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Abstract

Recently, Diebold (1986) and Wooldridge (1991) have suggested procedures for ensuring

that well known tests for serial independence have asymptotically reliable sizes in

the presence of conditional heteroscedasticity. This paper uses a Monte Carlo

experiment to compare the sizes and powers of several versions of these robust tests

with their "non-robust" forms and with standard exact tests. The general conclusion

is that both robust procedures lack power and are dominated by well specified exact

tests. This conclusion is not altered when the assumption of normally distributed

innovations is relaxed.

* This paper has benefitted from comments recieved during seminars at the
Universities of Canterbury and Auckland, Monash University and the Royal Melbourne
Institute of Technology. In particular, thanks are due to David Giles, Max King and
Kim Sawyer.



1. Introduction

In most applications of the GARCH model (Engle (1982), Bollerslev (1986)) the

conditional mean is specified prior to the modelling of the conditional variance (see

Chou (1988), Hsieh (1989) or Baillie and Bollerslev (1989) for example). While this

is a natural order in which to approach the modelling task, it also raises important

questions about the properties of tests used to detect autocorrelation in the mean

equation, when the errors follow a GARCH process. Diebold (1986) addressed this issue

by using results from Milho j (1985) to show that modified forms of the Box-Pierce

(1970) and L jung-Box (1978) tests have the correct sizes asymptotically. Wooldridge

(1991) considered the standard Lagrange multiplier (LM) test for serial independence

in this context and constructed a set of modified LM tests which are similarly

robust.

Although Diebold (1986) presented empirical evidence, using an observed series,

which supported his claim for the asymptotic size of his procedure, he did not

consider the power of the resulting tests. Wooldridge (1991) conducted no empirical

study of his modified LM test. Given the strong influence of the GARCH model for

regression error variances, there is a need to examine the relative performance of

the various methods available for specifying the mean equation in such models. This

paper reports on a study designed to clarify such issues and provide some guidance

for applied workers in the early stages of modelling. A recent investigation by

Silvapulle and Evans (1993) addresses similar issues, concentrating on the size of

tests for autocorrelation under a variety of non-normal conditional distributions.

The next section describes the models and tests used in the study. Section 3

outlines the design of a Monte Carlo experiment and is followed, in Section 4, by a

discussion of our findings. We conclude with some recommendations for applied

researchers.
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2. The Models and Tests

The analysis of this paper is based on the residuals from a regression model,

rather than an observed series. Accordingly, we specify the basic model as

(1) Yt = xt1 + ut ; t=1,...,n,

where yt is a scalar, xt is a kxl vector, 13 is a conformable parameter vector and ut

is a random disturbance.

We want to allow ut to exhibit serial correlation both in the mean and in the

conditional variance. To achieve this we can use the framework pioneered by Weiss

(1984) which simply involves appending a GARCH1 innovation term to a standard ARMA

process. Restricting attention to AR processes, we can write this as

(2) = E pk ut_k + et
k=1

where et.' thrt_i N(0,ht) and

(3) ht = ao a1ct2_1
1=1 j=1

The model described by (2) and (3) will be referred to as the Weiss model. 
Clearly,

no restrictions are implied by this model on the order of the autoregressive

component of the error term. Similarly, the GARCH process component of ut is

completely unrestricted.
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A

An alternative synthesis of serial correlation and GARCH has been proposed by

Bera, Higgins and Lee (1992) (henceforth BHL). In this model the conditional

heteroscedasticity is generated by allowing the parameters of a standard

autoregression to be random. The ARCH version of this model is written as (1) with

the following specification for ut:

(4)

(5)

llt = Oitut_j + et

J=1

Ojt. = 0.1 Tijt

where Tit = .1t (7) 'n- , .2t.,-,Tipt) and Tit - N(0,E) for some positive definite matrix E. The

covariances of current and previous errors in the conditional variance equation can

affect the estimate of the variance, for any given period, through the off-diagonal

elements of E. This feature allows leverage effects to enter risk prediction (i.e.

the sign of the lagged ut's affects the conditional variance in the manner suggested

by Nelson (1991)), something which cannot occur in the Weiss model. If E is diagonal

the linear ARCH model of Engle (1982) is obtained2. For the purpose of comparability

with the Weiss model, as well as simplicity in experimental design, the study

reported here uses only diagonal forms of E.

Applied researchers in the empirical finance literature typically use a range of

formal tests to diagnose deficiencies in the specification of the conditional mean of

regression errors. The portmanteau tests of Box and Pierce (BP) (1970) and L jung and

Box (LB) (1978) are heavily used, as are standard Lagrange multiplier (LM) tests for

serial independence.

The LB and BP tests are each based on sums of squared sample autocorrelations,

differing only by a scaling factor. For the BP test against AR(4) errors, the
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statistic

4

Q(r) = n

k=1

is treated as being asymptotically distributed as x24 under the null hypothesis that

A
the first four autocorrelations are jointly zero. Here rk is the kth sample

autocorrelation. Ljung and Box (1978) proposed a modification to the BP statistic

which was intended to provide a closer approximation to a quantity related to sums of

the true squared autocorrelations. They suggested that treating

Qm(i) = n(n+2) E (n-k)-1 i•2k

k=1

2
as x4 under the null hypothesis would provide a more powerful test. Both of these

test statistics draw on the finding of Bartlett (1946) that the pth sample

autocorrelation of a white noise process is asymptotically normal with zero mean and

variance of (n-p)/(n2+2n). This is not true of an ARCH process, however, in which the

variance of the pth sample autocorrelation is shown by Milhaj (1985) to be

(1/n)(1 + 71,2 cr4), where 7 is the pth autocovariance for the squared process and cr4

is the unconditional fourth moment.

Because 71,2 / (74 > 0, the approximation of the variance of by 1/n (as is done

by Box and Pierce in constructing Q(i.z)) will systematically underestimate var(izk),

even in large samples. Furthermore, the additional factor of (n-k)/(n+2) which is

taken into account by the LB statistic, Qm(i), reduces the value of the assumed

variance still further. We should therefore expect that the size of the LB test is

more severely affected by ARCH processes than the BP test.

Diebold (1986) suggested estimating Tp2 (74 and using the estimates to construct

adjusted versions of both the BP and LB tests, denoted BPA and LBA. The test

statistics for these are respectively
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(3.4

Qa() = n  
i

E and
o.4 ,2

k=1

[ 

P i;.4

Qma(i) = n(n+2) F  i'-w. /(n...,) .
.... 0.4 + 1,1;
k=1

Exact expressions for 0.4 and 7k2 are available for some conditional variance

specifications (see Milh8 j (1985) for example) but in practice these terms must be

estimated and this is the method which was used in the Monte Carlo experiment

reported in the next section.

When ARCH is present but the regression disturbances are serially uncorrelated,

Qa(i.:k) and Qma C-k) are each asymptotically distributed as xp2. This leaves several

questions open. First, how are the rejection probabilities affected by this

adjustment when the null hypothesis is not true? Second, what is the effect on the

true size of the tests of allowing for ARCH processes in this way when no ARCH effect

is present? Third, is the adjustment also valid for GARCH processes? The first two of

these questions will be addressed in the empirical study described below; we turn our

attention to the third question now.

Suppose that et = -ritArh7 , where lit - N(0,1) and

2
ht = ao + Eac1ct_1 + E

1=1 J=1

CC0 0:(1,)C P(Uht

where a(L) = +...+ P(L) = +...+ ppLP and Liht=h. Then

ao a(L) 2
ht -

1-(3(1) 1-g(L)
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(6) = a4c; E
1=1

where a*o=a0/1- (3.1 and 81 is the coefficient of L1 in the expansion of a(L)/(1-13(L).

J=1

Equation (6) shows that a GARCH process is directly equivalent to an infinite order

ARCH process. Thus Milh8j's (1985) representation of the variances of the sample

autocorrelations for an ARCH process also applies to GARCH models. Recalling that

Milhors expression was employed in the Diebold (1986) standard error correction, we

conclude that this procedure is similarly valid for GARCH models.

To introduce the standard LM test and Wooldridge's robust (WLM) version, we

consider the following AR(4) scheme for the ut of (1):

(7) = 021.1t...2 0311t. 3 041.1t...4 + et

where it is assumed that the eigenvalues of the associated determinental polynomial

lie within the unit circle, so that the process is stationary.

Under the null hypothesis Ho: C=02=03=04=0, and assuming that all other

classical assumptions are satisfied, the Best Linear Unbiased Estimator is OLS, which

is also the Maximum Likelihood Estimator. The nR2 (or Outer Product Gradient) form of

the LM test statistic for this problem is n time the uncentered coefficient of

determination from a regression of the residuals, lit, from OLS estimation of (1) on

the X matrix, and the first four lags of lit. Under the null, this statistic is

asymptotically x2 with 4 degrees of freedom.

Wooldridge (1991), observing that this test is invalid in a dynamic model with

conditional heteroscedasticity, proposed a general methodology for constructing tests

which have sizes which are asymptotically robust in such cases. To focus on the
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practical application of Wooldridge's ideas we assume that the variables contained in

X do not3 include all lagged values of yt.

Define At = ( and ht = Et (Var(yt I xt)) . In this notation the

standard LM test discussed above uses nR2 from the OLS estimation of:

17It = (xt,At)1 +

where 7 is a suitably dimensioned parameter vector and Tit is a random error term.

Wooldridge suggests initially weighting At and xt by dividing through by ,{17t where ht

is one's prior belief about the conditional variance function. In this study the

weighting procedure is omitted because we wish to compare Wooldridge's LM test (WLM)

with the standard procedure on the equivalent basis of ignorance about the presence

(and therefore the form) of conditional heteroscedasticity. The Wooldridge procedure

involves the following steps:

(i) Extract the 4x1 vector of residuals, rt, from the vector

regression of At on xt.

(ii) Define a utrt and extract the 4x1 vector of residuals,

vt, from the vector autoregression of on 8'

(iii) Treat nR2 from the regression of t. on vt as asymptotically

2
x4 under the Ho (where c, is a vector of ones).

The number of lags in the VAR of step (ii) is arbitrary and will clearly affect the

power of the test. Wooldridge recommends the use of "one or two (times) the integer

part of 4.1r-; ". Throughout this study four lags were used in this vector

autoregression.

Despite the relatively rare use of exact tests against AR alternatives in the
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empirical finance literature, it was decided to include two such tests in this study.

The fourth-order analogue of the Durbin-Watson (1950) test (denoted DW4) was derived

by Wallis (1972). The test statistic is defined as

u'A4 11

d4 —
U' u

where A4 = Am 0 14 , Am is a tri-diagonal mxm matrix with all non-zero off diagonal

entries being -1, one's in the north-west and south-east corners and two's for the

remaining diagonal elements. The dimension of Am is one quarter of the sample size

and a denotes the Kronecker product. Exact critical values for the Wallis test can be

easily computed, using the algorithm by Davies (1980), for example.

The only other exact test used in the study is a fourth-order generalisation of

the s(0.75) test of King (1985). The test statistic for this test is given by

u' Q u
s4(0.75) —

u' u

where Q = E - EX (X1E X) 1X1 E, and E is the inverse of the theoretical covariance

matrix of a simple AR(4) process assuming that p4 = 0.75.

3. Experimental Design

To study the effect of conditional variance mis-specification on the size and

power of the group of tests outlined above, a Monte Carlo study was conducted. All

the work described below was conducted using 2000 replications which was found to

produce reliable size figures for the exact tests used prior to the addition of

conditional heteroscedasticity4. We used the SHAZAM (1993) package on a Vax 6340

computer. All psuedo random numbers were generated with a seed of 123.

Five design matrices were used, each of which contained an intercept and one

other regressor. The non-constant regressors for the first four design matrices were

based on the AR(1) process
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1

(8) xt = + et ; t = 1,...,n ; et — N(0,1).

The matrices, denoted Xl, X2, X3 and X4, were constructed using A values of 0, 0.8,

1.0 and 1.02 respectively. These regressors are the same as those used by Engle,

Hendry and Trumble (1985) and Lee and King (1993) and were incorporated in larger

matrices by Giles, Giles and Wong (1993). The final data matrix (X5) contained the

first two vectors from Watson's (1955) matrix5 which was shown by Watson to produce

the least efficient OLS estimates within the class of orthogonal matrices.

The study was conducted with a sample size of 60, using the following basic

model for the conditional mean:

(9) Yt = ut

(10) u = P4Ut-4 + et; t=1,...,n; et— N(0,1).

The power of fourth order variants of the DW and s(0.75) tests were evaluated, along

with those of the BP and LB tests, their Diebold (1986) adjusted versions (BPA and

LBA) and the LM and WLM tests. In each case two nominal sizes were used, namely 17.

and 57.. All of the asymptotic tests were conducted against the general AR(4)

alternative of (7).

For each design matrix the power of each test was evaluated at ten values of p4

in the range [0,0.9] thus establishing benchmark power functions in correctly

specified models. Conditional heteroscedasticity was then introduced into the model

using both the Weiss and BHL specifications introduced above. The conditional

variance function
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2
ht = oco + ociet_i +

was used with ao set to 1-a1 and the following parameter sets for (cc1,131)

ARCH Models: (0.2,0) (0.4,0) (0.6,0) (0.8,0);

GARCH Models: (0.2,0.2) (0.2,0.4) (0.2,0.6) (0.2,0.8).

These parameter sets allow for a range of GARCH models which include some important

cases in which the unconditional fourth moment of the disturbances is not finite. For

the ARCH(1) model 3a21 must be less than unity for the existence of the unconditional

fourth moment of ut, a condition which is violated for a1>.:0.577. In the GARCH(1,1)

2 
2case the existence condition is 3a1 + 2a1131 + (31 < 1 and the GARCH parameter sets

used here include one pairing (0.2,0.8) which violates this condition.

In addition to this basic format the experiment was repeated with design matrix

X4 using innovations drawn from a conditional Student-t distribution with 4 degrees

of freedom. The purpose of this variation was to assess the dependence of the main

results on the conditional normality which is employed elsewhere.

4. Experimental Results

Table 1 shows that the power function of the DW4 test is reasonably robust to

the addition of ARCH(1) innovations. This is particularly true of the endpoints of

the curve; mid-range power is slightly reduced by ARCH. Similar effects were found

for the s4(0.75) test across different data sets and for both the Weiss and BHL

models.

Turning our attention to the BP and LB portmanteau tests, we can see from Figure

la that the power curves of both the BP and LB tests are less steep in the presence

of ARCH, but eventually converge to unity as p4 increases. Figure lb shows that these

results also apply to AR-GARCH models and with other design matrices. The following
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general conclusion is supported by all of the cases considered in this study: the

major effect of conditional variance mis-specification on the BP and LB tests is a

significant increase in their true sizes. Power effects are negligible for very

strong autocorrelation (i.e., for pe-0.9), but can be larger or smaller than the

correctly specified power for moderate values of p4.

In the light of the above finding, one might expect that a correction which

ensures that the size of a BP or LB test is robust to GARCH (such as that of Diebold

(1986)) would be a major advantage in the models studied here. Table 2 gives power

values for the LB and LBA tests under ARCH innovations with the X2 matrix. This table

shows that for any substantial degrees of ARCH (c412:0.4) the sizes of the adjusted

tests are much closer to their nominal levels, relative to the standard (unadjusted

tests). Also of interest in this table are the substantial power differences found

between the Weiss and BHL models at moderate to large p4 values (ceteris paribus),

the causes of which are unknown.

Figure 2 graphs the powers of the BP and the LB tests with their adjusted

versions under specific ARCH (Figure 2a) and GARCH (Figure 2b) models. These graphs

clearly show that the cost (in power terms) of obtaining a reasonably robust size by

using the Diebold adjustment can be very high in all but the extreme regions of the

(p4) parameter space. This conclusion is reached regardless of the data or the choice

of Weiss or BHL models. Furthermore, it is clearly evident from Figure 2 that all

four versions of the portmanteau test are markedly inferior to the standard fourth

order DW test6. This reinforces the view of Geweke (1988) that "the properties of "Q"

are terrible in almost all econometric work", and suggests that efforts to devise

powerful exact tests against general AR(p) alternatives could be of major benefit to

applied finance researchers.

We now consider the standard LM test and its (size) robust counterpart, the WLM
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test. Figure 3 shows the power function of each of these tests in four different

models. First, in Figure 3a, ARCH innovations are used. In this case the size of the

LM test is increased by ARCH, while the main effect on the WLM test is a reduction in

power for moderately large p4. More striking, however, is the very substantial

difference between the power curves of the LM and WLM tests for a given model

specification. As noted above, and confirmed in this graph, the WLM test has a true

size which is somewhat lower than its nominal level. This does not adequately account

for the very modest slope of the test's power curve, however. A very similar story is

told by Figure 3b with respect to the inter-test comparison. In this case, however,

the effect on the LM test of stronger conditional heteroscedasticity is reversed,

with larger (31 values tending to increase the size of the test. For all design

matrices used, the direction of size distortion of the LM test was found to be

upwards in ARCH models and downwards in GARCH model.

Subject to the caveat that we have only considered models with two regressors,

the results appear to be relatively independent of the data. The broad findings

remain valid for all of the X matrices used7.

To assess the dependence of the above findings on the assumption of conditional

normality in the error term a limited investigation was conducted using the X1 and X4

matrices with the Weiss model. These data can be thought of as bounding design

matrices described by (8). For this section of the study the conditional distribution

of the et of (10) and (11) was assumed to be Student-t with 4 degrees of freedom.

The conclusions of the main study with respect to the exact AR(4) tests remain

valid with conditionally t4 errors. An example of this is shown in Figure 4a where

the DW test can be seen to maintain its assigned significance level and suffer only

very minor losses in power in the presence of strong ARCH. We also found that the

Diebold size adjustment is more successful when the underlying distribution has
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heavier tails, but that the power curve is less steeply sloped in this case.

The LM test, which has severe size problems even without ARCH, suffers very

badly from the relaxation of the conditional normality assumption. The power

functions of the LM test for different degrees of ARCH, however, are always steeper

than those of the WLM test (Figure 4b).

In summary, the relaxation of the assumption of conditional normality

exacerbates the size problems of the BP, LB and LM tests but does not change their

qualities relative to the proposed "robust" versions. These adjusted tests, while

generally achieving their aim of lowering true size, remain markedly inferior by the

criterion of power function slope. The exact tests stand out as being the ideal

choice under the distributional assumption adopted here.

8.6 Conclusion

In this paper we have substantially clarified several issues related to the

specification of the conditional mean of a regression model when the errors are

conditionally heteroscedastic. It has been shown that the well known exact tests for

simple autoregressive processes are outstandingly robust to the presence of GARCH

effects. This conclusion is, of course, subject to the usual assumption that the

alternative model is indeed a simple AR process of the appropriate order. We have

also shown that the very frequently used BP and LB tests have sizes which are

substantially greater than their nominal levels when conditional heteroscedasticity

is present but that despite this increased size they are still less powerful than the

exact tests for virtually all degrees of autocorrelation. The LM test for AR(4)

errors grossly over rejects the null model even without GARCH, which makes the

problem worse.
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The two existing methods for correcting size distortion in the BP, LB and LM

tests, due to Diebold (1986) and Wooldridge (1991) are generally successful in their

stated aims, although Wooldridge's procedure tends to over correct in the moderate

sample size used here. The power curves of these "robust" tests are much less steep

than those of the standard tests, however, which raises serious doubts about the

advisability of their use.

Finally, these conclusions do not depend on the assumption of conditional

normality, having been also found using the thicker tailed student t distribution

with 4 degrees of freedom. It is, of course, possible that a skewed distribution may

alter some of the conclusions.
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Footnotes

1 In fact Weiss (1984) used ARCH processes only. The extension to GARCH is trivial.
2 A GARCH model can • also be given a random coefficient interpretation (Bera and
Higgins (1993)).

3The majority of Wooldridge's paper is based on models with completely specified
dynamics, in which xt contains the entire past history of yt.

4 This was verified by using the standard exact techniques for evaluating rejection
probabilities for these tests as in Small (1993), for example.

5 The columns of this matrix are given by al, (a2+aT)/E, where al,...,aT, are the
eigenvectors corresponding to the eigenvalues of A, arranged in increasing order, and
A is a tri-diagonal matrix with all off diagonal elements being -1, the first and
last leading diagonal elements being l's and all other leading diagonal elements
being 2's. Note that al is a constant.

6The s4(0.75) test performs just as well as the DW4 test in these models.

7 Further detailed evidence is available from the author.
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TABLE 1
Power of DW4 Test with ARCH Errors

Data Matrix X1

Weiss Model BHL Model

p4 1% Size 5% Size 1% Size 5% Size

al=0.0

0
0
0
0
0
 

0.006 0.049 0.011 0.050
0.416 0.677 0.413 0.676
0.889 0.967 0.895 0.972
0.994 0.999 0.999 1.000
1.000 1.000 1.000 1.000

al =0.2

0.0 0.006 0.054 0.011 0.047
0.3 0.405 0.669 0.388 0.645
0.5 0.895 0.966 0.883 0.961
0.7 0.995 0.999 0.995 0.998
0.9 1.000 1.000 1.000 1.000

a1=0.4

0.0 0.008 0.052 0.010 0.047
0.3 0.394 0.661 0.371 0.631
0.5 0.891 0.965 0.861 0.951
0.7 0.994 1.000 0.992 0.999
0.9 1.000 1.000 1.000 1.000

al =0.6

0.0 0.010 0.053 0.013 0.047
0.3 0.385 0.659 0.332 0.604
0.5 0.890 0.963 0.824 0.934
0.7 0.993 1.000 0.985 . 0.997
0.9 1.000 1.000 1.000 1.000

al =0.8

0.0 0.015 0.053 0.018 0.057
0.3 0.378 0.648 0.321 0.563
0.5 0.883 0.961 0.781 0.922
0.7 0.992 0.999 0.973 0.993
0.9 1.000 1.000 0.995 0.999



TABLE 2
Power of LB and LBA Tests with ARCH Errors

Data Matrix X2

Weiss Model BHL Model

P4 LB LBA LB LBA

al =0.0

0
 0
 0
 0
 0
 

4D
 1

.4
 L
A 
10
 

0
 0
 0
 cD
 

Co
 1
4 
b
 

c
o
o
 

1/4c
. 
O
N
 

t
J
 

0
0
0
 

0.069 0.059 0.070
0.215 0.401 0.221
0.558 0.834 0.564
0.854 0.987 0.861
0.959 1.000 0.964

al =0.2

0.0 0.079 0.070 0.077 0.079
0.3 0.410 0.220 0.391 0.225
0.5 0.837 0.582 0.827 0.554
0.7 0.986 0.874 0.986 0.884
0.9 0.999 0.967 1.000 0.983

al =0.4

0
0
 C
A
 
0
0
 t
-
 C
h
 

0
 (
1
 

0
0
 C
h
 

e
t
 
0
0
 C
h
 

c5 
c5 

o
 C
n
 

N
 

c:54 
c5 

• 
0.073 0.110 0.076
0.223 0.409 0.230
0.593 0.837 0.546
0.899 0.978 0.871
0.971 0.997 0.974

al =0.6

0.0 0.145 0.078 0.156 0.084
0.3 0.462 0.232 0.442 0.223
0.5 0.859 0.597 0.818 0.522
0.7 0.986 0.905 0.968 - 0.832
0.9 0.999 0.978 0.987 0.925

«1=0.8

0.0 0.197 0.083 0.211 0.102
0.3 0.511 0.237 0.463 0.228
0.5 0.868 0.602 0.805 0.492
0.7 0.983 0.906 0.945 0.760
0.9 0.998 0.978 0.956 0.826



TABLE 3
Power of BP and BPA Tests under GARCH

Data Matrix X4; Weiss Model

Normal Errors Student t Errors

p4 BP(5)1 BPA(5) BP(5) BPA(5)

)31 = 0.2

0.0 0.071 0.062 0.120 0.060
0.3 0.360 0.188 0.411 0.188
0.5 0.801 0.520 0.816 0.521
0.7 0.979 0.870 0.979 0.876
0.9 0.999 0.979 1.000 0.976

ill = 0.4

0.0 0.078 0.050 0.152 0.048
0.3 0.370 0.169 0.427 0.196
0.5 0.796 0.502 0.814 0.513
0.7 0.979 0.874 0.976 0.866
0.9 0.999 0.982 0.999 0.977

01 = O. 6

o
 cn in r-- a\ 

c; cS 0
0
0
 

0.097 0.032 0.176 0.041
0.378 0.141 0.434 0.172
0.798 0.468 0.787 0.469
0.974 0.871 0.960 0.842
0.999 0.984 0.995 0.969

01 = O. 8

0.0 0.139 0.017 0.255 0.055
0.3 0.382 0.099 0.444 0.140
0.5 0.760 0.393 0.706 0.354
0.7 0.954 0.792 0.891 - 0.648
0.9 0.995 0.964 0.960 0.863

1. reters to thel3P test with a 55 nominal size. The other columns are similarly
designated.



Figure la
Power of BP and LB Tests with AR(4)-ARCH(1) Errors

Data Matrix X2; Weiss Model
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Figure lb
Power of BP and LB Tests with AR(4)-GARCH(1,1) Errors
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Figure 2a
Power of Several Tests with AR(4)-ARCH(1) Errors
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Figure 2b
Power of Several Tests with AR(4)-GARCH(1,1) Errors

Data Matrix X1; BHL Model
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Figure 3a
Power of 11,4 and WLM Tests with AR(4)-ARCH(1) Errors
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Figure 3b
Power of LM and WLM Tests with AR(4)-GARCH(1,1) Errors
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Figure 4a
Power of DW Test with Student t Errors and ARCH
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Figure 4b
Power of LM & WLM Tests with Student t Errors and ARCH
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