])

{{s[cals], 0.00876515}, {s[Prot], 0}, {s[Ca], 0.0317377}, {s[Fel, 0},
{s(A], 0.000400233}, {s(B1], 0}, {s[B2], 0.016358}, {s[Nia], 0},
(s(C}, 0.000144118}}

The cost of the optimal diet is

minimumCost = Intercept[First([finalTableaul][[2]]] //
Abs

0.108662

The elasticity of the cost of the optimal diet with respect to changes in the
calorie requirement is

Shadow price/Minimum cost
1/Nutritional requirement
0.00876515/0.108662
1/3

Elasticity = 100

=100
= 24.1993%
This calculation is made by the function Elasticity.

Elasticity[{var_,requirement_}, {var_,shadowPrice_}] :=
{var, 100 (shadowPrice/minimumCost)requirement}

The elasticities of cost with respect to changes in the nutritional requirements
can be computed by threading this function over the lists of requirements and
shadow prices.

Thread[Elasticity[requirements, shadowP]] //
TableForm

s[Cals] 24.1992
s [Prot] 0

s([Ca] 23.3661

s [Fe) 0
s[A] 1.84164
s[B1] 0
s[B2] 40.6458
s[Nia] 0
s[C] 9.94716

The elasticities are zero for the nonbinding constraints. The cost of the optimal
diet is very sensitive to the vitamin B2 requirement. A one percent increase
in this requirement would increase the cost of the minimum diet by 40 %. At
the other end of the scale, the cost of the optimal diet is relative insensitive to
the vitamin A requirement, and quite insensitive to the vitamin B1 requirement
(which is not binding).

Finally, some interesting information was obtained by timing the compu-
tation of the final tableau. On my 50 MHz DX, calculating the final tableau
took 51 seconds. Of this, only 0.4 seconds was required to solve the problem
using ConstrainedMax. Solving the system in terms of the basic variables
took considerably longer, 2.9 seconds. Most of the time (48 seconds) was re-
quired simply to transform the systems of equations in the final tableau using
ExpandAll! Since ExpandAll is used repeatedly in Simplex, we would expect
algorithm implemented here (LP) to very slow. I am not sure how slow, because
the following calculation was aborted after 46 hours.

LP[Prepend[StandardForm[requirements,
{Cals,Prot,Ca,Fe,A,B1,B2,Nia,C}],
- costl]] // Timing

$Aborted

10 Conclusion

This notebook describes a package designed to supplement Mathematica’s in
built linear programming facilities. We exploit the symbolic capabilities of
Mathematica to provide a self-contained exposition of the simplex algorithm
and a set of tools for conducting sensitivity analysis of the optimal solution.
Since Mathematica’s native linear optimization function ConstrainedMax is
faster than the implementation provided here, we then develop a function which
can deduce the final tableau from the Spartan output of ConstrainedMax.
This final tableau contains all the information usually provided by a good lin-
ear programming package, This information can be explored using the tools
for sensitivity analysis developed in the package. This enables the package to
be applied to a substantive problem, relying on Mathematica’s native code for
intensive computation.

11 References

Carter M. (1993) Cooperative games. In: Varian H. (ed) Economic and Finan-
cial Modeling with Mathematica. Springer-Verlag, New York

Chvatal V. (1983). Linear Programming. Freeman, San Francisco

Dantzig G. (1963). Linear Programming and Eztensions. Princeton University
Press, Princeton

Dorfman R., Samuelson P. A. and Solow R. M. (1958). Linear Programming
and Economic Analysis. McGraw-Hill, New York

Franklin J. (1980). Methods of Mathematical Economics - Linear and Nonlinear
Programming, Fized Point Theorems. Springer-Verlag

Lemke C. E. and Howson J. T. (1964). “Equilibrium points of bimatrix games.”
SIAM Journal of Applied Mathematics, vol. 12, pp. 413-23.

Press W. H., Teukolsky S. A., Vetterling W. T., et al (1992). Numerical Recipes
in C: The Art of Scientific Computing, 2nd edn. Cambridge University
Press, Cambridge

Stigler G. (1945). “The cost of subsistence” Journal of Farm Economics, pp.
303-314

Strum J. E. (1972). Introduction lo linear programming. Holden-Day, San
Francisco

Wilson R. (1992). “Computing simple stable equilibria.” Econometrica, vol.
60, pp. 1039-70.

