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ABSTRACT

This study addresses the theory and application of periodic integration and cointegration. A

strategy for testing for periodic integration, originally proposed by Osborn et al. (1988) is further

developed and, along with the Vector of Quarters test (Franses (1994)), is applied to aggregate
New Zealand consumption and disposable income data. Consumption is found to be possibly

periodically integrated while income appears to be seasonally integrated. Where appropriate, the

bootstrap technique is used to simulate critical values for these tests. A representation for a

bivariate periodic cointegration model, including its associated error correction mechanism, is
derived. However, because of limited degrees of freedom, a parsimonious approximation is
proposed. This is applied to the New Zealand aggregate consumption function and its results

briefly compared to those from a non-periodic cointegration model. Neither model is found to
be superior in all respects.
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I. INTRODUCTION

Incorporating seasonality into the cointegration framework has been a logical extension

although it has been achieved in two quite different ways. Seasonal integration/cointegration (see

Dickey etal. (1984), Hylleberg etal. (1990), Engle etal. (1993)) allows for unit roots at seasonal

frequencies as well as at the conventional zero frequency. In contrast, Osborn etal. (1988) have

introduced the concept of periodic integration, which generalises the orthodox analysis by

allowing for periodically varying coefficients. It is the development and application of this idea

that forms the main focus of this paper.

As is the case in traditional integration/cointegration analysis, we must begin by

considering the univariate properties of the data. In Section II, the concept of periodic integration

is addressed, and some methods of testing for it are explored.

Once the univariate attributes of the series have been determined, the next step is to

analyse the relationship between them and test for cointegration. Section III considers periodic

cointegration and its application in modelling the aggregate New Zealand consumption function.

A representation for a periodic cointegration model is developed and its results compared with

those obtained from a non-periodic model. A conclusion is provided in Section IV.

H. PERIODIC INTEGRATION

A simple quarterly integrated process can be written as

(1-0; = +

where L is the lag operator and IV q a constant that can take different values each quarter.
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Expanding the polynomial in (1) yields

(1 -L)(1 +L)(1 +iL)(1 = + c, (2)

(see Hylleberg el al. (1990)). Thus, when the data is observed quarterly, a seasonally integrated

process has four unit roots. One of these is a unit root the zero frequency, whilst the other three,

-1, i, and -i, are termed the seasonal unit roots. The root -1 corresponds to the biannual cycle and

the roots i, -i correspond to the quarter and three quarter frequencies. A process of this nature

may be denoted by x, - 1(1,1,1,1).

Now consider the periodic AR( I) model

(3)

where (1)401J4 vary according to which quarter the observation is in. Here, the seasonality enters

through the periodically varying coefficients rather than through a direct dependence of; on its

4

annual lag ;4. Osborn (1987) shows that the process in (3) is stationary if II 4)q < 1 (see also
crl

Franses (1994)). When this product is equal to one, the data is non-stationary: this case is termed

a periodic unit root.

More formally, Osborn el al. (1988) consider

6qx, = -

= (1 -(1)11)x, (4)

and define x, to be a periodically integrated of order one, or x, P1(1), if and only if
4

el)q = I, i.e. x, is non-stationary
qI

(ii) 6qx1 is stationary.
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The conventional 1(1) process is a special case of periodic integration, occurring when all 4)4 are

equal to one.

Previous research by Osborn el al. (1988), Franses and Kloek (1991) and Franses (1994)

has found that consumption in the U.K., Japan and Australia each follows a non-stationary

process like (3).

TESTING AT SEASONAL FREQUENCIES

Hylleberg al. (1990) have derived a test (herein referred to as HEGY), which is able to

test for, and discriminate between, unit roots at the zero and seasonal frequencies. When the data

is collected quarterly, it involves estimating the equation

4Xt It 1 Z It-1 2Z21-1 + It  Z3t-1 + It  3Z +31-2 q E  tit (5)

where z„ = (1 + L + L2 + L3)x,

z2t = - L + L2 - 1-)xi

z3, = -(1 -1,2)x,

and test the hypotheses

H„: =O vs HA: Tr < 0

H0: 112 = 0 VS HA: 712 < 0

H„: Tr3 = n4= 0 vs HA: 713 and/or 714 * 0

These will indicate whether the series has statistically significant unit roots at the zero,

biannual and IA and 3/4 frequencies respectively.' The critical values for the HEGY test are

tabulated in Hylleberg et al. (1990).

This test and the ADF test for a unit root at the zero frequency do not accommodate a

periodically integrated process. However, if they are applied to data which is P1(1), the result
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obtained depends on the amount of variation in the periodic autoregressive parameters, the (1)(is5.

It is intuitively obvious that 1(1) will be the conclusion when the (N's are all close to one. A

Monte Carlo experiment by Franses (1994) considers the properties of the FIEGY test when the

deviations are moderately large. It is found that, even when (Pq ranges between 0.8 and 1.25, the

test will still conclude 1(1) with probability 0.75.2 It is unlikely that an economic time series

would possess parameters which varied by more than this, especially if the modelling is conducted

using logarithms of the data.

To test explicitly for periodic integration, two tests are used: the Periodic OCSB test

(Osborn et al. (1988)) and the Vector of Quarters test (Franses (1994)).

Test 1: Periodic OCS133

Consider a quarterly series x,, which can be decomposed into four series Xq„, where Xq,

contains the observations of x, that fall in quarter q of year T.

Firstly, the four equations

X11 = 4)1X4.1..1 U1T

X2T = • 422X11 U• 21

X3I' • (1):1X21 U• 31

X4.1 (1)4X3T U41.

are estimated by OLS and the residual standard deviation, ag,

(6)

is obtained for each quarter.

Scaling the data by liaq then has the effect of minimising any seasonal variations in the error

variance, enabling OLS to be a more efficient estimator.

The full periodic AR(I) model is now

4 4
= E E4qDX, c

q=1 q=1

where - D; is a dummy variable, taking the value liciq in quarter q and zero otherwise.

5
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4
- = E

If x, is found to be non-stationary then, by analogy to the ADF test, it would be prudent to

estimate the following.

4 4

tlx,e = E 4,,„D; E (8)
cri

and test the hypothesis

Ho : 4)14)24)14)4 = 1 vs HA : 4)14)244)34)4 * 1.

If the null cannot be rejected, then we conclude that x, has a periodic unit root.

In testing the null hypothesis of a unit root (at the zero frequency) Dickey and Fuller

(1981) find some Monte Carlo evidence to support a likelihood ratio test (LR) over the Wald (W)

and Lagrange Multiplier (LM) tests. Whilst this can only be indicative of the properties of a

similar test in the periodic framework, it is at least enough to suggest that the LR test could be

no worse than W and LM.

The Wald test also has some appeal due to the fact that it avoids the estimation of the

restricted model, although the Wald test statistic is not independent of the way its restriction is

written. For example, H„ could be written as

H0 :
13 =

‘V4

yielding a different derivative and therefore a different value of the test statistic.' Consequently,

: (1)42404= I has been consistently used in all applications and simulations of the Wald test.

Although both the LR and Wald test statistics have asymptotic distributions which are chi-

squared under the null hypothesis, their finite sample distributions are likely to differ. Therefore,

in order to obtain more accurate results from these tests, we have simulated their distributions

using the bootstrap (see Efron (1979)).
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If the LR and Wald tests yield a non-rejection of the null, implying that there is a periodic

unit root, we must then test for the presence of other unit roots, both at the zero and seasonal

frequencies. This is accomplished by estimating (8) under the restriction (l)1(1)2(1)3(13.4 = 1, and

applying the ADF and HEGY tests to the residuals. It is also desirable to bootstrap the critical

values for these tests since the prior estimation of the period model will alter their distribution.'

If the null hypotheses of unit roots in the periodic residuals are rejected, then we accept that the

series x, is periodically integrated of order I.

The conventional 1(1) process is a special case of periodic integration. It is therefore

possible to test whether x, conforms to this special case using a conventional F-test on the

unrestricted version of (8). The hypothesis is

}I : (1)1 = (1)2 = 4)3 =4:, 4 = 1 vs HA : * 1 for some q=1,2,3,4.

The distribution of this statistic is also non-standard because of the unit root that is present under

the null hypothesis and because of its dependence on the result of the previous W and LR tests.

Consequently, the bootstrapping technique has been used to simulate its distribution.

Test 2: Vector of Quarters (VQ)

Consider the periodic AR(1) model (1 - 4)qL)x1 = + ut which has a vector of quarters

representation

where XT =

(i)(L)Xi. = + UT T = 1,2,...,n/4

and (D(L) =

7

0

0 0

1 0

-4)4 1

(9)



UT is a vector of error terms and T a vector of constants. Following Franses (1994) we

decompose (1)(L) as 4)04 = A0 - A, L so that (9) becomes Aox, = A ,xT_, + UT

Rearranging and subtracting X.1.1 from both sides yields

where

A XT = IIXT1 +

11 = (A0-1A3 - )

-1

0 -1 0

0 0 -1 $ $ $• • 2 • 3

o 0 0 4)14)24)34)4-1

If x, is periodically integrated (including the 1(1) special case) then, by definition, the

system (10) will contain one unit root. This implies that the linear combinations of X, that are

non-stationary span a space of dimension one. Since the space of all linear combinations is four

dimensional, there must exist a three dimensional space containing stationary linear combinations

of X.r. This is the cointegration space and it has dimension equal to the rank of TI. From the above

it can be seen that, when x, is P1(1), II contains a row of zero's and therefore has rank three;

indicating the existence of three linearly independent cointegrating vectors.

Recall that the A=1-L filter, when applied to X-r, is equivalent to a fourth difference of the

original series x,, which implies that there are four unit roots in the system (i.e. it is seasonally

integrated). However, the periodically integrated system in (10) contains only one unit root, so

is therefore over-differenced. The three cointegrating vectors can be thought of as corrections for

this over-differencing.

When x, is seasonally integrated, and so has unit roots at the zero and all seasonal

frequencies, Xi. will be stationary and H will be the null matrix'. This implies that there is no
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cointegration between the seasons, with each quarter evolving independently of the others, giving

rise to the phenomenon known as "summer becoming winter" (see Hylleberg ci aL (1990)).

However, if the components of X, are stationary, then the cointegration space has dimension four

and II is of full rank. In this case, there are no unit roots in the system and the process is

stationary.

Thus determining the rank of II will give insights into the integration properties of the

series x,. This can be accomplished using the Johansen Maximum Likelihood (JML) technique'

(Johansen and Juselius (1990)). We can write (10) in its Error Correction Mechanism (ECM)

form

X, = a 13/XT_ I + + OT (10

where P is a 4xr matrix containing the r cointegrating vectors and a is a 4 xr weighting matrix.

Note that because all linear combinations of the cointegrating vectors are also cointegrating

vectors, a and p are not uniquely identified. Consequently it is only possible to estimate the

spaces that are spanned by the columns of a and p, rather than being able to estimate two distinct

matrices.

The JML method seeks to find the r linear combinations of X.1.1 that have the largest

correlation with A X.,, after correcting for the deterministic component H„. The number of non-

zero eigenvalues is then equal to r, the dimension of the cointegration space. It can be shown that

the columns of p contain the eigenvectors corresponding to the r significant eigenvalues (see

Johansen and Juselius (1990)). Two likelihood ratio statistics are used to determine r. The trace

statistic

4
(),(p) = - E log (I-11)
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tests the hypothesis ft: r p vs HA: r> p where X; is the i'th largest eigenvalue of the

canonical correlations matrix. If the null hypothesis cannot be rejected, then the tests suggest that

there are at most p cointegrating vectors. The maximal eigenvalue statistic can be used to test

H„: r < p vs HA: r = p and is given by

Q2(p) = --4 log (1 - xi)) (13)

where Xp is the p'th largest eigenvalue.

The statistics in (12) and (13) are not asymptotically chi-squared, but rather are

multivariate versions of the Dickey-Fuller distribution. Asymptotic critical points are tabulated

in Johansen and Juselius (1990), whilst Monte Carlo simulations by Franses (1994) have yielded

some finite sample values.

Now consider a matrix of cointegrating vectors 

1 -1 0
H =

0 1 -1

0 0 1

From the definition of cointegration, H 'X, must be stationary i.e.

iXT =

X2T X1T

X3T-

X 4T - X3T

This implies that, when the cointegrating vectors are of the form in H, a first difference is

appropriate to restore x, to stationarity, i.e. x, 1(1). Thus a test of the hypothesis that (3—H

enables discrimination between periodic and fixed parameter unit roots.

Since any linear combination of cointegrating vectors is also a cointegrating vector, the

restriction P=H can be written as )=Hp, where p is some rxr matrix. This facilitates the

formation of the likelihood ratio statistic

10



Q3(r) = N E log (  1 - (14)
e-i I -

where is the i'th largest eigenvalue of the canonical correlations matrix evaluated under the null

hypothesis that l3=Hp. Q3(r) is asymptotically ;(2(3).

Depending on the number of cointegrating vectors that are found, there exist other H

matrices which can be used to test hypotheses about the nature of the system's unit roots. For

example, if one cointegrating vector is detected, it means that there could be unit roots at three

out of the possible four frequencies. The above LR test can be used to detect which frequencies

contain the unit roots and whether they are periodic.' However it is unlikely that a quarterly

economic time series would be generated by such a process, as it would imply that either a

(1+L+C+L3) or a (1- L+L2-1.3) filter, or some periodic generalisation, would be required to

induce stationarity. A data generating process of this nature has no obvious economic validity and

so non-stationary series should generally be transformed using either a first or an annual difference

or the corresponding periodic filter.

A short Monte Carlo study of the properties of the VQ test has been conducted by Franses

(1994). In comparison with the HEGY test, he concludes that its performance is satisfactory when

the data generating process is stationary and when it contains four unit roots. In the case where

there is one unit root, both periodic and non-periodic, a VQ test (nominal size 10%) often falsely

finds that there are two, only giving the correct result on about 50% of occasions. Consequently,

Franses recommends conducting the trace test at the 20% level of significance and the LR tests

of linear restrictions on the cointegrating vectors at the 1% level.

1 I



RESULTS

The data that is used in this project emanates from the Reserve Bank of New Zealand and

consists of two quarterly series; household's real consumption of non-durables and services and

household's real disposable income'. The sample of 111 observations spans the second quarter

1965 to the fourth quarter 1992. All analysis is conducted on the logarithms of the series. Figure

1 provides a graph of the data. The Periodic OCSB and VQ tests have been applied to these two

series, with the results summarised in tables 1 and 2.

Figure 1
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Table 1: Periodic OCSB Test

Consumption

Hypothesis
Critical Values"Tested Test Test

Statistics'

402444= I
Wald 2.784
LR 2.810

F-test: 43.q=1 Vq 1.754*

20% 10%

5.64 8.21
4.75 6.37

1.74 2.17

u, non-stationary:
ADF (p=4)d -4.302** -1.49 -2.07
HEGY (p=5)d
Zero Frequency -3.714** -2.50 -2.83
1/2 Frequency -3.649** -2.75 -3.11

1/4 and 3/4 Freq. 12.393** 6.93 8.32

Statistics'

Income Tabulated
Critical

Critical Values' Values'

20% 10% 10%

12.680** 5.64 8.16 2.71
8.757** 4.75 6.35 2.71

NA NA NA 2.07

NA NA NA -1.62

NA NA NA -1.61
NA NA NA -1.57
NA NA NA 4.89

* denotes significance at 20% and ** significance at 10%.

b All critical values in this column have been simulated using the bootstrap technique programmed in the SHAZAN1
econometrics package.

This column contains the 10% critical values that the researcher would typically use, in the absence of simulation
techniques such as the bootstrap. It highlights the need to understand and know the properties of a test statistic before
applying it.
d A constant was found to he insignificant and was therefore not used in the formation of these statistics.

Table 2: Vector of Quarters Test

Hypothesis Test Statistics' Critical Values')
Tested

Consumption Income

Trace: r 0
r I

89.577***
44.916***

65.774**
20.370

r 2 15.472* 5.894
r 3 2.875 0.644

LR Test: x, 1(1) 13.585*** NA

20% 10% 1%

47.10 51.59 64.33
27.69 31.22 40.98
13.99 16.56 23.70
4.93 6.70 12.09

4.64 6.25 11.34

* denotes significance at 20%, ** significance at 10% and *** significance at 1%.

b The trace test critical values originate from Franses (1994) and the IA test values from the Chi-Square tables. Recall
that Frames suggests conducting the trace test at 20% and the 1,R test at 1%.
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For the consumption series, both the Wald and LR tests cannot reject the hypothesis that

4),(1)24)34)4=1, implying that it is valid to estimate the univariate process with this periodic

restriction imposed. The residuals of this regression are then tested for unit roots using the ADF

and HEGY tests. All hypotheses are rejected, suggesting that u, is stationary and c, is PI(1). The

F-test on the hypothesis that there is no periodicity in the c, process is rejected at 20%, but not

at 10%.

The VQ test tends to support these results although its conclusion is marginal on the

hypothesis that there are at least two unit roots in the series. However, following Franses (1994)

recommendation of using a significance level of 20% for the trace test implies that consumption

is P1(1)m. Thus it seems reasonable to conclude that c, contains one unit root and that it may be

valid to restrict this to be non-periodic. The LR test of this non-periodic hypothesis is rejected at

1%. Because of this ambiguity about whether consumption is periodic or not, both the periodic

and non-periodic representations are considered when determining an appropriate cointegrating

relationship (see Section III).

When applied to the income series, both the Wald and the LR tests lead to a rejection of

the null hypothesis that there is a periodic unit root. The VQ test indicates that, at the 20%

significance level, there are three unit roots in y,. However, a data generating process involving

three unit roots is unlikely (see Section II). Given this, and results obtained by Harrison (1993),

who applied the HEGY and other seasonal integration tests to the same data set and concluded

that y, contained four unit roots, we proceed under the assumption that y, 1(1, I, I ,1).

14



III. PERIODIC COINTEGRATION

Before estimating a periodic cointegration model, it is helpful to first derive a form for the

periodic ECM. Recall from equation (9) that if c, is P1(1), then it can be written as

(1).(L)C1. = 1.1„. (15)

where
1 0 0 - (14

-4)2 1 0 0
O(L) =

0 -4,, 1 0

0 0 -4,4 1

and Um. is stationary. Now consider another series y, which contains s unit roots (1__s_.4), one of

which is at the zero frequency." The vector of quarters corresponding to y, is transformed to

stationarity by a matrix polynomial clo y(L). Define a vector X, = [C„' Y., T and write

where

0 I 

0 4)),(L)

= UT (16)

As U r is stationary it can be expressed as an infinite moving average process. Thus

equation (16) has a multivariate Wold representation of the following form

= B(L) (17)

For (I)(L) to be invertible, the roots of det(4)(L)) = 0 must all lie outside the unit circle

15



(1),(L) 0
det(b(L)) =

0 4) y(L )

= 1 4),(141 4)),(1 )1

= (1 —L) (1 —L)s

= (1 —L)"1

Since these roots are clearly one, and theretbre on the unit circle, the polynomial (I)(L) cannot be

inverted. However, the matrix formula —
( a(L)

(1)(L)1

(1)(L), can be utilised to write (17) as

a(L) 
X —  B(L)e,
T 14)041

It is possible to define (130(L) in terms of a partitioned matrix

such that

Thus, (18) can be written as

(1):(L) 0
IL) =

0

where 10(L) is the adjoint of

(18)

(19)

(1,2(L) = (1-L)5 (1(L) (20)

(1—L)s •
X, —   4),(L) B(L)

(1 —L)"1

16



A simple rearrangement yields

(1-L)X1 = D(L)PT (21)

where D(L) = (1).,y(L)B(L). This is now in a convenient Wold representation form and is

analagous to the one used in Granger's Representation Theorem (Engle and Granger (1987)), to

obtain a cointegration model.

The determinant of D(L) is given by

det (D(L)) = 10;041 IB(L)1

= 1.1):(L)11(1):(L)1 B(L)1

= (1-L)3 -144-' 1 13(1 )i

= (1-L)7  IB(L)I (22)

From Engle and Granger (1987), det(D(L)) is equal to (1-L)rd(L), where r is the cointegrating

rank and d(L) a scalar lag polynomial. This means that, in this case, there are at least 7-s

independent cointegrating relationships between the elements of X.,. Applying the 1- L filter to

all eight components of X., implicitly assumes that the system contains eight unit roots, when in

fact there are no more than s+1, since c, is P1(1) and therefore has one unit root, whilst y, contains

s unit roots. Thus, the 7-s cointegrating vectors can be thought of as corrections for the over-

differencing (see VQ test above). If 1B(L)1 has a factor 1- L, then there is an extra cointegrating

vector and c, and y, are periodically cointegrated.'

The only difference between the modified Wold representation in (21) and the

corresponding representation in the conventional analysis is that, in this case, D(0) I. This is

because of the contemporaneous relationships within the vectors of quarters C1 and Y.,. However,

17



since it requires only that D(0) has full rank", Granger's Representation Theorem can still be used

to obtain a periodic error correction mechanism of the form

A *(L)(1-L)X, = d(L) (23)

where A.(L) is a matrix polynomial with A*(0)1N.

The system in (23) is unable to be efficiently estimated in this form because there are eight

components in X. and, with only one observation per annum, there will be few, if any, degrees

of freedom. An alternative strategy is to use this form of the cointegrating relationship and some

restrictions on the components of A*(L) to reduce the system to an estimable specification. There

are two main cases of interest; y, P1(1)14, i.e. s=1 and y, - 1(1,1,1,1), i.e. s=4.

If y, contains one unit root and c, and y, are periodically cointegrated, then the system in

(23) will contain seven cointegrating vectors; six of which will account for the over-differencing

and one which will cointegrate the two series. The equilibrium relations will be of the following

form's

C41 4,4C, ,C = 4)3C21 , C,1 -

Y4T = °4Y3T Y3T °3Y 2T ' 2T

C IT - IY IT

(24)

where (1),, Or and p, are scalar constants. It can be shown that this is a linear combination of, and

is therefore equivalent to

C41 - 4),C, ,C = 4C,T , C„ - 4,2C

, ri , Car IS ,Y 21 , C,1 -

where 13 -   i=2,3,4
0,

18
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These can then be converted back to the quarterly notation, and the cointegrating relationships

written as

ct = li gy, ,C, =

where 4)14)2 (1)3 (1)4 = 1. The ECM in (23) now simplifies to

"a,*(L)(1 -L 4)x, = -a c  

et

13ji-4) + d(L)e,
-4 4)ciet-5

-a qt(c1-4- ()'1-4) aq2(c1-4- 4)qci-s) OW et (26)

where x,=[c, y,]', with the restriction that the parameters in a(L) are non-periodic.' The second

error correcting term is important, as it imposes the condition that both of the series have data

generating processes containing one unit root. Excluding it implies that there is no long-run

relationship between the quarters, thus mis-specifying the model." The Periodic ECM used by

Franses and Kloek (1991) does not contain this term.

However if y, is seasonally integrated, and thus has four unit roots, there will be four

linearly independent cointegrating vectors in the full system; three because ( l-L)C.,. is over-

differenced and one to cointegrate c, and y,. Since the zero frequency unit root is the one that is

common between c, and y,, it is at this frequency that the cointegration occurs. Consequently, it

is necessary to filter out the seasonal roots from y, using a moving sum filter (see Hylleberg el al.

(1990)). The equilibrium relationships are

C 4T 4C3T ' C31 4)1C 2T ' C2T 4)2C1T

C41 P4 (Y4T Y3T Y2T "IT) "4

which can be rearranged as
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ct = Pqyt (28)

where 9= 1/4(1-i-L+L2+L3)y, and

Under the assumption that A*(L) is non-periodic, the system (23) reduces to

a(L) (1-L 4) x1 = - + d(L) (29)

where R,=[ci, 9,]' and (3=[1, -13,1]. The first equation in (29) is

g0(L)A 4c1 = - aq(c,-4 - 13 q371-4) + gy(L)A 4y1 + d(L)e1_4 (30)

where g(L) and g(L) are lag polynomials and µ,1 is a periodically varying constant". This

representation of the periodic cointegration model is very similar to the one proposed by Franses

and Kloek (1991).

Testing the validity of the cointegrating relationship involves estimation of the long run

process

r3 + 11,D21371 + p 3Diji + P4D4,37., + (31)

The hypothesis of a periodic unit root in the errors can then be tested using the tests outlined in

Section II above. It is important to test the full quarterly series u, for a unit root rather than the

four annual Lig, series. This is because c, and y, each contain one unit root, so u, should be tested

for the presence of one unit root, not four as is implied by a test on each of the four quarters.

It has been shown by Inder (1993) that in the case of conventional cointegration, the most

efficient method for estimating the long run parameters of a cointegrating process is to apply OLS
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to the unrestricted ECM. We have assumed that a similar result holds in the periodic case and

have thus estimated the full cointegration model using this method.

To determine the appropriate degree of the polynomials g(L) and gy(L), the "general to

specific" methodology has been adopted; beginning with a relatively large number of lags and

successively eliminating those which are insignificant. However, one difficulty with this approach

is a problem that is frequently ignored, namely pre-testing. Each time a decision is made to include

or exclude a lag, all ensuing analysis is dependent on that decision. Since it is based on a random

statistic, then the decision itself is random so that the distributions of the "t-statistics" will change

every time a test is conducted and its outcome is acted upon. There is no easy solution to this

problem but it is important to be aware of it. A sensible strategy for the researcher is to be

conservative, as it is usually better include an insignificant variable than exclude a significant one.

A PERIODIC COINTEGRAT1ON MODEL

Taking income to be 1(1,1,1,1) and consumption to be P1(1), the appropriate periodic

cointegration model is given in equation (23). To test whether this is a valid cointegrating

relationship, the residuals are tested for a periodic unit root using the periodic OCSB and VQ

tests'.
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Table 3: Periodic OCSB Test

Hypothesis Tested
Test

Statistics'

Critical Values')
Tabulated Critical

Values'

20% 10% 10%

4)14)24)3(1)4=1
Wald 6.646 5.65 8.19 2.71
LR 4.988 4.73 6.34 2.71

• * denotes significance at 20% and ** significance at 10%.

b All critical values in this column have been simulated using the bootstrap technique.

• This column contains the 10% critical values that the researcher would typically use, in the absence of simulation
techniques such as the bootstrap. It highlights the need to understand and know the properties of a test statistic before
applying it.
A constant was found to be insignificant and \vas therefore not used in the formation of these statistics.

Table 4: Vector of Quarters Test

Hypothesis
Tested

Test Statistics' Critical Values')

20% 10%

Trace: r 0
✓ 1
✓ 2
r5_ 3

82.126***
29.379*
15.257*
4.158

47.10
27.69
13.99
4.93

51.59
31.22
16.56
6.70

64.33
40.98
23.70
12.09

* denotes significance at 20%, ** significance at 10% and *** significance at 1%.

b The trace test critical values originate from Franses (1994) and the LR test values from the Chi-Square tables. Recall

that Franses suggests conducting the trace test at 20% and the I.R test at 1%.

Following the procedure outlined in Franses and Kloek (1991), we have tested the

hypotheses that ag and 13,1 of equation (30) are non-periodic. A conventional F-test is used to

determine whether aq=a for all q, with the calculated F-statistic2' being 1.34. Johansen (1991)

showed that this statistic has an asymptotic x2 distribution and therefore we cannot reject21 the

null hypothesis at the 10% (and 20%) level of significance. To test pq=p for all q, Franses and

Kloek suggest estimating an "all encompassing" model, containing a periodic error correcting
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term and a non-periodic one. Since the coefficients of these terms are required to be negative,

their significance can be tested using a one sided t-test. Applying this recommendation yielded a

positive coefficient on the non-periodic error term, so the null hypothesis that it is zero cannot be

rejected and consequently it should be excluded.' Thus, we believe that the Pc, parameters are

periodic, which implies that consumption is PI(1) rather than 1(1). The final representation for the

periodic ECM is

A 4a, = 0.69 A 4c - 0.22 A 4ct_4 + 0.23 4C + 0.13 L4y2 - 0.088

(10.9) (-2.51) (2.87) (3.15) (-1.89)

- 0.25 (ct_4 -P jt-4) + 0.038 GST t

(-4.84) (2.59) SSE = 0.03770

(32)

where 11 = 0.947, = 0.951, 11 3 = 0.950, 134 = 0.959. The numbers in brackets

are the reported t-statistics. An F-test on whether the intercept was constant over all quarters

gave a statistic of 0.95 with a p-value 44%, so the null hypothesis could not be rejected. Since the

analysis has been conducted in logarithms, the 11 q coefficients are the estimated quarterly

elasticities of consumption with respect to annual income. The variable GST, is included to

account for the Goods and Services Tax that was introduced in New Zealand in 1986. It takes the

value I in the period just prior to the introduction of GST, - I in the period immediately after it

and zero otherwise. This covers the transfer of spending that occurred as people brought forward

purchases to avoid the price increases resulting from of the tax.

If, following the results of the earlier univariate tests, we believed that c, was 1(1), an

appropriate strategy would be to transform y, into an 41) series by applying the (1 +L+12+12)

filter, and estimate a conventional cointegration model. The ADF test on the residuals of the
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cointegrating regression was applied and the null hypothesis of no cointegration is rejected". To

determine the lag length, the same methodology as for the periodic model was used, but with a

nominal size of 20% on each test. The following model resulted

A a, = 0.12 A c,, + 0.25 Ac - 0.29 A + 0.22 A - 0.33

(0.4) (2.9) (-1.6) (1.2) (-2.0)

- 0.18 (c,_1 - 0.98 T7,..) + 0.034 GST - 0.098 D i, + 0.028 D2,

(-3.8) (2.5) (-0.82) (-0.23)

+ 0.026 D3, + 0.062 D SSE = 0.03106

(-0.21) (0.051 )

(33)

where D,,, D2,, D3, and D4, are quarterly dummy variables.

Plotting the residuals of these models reveals that both exhibit some outliers in the mid

1970's which can probably be attributed to the aftermath of the 1973 oil shock. In addition, a

sequential Chow test detects some parameter instability at this time. One could attempt to rectify

these problems by applying a dummy variable to account for each of the relevant observations.

However, this approach creates a perfect fit for that observation and so has same the effect as

would deleting it, thus, corrupting the estimation of the dynamics. Consequently, specific

dummies have not been included.

If seasonality is ignored then the regression of c, on y, produces an estimated elasticity of

0.77. The ADF test for cointegration then yields a statistic of- 1.77, which, when compared to

the 10% critical value24 of -2.91, indicates that there is no cointegration." Consequently, if the

seasonal properties of the data are not properly considered, one could falsely conclude that

consumption and income are not cointegrateci.
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IV. CONCLUSION

The contending periodic and non-periodic models for the aggregate New Zealand

consumption function have been examined. Inference on the periodicity of the cointegrating

parameters implied that there was a periodic relationship between consumption and income, and

estimation of this relationship yielded what appears to be an adequate model. However, imposing

the restriction that the model is non-periodic also leads to a plausible specification which, with a

smaller sum of squared residuals, fits the data better. Though this statistic alone should not be

relied upon as a criterion for model selection, it does suggest that, in this case, it may be better

to exclude the periodicity completely than to include it and try to estimate the model under certain

restrictions. This is not to say, however, that the estimated periodic cointegration model is of no

use, since such things as forecasting performance have not been considered. Consequently, there

is no need at this stage to conclude that one model is superior to the other.

This study has also raised a number of issues which require further research. Firstly, the

power properties of the VQ and Periodic tests are largely unknown and investigation of them

would assist practitioners in determining the univariate characteristics of their data. Another area

which requires more research is the estimation of periodic cointegration models and, in particular,

the magnitudes of the trade-offs that occur when restrictions are imposed to reduce the number

of parameters to be estimated.
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EN DNOTES

1 Acceptance of a unit root at these frequencies requires that both n and rt, are zero (see
Hylleberg el al. (1990)). Consequently, it is appropriate to conduct a joint test.

2. A nominal size of 5% was used in this simulation.

3. This procedure has been developed from the simple strategy used by Osborn el al. (1988).

4. For the periodic integration tests, the calculated Wald statistics exhibited a 20% variation,
depending on how the hypothesis was expressed.

5. Osborn el al. (1988) did not simulate critical values for the ADF and HEGY tests when
used in this context. Rather, they used the original tabulated values. As can be seen from
the results in Tables I and 2, the simulated values are markedly different from the
tabulated ones.

6. This is analogous to the case in the ADF test, where -y=0 when there is a unit root (see
equation (2.3.1)).

7. Bewley el al. (1994) have presented Monte Carlo evidence that a Box-Tiao procedure
(see Box and Tiao (1977)) can, in some cases, have better properties than JML. A
comparison of their performance in the VQ framework could be a productive topic for
further research.

8. For a full description of the other cases, see Franses (1994).

9. In the Reserve Bank database, these are encoded CPNDX and CPSX for the two
components of the consumption series and YDX for the disposable income series.

10. The results of the maximal eigenvalue test are identical to those obtained using the trace
statistic and are therefore not tabulated here.

11. Since c, has only a zero frequency unit root, y, must also have a unit root at this frequency
for there to be cointegration. This is because cointegration can occur only between series
with unit roots at common frequencies.

12. Note that there cannot be more than 8-s linearly independent cointegrating vectors in the
system i.e. the cointegration space must have dimension no greater than 8-s and the
space containing all non-stationary linear combinations dimension no less than s. This
is because y, contains s- 1 seasonal unit roots, which cannot be cointegrated out and,
even if the zero frequency components are cointegrated, one of these roots must remain
in the system., thus leaving s unit roots in total.

13. This condition is satisfied because det(D(L))=(1- L)id(L) has no roots at zero, i.e.
det(D(0))*0.

14. Note that this includes the 1(1) special case.
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15. An alternative to this is the common trends method (Franses (1993b)), which uses the
Box-Tiao procedure (Box and Tiao (1977)) to find the most non-stationary linear
combinations of C, and Y 1, which are then tested for cointegration.

16. This assumption is necessary because it reduces the number of coefficients to be estimated
by 75%, and is therefore likely to produce large efficiency gains. If one begins with eight
lags on each of the variables, then it means that 16 lag coefficients need to be estimated,
rather than 64 if they are unrestricted.

17. The only reason that this second error correcting term involves c, rather than y, is because
we have chosen to normalise on c,.

18. Throughout this section, in order to avoid complicating the mathematics, we have
assumed that the mean, and any other deterministic components, have been subtracted
out.

19. The lag lengths were determined by sequential search, beginning with eight lags and
eliminating the longest insignificant lag based on conventional t statistics.

20. The insignificant lags were removed before evaluating this statistic. However, the result
does not change if the test is done prior to the tests on the lag coefficients, with the F-
statistic in that case being 1.06.

21. We did not bootstrap the critical values for this test because of the complicated lag
structure. However, the large p-value means that we can still be confident that the null
cannot be rejected.

22. An alternative strategy would be to estimate two models, one with a periodic error
correcting term and the other with a non-periodic one, and use a likelihood ratio test to
discriminate between them.

23. The ADF statistic with five augmentation lags was -3.07, the lag length was determined
by increasing the lag lengths until the residuals' autocorrelation and partial autocorrelation
functions revealed no significant values.

24. This critical value was obtained from Engle and Yoo (1987).

25. It should be noted that the non-seasonal cointegrating regression includes a constant,
whereas the seasonal and periodic ones do not.
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