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Abstract

A popular class of tests for simple autoregressive processes is considered
in the context of the error components model previously discussed by
Revanker (1980) and King (1982). We show that the expected value of all
such test statistics is further from the rejection region in this model,
relative to the classical model. More importantly, as the degree of
positive autocorrelation becomes very strong, the power of each test must
decline to its level of significance, irrespective of the data.




1. INTRODUCTION

In earlier issues of this Review, Revanker (1980) and King (1982) disagreed
over the advisability of using a Durbin Watson (DW) test (Durbin & Watson
(1950)) in a linear regression model with disturbances comprised of two
independent components, one of which is autocorrelated. The discussion
concerned a first order autoregressive (AR(1)) process but applies equally
well to any simple1 AR(p) scheme. Revanker (1980) observed that the
asymptotic relationship between the DW test statistic d, and the AR(l1)
parameter p, in such a model is given by plim d < 2(1-pA) for some constant
A satisfying 0 = A = 1. He concluded that the DW test is asymptotically
biased towardsvthe null hypothesis in this model. King (1982), however,
noted that there is no bias if the null is true (i.e. p = 0) and showed

that the DW test is approximately the best invariant test in the

neighborhood of the null hypothesis.

In this note we show that the presence of an additional component in
an otherwise standard AR(1) process moves d further from the rejection
region, on average, when the alternative hypothesis is true. This result
applies to a group of tests related to the DW test and to one sided
alternatives in either direction. It is further shown that as p approaches
unity the power of each test must approach its true size so that no power

function can be monotonic in p in an error components model of this form.

Graphs depicting power functions are presented to illustrate these results.

2. THE MODEL AND TESTS

The linear regression model

(1) y=XB+w

is used, where y is n x I, X is an n x k non-stochastic matrix of full




rank, B is a k x 1 vector of parameters and w is an n x 1 disturbance
vector satisfying

Wt = ut + Vt,

Here, u, = p

N + e with |[p| <1, v A =

Ut-1 t

.. 2
(Cl""'cn) N(O,a‘cln) and u

, v, are independent.

t ot
Following Revanker (1980) we define the variance of the regression

disturbances as o‘vzv = a-i + 0-3, and the variance ratio A = . The

covariance matrix of w is now given by

2 _ 2
o‘wz(p,l) = o,

Observe that o =< A = 1 so that the correlation between adjacent w,’s, Ap,

t

is less than would occur without the presence of Ve In all other respects

Z is identical to the standard covariance matrix arising from an AR(l1)
process.

There are several exact tests of HO :p=0yvs Ha: p > O which have

desirable power properties in standard regression models. We consider a

class of these which reject Ho for small values of a statistic with the

general form
W’ AW
r = -—
w'w
where W is the vector of OLS residuals from the estimation of (1). This
class includes the DW test, King’s (1981) alternative DW test, the

Berenblut-Webb (1973) test (BW), which is based on results of Kadiyala




(1970), and a related point-optimal test (King (1985)). These tests are
distinguished by the particular non-stochastic nxn matrix A which each
uses. For the DW test A is a tridiagonal matrix with the leading diagonal
comprising two’s except for the top-left and bottom right elements which
are ones; all off diagonal entries are -1. King’s alternative DW test has
an identical A matrix except that all leading diagonal entries are twos.
The Berenblut-Webb test uses a matrix B which is the DW matrix A with only
the top left element changed to a two and defines
A=B-BXXBXYXB

The A matrix for the point-optimal test is the same as that for the
bBerenblut-Webb test except that B is replaced by the inverse of the
covariance matrix of an AR(l) process with p chosen as some mid-range value

(0.5 and 0.75 are often used).
3. POWER FUNCTIONS

To consider the power of the tests, rewrite r as a function of the

"population disturbances.

w’ MAMw

r =
w’ Mw

‘where M = In - X(X'X)—IX’. The power of each test is given by

pr [(r<r"‘) |E(ww? )]

for some a7 size critical value r*. Standard manipulations (eg. Koerts &

Abrahamse (1969)) can be used to write test power as




pr[[(r-r')<0|Z(P.7\)]] = pr[w’M(A-—r‘In)Mw < 0]

N,z
= pr[ T Ax, < 0]
jer 94
where the Aj’s are the eigenvalues of M(A-r‘In)MZ(p,A) and the x?’s are
independent central chi-square variates with one degree of freedom each.

To analyse the effect of the uncorrelated error component, v

+ on test

power define

Qlp) = Z(p,A) - A
where A = diag(s) and & = l;—x > 0. The matrices Q(p) and Z(p,A) now define
the covariances between the Wy when A is absent and present, respectively.

The following theorem compares the power of each test under each scenario,

for a given (finite sample) design matrix.

Theorem 1

When E(ww’) is given by Z(p,A) rather than Q(p), the average value of
the test statistic r is increased, when testing against Ha: p > 0.
Préof

Let S = M(A—r‘*‘In)M and define the ijth element of S by Sij' Consider
the first moment of (r-r*) which is given by E(w’Sw) = tr(S(E(ww’))). We

must compare tr(SZ) with tr(SQ).

tr(SE) = tr(S(Q+A))

n
=trSQ + ¥ s.8
i=1 M

trSQ + & tr (S)

Observe that tr(S) = E(r - r*)[p=o and recall that E(r) > r*. Thus

|p=0
tr(S) > 0 and tr(SE) > tr(SQ). #




At least on average, therefore, the probability of rejecting H0 is

2 : 2
reduced as A decreases, which occurs as oy becomes large relative to Lt

When the negative alternative H;:p<0 is used, HO is rejected for r > r*.
Thus E(r)|p___0 < r* and tr(S) < O; the average value of r is therefore
reduced and the powers of all tests considered are again lower than would
occur if 0-‘3 were zero.

It is clear that the standard exact tests against AR(l) alternatives
are less powerful when a second, independent, component is present in the
error term. To establish the magnitude of this phenomenon the exact power
of each test was evaluated numerically under a variety of data conditions.
These evaluations were performed with Davies’ (1980) algorithm in the
SHAZAM (1993) package.

Figures 1 and 2 are representative of the numerical results obtained
with all data matrices.2 In figure 1, the X matrix is 60 x 3 and comprises
an intercept, a linear time trend and a series of drawings from the uniform
[0, 10] distribution. Figure 2 shows the power of the BW test using a 20 x
3 matrix in which the regressors are an intercept, a linear trend and
drawings from the N(30,4) distribution.

It is apparent from both figures that when A # 1 the power functions
of these tests converge to some small value as p approaches unity. This

phenomenon is clarified in the following result.

Theorem 2
When E(ww’) is given by =(p,A) the limiting power of the DW test as
p > 1 is the same as the true size of the test, provided the regression has

an intercept.




Proof
As p 5> 1, Z(p,A) 5 V + A where V is a matrix of ones and A is
defined above. Recall from above that the power of the test depends on the
eigenvalues of SZ(p,A), being the vector y which satisfies
¥z = SZz for some non-null vector z

or, 7z = S(V+4)z.
Now when an intercept is present, MV = SV = 0 so that

¥z = SAz
AZz

Sz.

The effect of & is to scale each eigenvalue by the same factor which does

not affect the rejection probability. This probability depends only on the

eigenvalues of S and is therefore equal to the true size of the test. #

The above result extends readily to all other tests in the class under

consideration by using results of Small (1993).

4. CONCLUSIONl

The presence of an additional, independent, component in the error
term of a standard linear regression model has severe consequences for the
powr of a popular class of exact tests for serial independence.  Although
the size of the tests‘ is entirely robust, the power function of each test
must eventually return to the true size, dramatically reducing power
against strong positive autocorrelation. These results strongly suggest
that the standard exact tests for AR(p) errors are unreliable in an error

components model.
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FOOTNOTES

That is, to any AR process in which only one parameter is non-zero.

In both figures power against one sided alternatives in either

direction are shown. In all cases, the significance level is 57.




Figure 1
Power of DW Test in Error Components Model
Uniform Data; n=60

lambda=1.0
lambda=0.8
lambda=0.6

lambda=0.4

Figure 2
Power of BW Test in Error Components Model
Normal Data; n=20

lambda=1.0

lambda=0.8










