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Abstract

We study the exact power of the Goldfeld-Quandt test in a linear regression
model with errors which are both heteroscedastic and autocorrelated. The
test is not robust to this form of mis-specification, but is less sensitive
to autocorrelation in smaller samples.
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1. Introduction
This paper reports on an exploratory study of the robustness of the
Goldfeld and Quandt (GQ)- (1965) test of homoscedasticity of linear
regression model errors to relaxation of the standard assumption of
serially independent errors. Several previous papers have examined the
sensitivity of the GQ test to its underlying assumptions. These include
Giles and Saxton (1993) who focus on the appropriate number of omitted
central observations when relevant regressors have been excluded from the
model, Evans (1992) who studies the true size of the test under various
non-normal error distributions, and Epps and Epps (1977) who address the
consequences of serial correlation using a very limited Monte Carlo
experiment.

The results presented below use the exact power function of the GQ
test with a variety of data types. We find that the test is not robust to

the presence of autocorrelation.

2. The Model

We use the standard linear regression model

y=XB +u, u ~ N(o.nZV)

where y is (Txl) and X is (TxK), non-stochastic and of full rank. We allow
V to reflect a combination of stationary first-order autoregressive (AR(1))

errors and multiplicative heteroscedasticity according to the form:




o

where p is the AR(1) parameter and 0'2 = )(-i o the parameter « being adjusted

t
to control the degree of heteroscedasticity. Application of the GQ test
proceeds by sorting the data so that the regressor thought to be inducing
heteroscedasticity is increasing. After omitting c central observationsl,
separate regressors are run over the remaining sub-samples and the GQ
statistic is formed as the ratio of the resulting sums of squared errors.

Following Harvey and Phillips (1974) we define u*’ = (u’lu'z) and Mi =1-

Xi(xi’Xi)-lXi’ (i- = 1,2) where subscripts refer to the first and second
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sub-samples. Defining M* = and M3 = allows us to
2

(o] (o) M
write the GQ test statistic as g = (u"Miu')/(u"MIu'). The power of the

test can now be writtenz as

Pr(g=f*) =

where AJ.'s are the eigenvalues of (f‘M‘l' - ME)V‘, E(u®*u*’) = V* and the
sz.'s are each independent central x%l). Several algorithms are capable of
evaluating probabilities of this form, such as those by Imhof (1961),

Davies (1980) or Lieberman (1994).3




3. Design of the Study

The exact power of the GQ test was evaluated using five data sets in
an effort to reveal the more general consequences of AR(l) errors in a
variety of contexts. The matrices, each of which included an intercept,
were: X1 comprising the annual income and price data from Durbin and-.
Watson’s (1951) "spirits” example; X2 comprising the quarterly Australian
Consumer’s Price Index and its lag; X3 and X4 which contain a lognormal
(2.2, 19.6) and a uniform [1,10] variable respectively and X5 comprising a
linear trend and a normal (5,1.5) variable.4

A small (T=21) and moderate (T=69) sample was used with each design
matrix and all tests were conducted at the 5% significance level. Several
positive values of p were used and the degree of heteroscedasticity,
measured by h = (o‘.?/o%) ranged from 1 up to 50. We used Davies’ algorithm

within the SHAZAM (1993) package for all computations.

The power function in the limit as p + 1 was also studieds and found

to be degenerate regardless of the presence of an intercept; i.e. the
limiting power of the GQ test as p = 1 must be either zero or unity6 for

h =], and ¢ # 2..

4. Results

The true size of the GQ test is typically larger than its nominal
level when autocorrelation is present. The. effect is generally stronger in
larger samples, with true sizes of 207 being evident in figures 3 and 4.
This size distortion makes power comparisons difficult7 but some
conclusions can be drawn from figure 1 for example. Here the power of the
GQ test is unambiguously lower for h > 10 when p > O, as the size of the
test is larger but the power is lower, relative to the p = O power curve.

For values of h < 10, a larger rejection probability under the alternative




(h > 1) is obtained, but only at the cost of also rejecting more frequently

under the null hypothesis (h = 1), so that direct comparison cannot be

made.

5. Conclusion

We have shown that the GQ test is not robust to the presence of AR(1)
errors when the covariance matrix is of the form given by V*. This concurs
with the only other work on this topic by Epps and Epps (1977). We have
also shown that size distortion is more pronounced in larger samples, and
that sensitivity to autocorrelation occurs across a range of data types.
The covariance matrix we used is similar to that used by Small (1994) to
investigate the converse of this problem. That study found a group of
exact AR(1) tests to be reasonably robust to heteroscedasticity for
moderate degrees of autocorrelation.

Work in progress includes investigating the effect of omitting
observations from locations other than the centre of the re-ordered sample,
and the merits of particular orderings of tests for serial independence and

homoscedasticity.




Footnotes

We wish to thank David Giles and Judith Giles for helpful comments on

this paper. Remaining errors or omissions are our responsibility.

Harvey & Phillips (1974) suggest that c should be chosen so that the
remaining sub-sample degrees of freedom are (equal and) approximately
one third of the full sample.

See Koerts and Abrahamse (1971) for example.

Davies’ algorithm can additionally handle non-central zz.’s, while
Lieberman’s method is based on a saddle-point expansion which avoids
the need to compute the hj's.

These data have been used in several similar studies such as Evans
(1992).

The methodology used for this is outlined by Kridmer and Zeisel (1990).

The sign of the only non-zero eigenvalue of (f‘MI-ME)V* uniquely

determines whether the limiting power is zero or unity.
In theory, one could adjust the critical values so that all power

curves begin at the same size. In practice, this is not possible.
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Figure 1: Power of the GQ Test; Uniform Data (X4); T=21
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Figure 2: Power of the GQ Test; Spirits Data (X1); T=21
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Figure 3. Power of the GQ Test; Lognormal Data (X3); T=69
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Figure 4. Power of the GQ Test; Normal Data (X5); T=69










