THE RISK BEHAVIOR OF A PRE-TEST ESTIMATOR IN A LINEAR REGRESSION MODEL WITH POSSIBLE HETEROSEDASTICITY UNDER THE LINEX LOSS FUNCTION

K. Ohtani, D. E. A. Giles and J. A. Giles

Discussion Paper

No. 9307
Discussion Paper No. 9307

April 1993

THE RISK BEHAVIOR OF A PRE-TEST ESTIMATOR IN A LINEAR REGRESSION MODEL WITH POSSIBLE HETEROSEDASTICITY UNDER THE LINEX LOSS FUNCTION

K. Ohtani, D. E. A. Giles and J. A. Giles
THE RISK BEHAVIOR OF A PRE-TEST ESTIMATOR IN A LINEAR REGRESSION MODEL WITH POSSIBLE HETROSCEDASTICITY UNDER THE LINEX LOSS FUNCTION

Kazuhiro Ohtani
Faculty of Economics
Kobe University

David E.A. Giles

and

Judith A. Giles
Department of Economics
University of Canterbury

April, 1993

Abstract

In this paper, using the asymmetric LINEX loss function, we examine the risk performance of the ordinary least squares estimator (OLSE), two-stage Aitken estimator (2SAE) and pre-test estimator (PTE) after a pre-test for homoscedasticity in a linear regression model with possible heteroscedasticity. It is shown that the 2SAE is dominated by the PTE with the critical value of unity not only under the quadratic loss function but also under the asymmetric LINEX loss function.

Correspondence: Kazuhiro Ohtani, Faculty of Economics, Kobe University, Rokko, Nada-ku, Kobe 657, Japan
1. Introduction

In applied regression analysis using economic data, the assumption of homoscedasticity is often violated. If inequality of the error variances between two sample periods is suspected, we may conduct a pre-test for homoscedasticity prior to the estimation of the regression coefficients. We may use the ordinary least squares estimator (OLSE) if the null hypothesis of homoscedasticity is accepted in the pre-test, but we may use the two-stage Aitken estimator (2SAE) if it is rejected. Then, the resulting estimator is a pre-test estimator (PTE) after the pre-test for homoscedasticity.

Taylor (1978) derives the exact moments of the 2SAE and examines the performance of the mean squared error (MSE) of the 2SAE. (Since the 2SAE is unbiased, its MSE and variance are the same.) Greenberg (1980) and Ohtani and Toyoda (1980) examine the MSE performance of the PTE. (See also, for example, Mandy (1984), Yancey et al. (1984) and Adjibolosoo (1991) for related studies.) In particular, Ohtani and Toyoda (1980) show that the optimal critical value of the pre-test is unity in the sense of minimizing the average relative MSE. They also show that the 2SAE is strictly dominated by the PTE with the critical value of unity if the alternative hypothesis in the pre-test is one-sided.

The existing literature on the OLSE, 2SAE and PTE in a heteroscedastic linear model uses a quadratic loss function. When a quadratic loss function is used, the same penalty is imposed for both positive and negative estimation errors of the same magnitude as it is symmetric about the origin. However, positive (or negative) estimation error may be more serious than negative (or positive) estimation error of the same magnitude in practical situations. If so, the use of the quadratic loss function is inappropriate. Varian (1974) proposes the very useful asymmetric LINEX loss function and
Zellner (1986) uses the LINEX loss function to compare the risk functions of several estimators.

Recently, using the LINEX loss function, Giles and Giles (1993a,b) examine the risk performances of pre-test estimators of the error variance after a pre-test for linear restrictions on the regression coefficients, or after a pre-test for error variance homogeneity. They show that these pre-test estimators can be strictly dominated by the unrestricted estimator when a negative estimation error is deemed to be much more serious than a positive estimation error in the construction of the loss function. This contrasts with the results obtained under quadratic loss, as then the unrestricted estimator of the error variance is strictly dominated by the pre-test estimator if the critical value is chosen appropriately. (See, for example, Ohtani (1988) and Giles (1991).)

In this paper, we examine the risk performance of the OLSE, 2SAE and PTE in a linear regression model with possible heteroscedasticity when the asymmetric LINEX loss function is used. The model and estimators are presented in section 2 and the risk function of the PTE is derived in section 3. It is shown that the necessary condition for the risk function of the PTE to have extrema is that the critical value of the pre-test is zero, unity or infinity. Numerical evaluations in section 4 show that the 2SAE is dominated by the PTE with the critical value of unity, not only under the quadratic loss function, but also under the asymmetric LINEX loss function. Some final comments appear in section 5.

2. The Model and Estimators

We consider the following heteroscedastic linear regression model:

\[y_1 = X_1 \beta + \epsilon_1, \]
\[y_2 = X_2 \beta + \epsilon_2, \]
where, for \(i = 1 \) and 2, \(y_i \) is an \(n_i \times 1 \) vector of observations on the dependent variable, \(X_i \) is an \(n_i \times k \) matrix of non-stochastic regressors, \(\beta \) is a \(k \times 1 \) vector of common regression coefficients, and \(e_i \) is an \(n_i \times 1 \) vector of error terms distributed as \(N(0, \sigma^2_{e_i} I_{n_i}) \). We assume that \(X_1 \) and \(X_2 \) are of rank \(k \) \((<n_i)\), and \(e_1 \) and \(e_2 \) are mutually independent.

The OLSE of \(\beta \) is

\[
\hat{\beta} = (X'_1X_1 + X'_2X_2)^{-1}(X'_1y_1 + X'_2y_2),
\]

and the 2SAE is

\[
\hat{\beta} = \left[\frac{(1/s_1^2)X'_1X_1 + (1/s_2^2)X'_2X_2}{(1/s_1^2)X'_1y_1 + (1/s_2^2)X'_2y_2} \right]^{-1} \left[\frac{(1/s_1^2)X'_1X_1 + (1/s_2^2)X'_2X_2}{(1/s_1^2)X'_1y_1 + (1/s_2^2)X'_2y_2} \right],
\]

where \(s_1^2 = (y_i - X_i\hat{\beta}_i)'(y_i - X_i\hat{\beta}_i)/\nu_i, \nu_i = n_i - k \) and \(b_i = (X'_iX_i)^{-1}X'_iy_i \).

We assume that the null hypothesis in the pre-test is \(H_0: \sigma^2_1 = \sigma^2_2 \) and the alternative hypothesis is \(H_A: \sigma^2_1 > \sigma^2_2 \). As shown in Greenberg (1980), the one-sided alternative appears, for example, in a reparameterized version of an error component model. The test statistic \(s_1^2/s_2^2 \) is F-distributed with \(\nu_1 \) and \(\nu_2 \) degrees of freedom under the null hypothesis.

The PTE for \(\beta \) is

\[
\hat{\beta}^* = I(0,d)(s_1^2/s_2^2)\hat{\beta} + I[d,\infty)(s_1^2/s_2^2)\hat{\beta},
\]

where \(d \) is a critical value of the pre-test, and \(I(0,d)(s_1^2/s_2^2) = 1 \) if \(0 < s_1^2/s_2^2 < d \) and \(I(0,d)(s_1^2/s_2^2) = 0 \) if \(s_1^2/s_2^2 \geq d \). \(I[d,\infty)(s_1^2/s_2^2) \) is defined similarly.

Let \(P \) be a \(k \times k \) matrix with full rank such that

\[
P'X'_1X_1P = I_k,
\]

\[
P'X'_2X_2P = \Lambda_k,
\]

where \(\Lambda_k \) is the diagonal matrix whose diagonal elements, \(\lambda_1, \lambda_2, \ldots, \lambda_k \) \((>0)\), are the roots of the polynomial

\[
|X'_2X_2 - \lambda X'_1X_1| = 0.
\]
Denoting $Z_i = X_i'P$ (i = 1,2) and $y = P^{-1}z$, model (1) is reparameterized as

$$y_i = Z_i'\gamma + e_i, \quad i = 1,2.$$

(5)

The OLSE, 2SAE and PTE for γ are, respectively,

$$\hat{c} = (I_k + A_k)^{-1}(Z_1'y_1 + Z_2'y_2),$$

(6)

$$\hat{\gamma} = \left[(1/s_1^2)I_k + (1/s_2^2)A_k\right]^{-1}\left[(1/s_1^2)Z_1'y_1 + (1/s_2^2)Z_2'y_2\right],$$

(7)

$$\hat{\gamma}^* = I_{(0,d)}(s_1^2/s_2^2)\hat{c} + I_{[d,\infty)}(s_1^2/s_2^2)\hat{\gamma},$$

(8)

where $s_i^2 = (y_i - Z_i'c_i)'(y_i - Z_i'c_i)/\nu_i = (y_i - X_i'b_i)'(y_i - X_i'b_i)/\nu_i$, $c_1 = Z_1'y_1$ and $c_2 = Z_2'y_2$.

Denoting the j-th column vector of Z_i as Z_{ij} and the j-th element of γ as γ_j (i = 1,2, j = 1,2,...,k), the OLSE, 2SAE and PTE for γ_j are

$$\hat{c}_j = \left[1/(1+\lambda_j)\right](Z_{1j}'y_1 + Z_{2j}'y_2),$$

(9)

$$\hat{\gamma}_j = \left[s_1^2s_2^2/(s_1^2+s_2^2+\lambda_j s_1^2)\right]\left[(1/s_1^2)Z_{1j}'y_1 + (1/s_2^2)Z_{2j}'y_2\right],$$

(10)

$$\hat{\gamma}_j^* = I_{(0,d)}(s_1^2/s_2^2)\hat{c}_j + I_{[d,\infty)}(s_1^2/s_2^2)\hat{\gamma}_j.$$

(11)

3. Risk Functions

As the PTE reduces to the OLSE when $d \to \infty$ and to the 2SAE when $d = 0$, the risk functions of the OLSE and 2SAE can be derived from that of the PTE. Thus, it is sufficient to derive the risk function of the PTE. Hereafter, we consider the estimators of individual coefficients in the reparameterized model (5).

The asymmetric LINEX loss function for $\hat{\gamma}_j^*$ is of the form

$$L(\Delta_j) = \exp(a\Delta_j) - a\Delta_j - 1,$$

(12)
where
\[\Delta_j = (\hat{\gamma}_j - \gamma_j)/\sigma_j \]
is the relative estimation error, and the parameter 'a' determines the asymmetry of \(L(\Delta_j) \) about the origin. If \(a \) is positive, positive estimation error is more serious than negative estimation error of the same magnitude, and vice versa. If \(a^j (j \neq 3) \) is close to zero, the loss function is approximately quadratic.

Using the Taylor series expansion, the risk function of \(\hat{\gamma}_j \) with the LINEX loss function is
\[
R(\hat{\gamma}_j) = E\left[L(\Delta_j) \right] = E\left[\sum_{i=0}^{\infty} (a\Delta_j)^i/i! - a\Delta_j \right]
= \sum_{i=2}^{\infty} a^i E\left[(\hat{\gamma}_j - \gamma_j)^i \right]/(i!)^\frac{1}{i} .
\]
(13)

The \(i \)-th moment of \(\hat{\gamma}_j - \gamma_j \) is given by the following lemma:

Lemma 1.

The odd and even-ordered moments of \(\hat{\gamma}_j - \gamma_j \) are:
\[
E\left[(\hat{\gamma}_j - \gamma_j)^{2m+1} \right] = 0 ,
\]
(14)

\[
E\left[(\hat{\gamma}_j - \gamma_j)^{2m} \right] = \left(\frac{2\sigma_2^2}{\lambda} \right)^m \left\{ \pi(1+\lambda_j)^{2m} \right\} I_{d^*}(\nu_1/2, \nu_2/2)
\times \sum_{q=0}^{m} C_{2q}^m \lambda^{m-q} G_{m-q+1/2}\Gamma(\nu_1/2, \nu_2/2) \Gamma(m-q+1/2)
\]
\[
+ \left(\frac{2\sigma_2^2}{\lambda} \right)^m \left\{ \pi B(\nu_1/2, \nu_2/2) \right\}
\times \sum_{q=0}^{m} C_{2q}^m \lambda^{m-q} G_{m-q+2m-q+1/2}\Gamma(\nu_1/2, \nu_2/2) \Gamma(m-q+1/2)
\]
\[
\times \nu_1^{2q} \nu_2^{2(m-q)} I_{d^*}(\nu_1, \nu_2, m, q, \theta, \lambda_j) .
\]
(15)
where $\theta = \sigma_1^2/\sigma_2^2 \geq 1$, $\Gamma(.)$ is the gamma function, $B(.,.)$ is the beta function, $I_{d^*}(.,.)$ is the incomplete beta function, $d^* = \nu_1d/(\nu_1d+\nu_2\theta)$, $aC_b = a!/(b!(a-b)!)$, $a, b = 0,1,2,\ldots$, and

$$J_{d^*}(\nu_1,\nu_2,m,q,\theta,\lambda) = \int_0^1 t^{\nu_1/2+2(m-q)-1}$$

$$\times (1-t)^{\nu_2/2+2q-1} \left[\nu_1(1-t)+\theta\lambda \nu_2 t\right]^{-2m} dt .$$

Proof.

See the Appendix.

Substituting (14) and (15) into equation (13) and noting that $\sigma_1^2 = \theta\sigma_2^2$, we have:

Theorem 1.

The risk function of $\hat{\gamma}_j$ is

$$R(\hat{\gamma}_j) = \sum_{m=1}^{\infty} \left[a^{2m} / (2m)! \right] \left[2^m / \left\{ \pi(1+\lambda_j)^{2m} \right\} \right] I_{d^*}(\nu_1/2,\nu_2/2)$$

$$\times \sum_{q=0}^{m} 2m C_q \lambda^{m-q} \theta^{q-m} \Gamma(q+1/2) \Gamma(m-q+1/2)$$

$$+ \sum_{m=1}^{\infty} \left[a^{2m} / (2m)! \right] \left[2^m / \left\{ \pi B(\nu_1/2,\nu_2/2) \right\} \right]$$

$$\times \sum_{q=0}^{m} 2m C_q \lambda^{m-q} \theta^{m-q} \Gamma(q+1/2) \Gamma(m-q+1/2)$$

$$\times \nu_1\nu_2 \nu_1 d^* (\nu_1,\nu_2,m,q,\theta,\lambda_j) .$$

To examine the extrema of this risk function, the following lemma is useful:
Lemma 2.

By straightforward differentiation, we obtain:

\[
\frac{\partial}{\partial d} \left[\frac{v_1/2 \cdot v_2/2}{B(v_1/2, v_2/2)} \right] = \frac{v_1/2 \cdot v_2/2 \cdot v_2/2 \cdot v_1/2 - 1}{(v_1 + v_2)/2} \times \frac{v_1 - v_2}{d} \times \frac{1 + X.d}{2m}.
\]

(17)

So, using Lemma 1 and Lemma 2, we obtain:

\[
\frac{\partial}{\partial d} \left[\left(\gamma_j^* - \gamma_j \right)^{2m} \right] = \left[\frac{v_1/2 \cdot v_2/2 \cdot v_2/2 \cdot v_1/2 - 1}{(v_1 + v_2)/2} \times \frac{v_1 - v_2}{d} \times \frac{1 + X.d}{2m} \right] \left(\frac{\Gamma(q+1/2)}{\Gamma(q+1/2)} \right)^{-1}
\]

(18)

From (19), we see that if \(d = 0, 1 \) or \(\infty \), then the first derivatives of all even-ordered moments of \(\gamma_j^* - \gamma_j \) are zero for \(v_1 \geq 3 \). Also, as Lemma 1 shows that all odd-ordered moments of \(\gamma_j^* - \gamma_j \) are zero, we have:

Theorem 2.

For \(v_1 \geq 3 \), the necessary condition for the risk function of \(\gamma_j^* \) to have extrema is \(d = 0, 1 \), or \(\infty \).
Using the quadratic loss function, Ohtani and Toyoda (1980) show that the 2SAE is strictly dominated by the PTE with \(d = 1 \). Although Theorem 2 gives only the necessary condition, it indicates that their result may still hold when the asymmetric LINEX loss function is used. As further exact analysis of the risk function seems difficult, we compare the risk functions of the OLSE, 2SAE and PTE numerically in the next section.

4. Numerical Evaluations

The parameter values used in the numerical evaluations are; \((v_1^*, v_2^*) = (10, 10), (10, 30), (20, 20), (30, 10), (30, 30); \lambda_j = 1.0, j = 1, 2, \ldots, k; d = 0 \) (OLSE), \(d_{0.05} \) (critical value corresponding to the size 0.05), 1.0, \(\infty \) (2SAE); \(\alpha = 0.1, 1, 3, 5; \theta = \) various values. As the risk function given in (16) does not include the term \(\alpha^{2m+1} \), it is sufficient to examine positive values of \(\alpha \). The integral in the expression for \(J_d^* \) is evaluated by Simpson’s rule with 200 equal subdivisions, and the infinite series in (16) converges with a convergence tolerance of \(10^{-15} \).

Some typical results are shown in Figures 1 to 3. These graphs depict relative risk, defined as \(R(\hat{\gamma}^*)/R(\hat{\gamma}) \). Thus, the relative risk is less than unity if the PTE has smaller risk than the 2SAE, and the relative risk of the 2SAE is unity. Note that the horizontal axis measures \(1/\theta \), and not \(\theta \) itself.

From the figures, we see the following. When \(\alpha = 0.1 \) (Figure 1), as expected, the risk performance of the estimators is similar to the case of quadratic loss. The 2SAE is dominated by the PTE with \(d = 1 \), and the relative risk of the PTE with \(d = 1 \) increases monotonically towards unity from below as \(\theta \) increases. Figures 2 and 3 show that the PTE with \(d = 1 \) still dominates the 2SAE even if the asymmetry of the loss function is large. This supports our conjecture that Ohtani and Toyoda’s (1980) result is extended to the case of this asymmetric loss function. In the context of
estimating the error variance after pre-tests for linear restrictions on the regression coefficients, or for error variance homogeneity, Giles and Giles (1993a,b) show that the result obtained under quadratic loss need not be robust to the change in the loss function. Thus, our result contrasts with theirs.

As 'a' increases, the point of intersection of the relative risks of the OLSE and 2SAE shifts to the right. This indicates that the region of θ where the risk of the OLSE is smaller than that of the 2SAE increases as the degree of asymmetry increases. We find a similar tendency for the point of intersection of the relative risks of the PTE with d = 0.05 and 2SAE. However, the point of intersection of the relative risks of the OLSE and the PTE with d = 1 is not so sensitive to the increase in a. Also, when a = 5, the relative risk of the PTE with d = 1 is U-shaped. This is not observed when the loss is quadratic.

5. Conclusions

In this paper we have extended the analysis of an important pre-testing problem to the case where the loss function is asymmetric. Estimating the coefficients of a regression model after testing for possible heteroscedasticity across sub-samples is common practice, and often the researcher faces a greater implicit loss by (say) over-estimating certain coefficients than by under-estimating them, or vice versa. When the loss function is quadratic (and hence symmetric), it is well known that the strategy of testing for homoscedasticity, and then using either the least squares or two-stage Aitken estimator accordingly, strictly dominates the strategy of applying the latter estimator without such a test. We have shown that this result is robust to asymmetry (in either direction) in the loss
function, and that the potential risk gains increase with the degree of such asymmetry. Whilst least squares estimation can still be the preferred strategy if the degree of heteroscedasticity is mild, the risk associated with this strategy is unbounded under extreme heteroscedasticity, whether the loss function is symmetric or not. Work in progress by the authors considers the robustness of these results to other choices of loss function outside the LINEX family.

Appendix: Proof of Lemma 1

Define $u_{1j} = c_{1j} - \gamma_j$ and $u_{2j} = c_{2j} - \gamma_j$, which are independently distributed as $N(0, \sigma^2_1)$ and $N(0, \sigma^2_2/\lambda_j)$, respectively. Also, let $w = \sigma^2_1/\sigma^2_2$, where $\theta = \sigma^2_1/\sigma^2_2$. Then, w is F-distributed with v_1 and v_2 degrees of freedom.

Using the above notation, $\hat{\gamma}_j^* - \gamma_j$ reduces to

$$I(\theta, d)(\theta w)\left(\frac{u_{1j} + \lambda_j u_{2j}}{1 + \lambda_j}\right) + I(d, \omega)(\theta w)\left(\frac{u_{1j} + \theta \lambda_j w u_{2j}}{1 + \theta \lambda_j w}\right).$$

(A.1)

As $I(0, d)(\theta w)I(d, \omega)(\theta w) = 0$, the i-th moment of $\hat{\gamma}_j^* - \gamma_j$ is

$$E\left[(\hat{\gamma}_j^* - \gamma_j)^i\right] = E\left[I(0, d)(\theta w)\left(\frac{u_{1j} + \lambda_j u_{2j}}{1 + \lambda_j}\right)^i\right]$$

$$+ E\left[I(d, \omega)(\theta w)\left(\frac{u_{1j} + \lambda_j \theta w u_{2j}}{1 + \theta \lambda_j w}\right)^i\right]$$

$$= E_1 + E_2.$$

(A.2)

First, we evaluate the first term in (A.2) denoted as E_1. Using the binomial expansion, E_1 is

$$E_1 = E\left[I(0, d)(\theta w)(1 + \lambda_j)^{-i} \sum_{r=0}^{i} \binom{i}{r} \frac{\gamma_j}{\lambda_j} \left(\frac{\theta w u_{2j}}{1 + \theta \lambda_j w}\right)^{i-r}\right].$$

(A.3)
As all odd-ordered moments of \(u_{ij} \) and \(u_{2j} \) are zero, and \(u_{ij} \) and \(u_{2j} \) are independent we have

\[
E[u_{1j}^r u_{2j}^{i-r}] = 0
\]

for all odd \(i \). (If \(i \) and \(r \) are odd, \(i-r \) is even. Also, if \(i \) is odd and \(r \) is even, \(i-r \) is odd. Thus, \(E_1 \) is zero for all odd \(i \).) Noting that \(E[u_{1j}^r] = 0 \) for all odd \(r \), (A.3) reduces to

\[
(1+\lambda_j)^{-2m} \sum_{q=0}^{m} \frac{\lambda_j^{m-q}}{2^q} \int_0^\infty u_{1j}^{2q} u_{2j}^{2(m-q)} E[I_{0,d}(\theta w)u_{1j}^{2q} u_{2j}^{2(m-q)}] \mathrm{d}w
\]

(A.4)

with \(i = 2m \) and \(r = 2q \).

Let \(v_1 = u_{1j}^2/\sigma_1^2 \) and \(v_2 = \lambda_j u_{2j}^2/\sigma_2^2 \), so that \(v_1 \) and \(v_2 \) are \(\chi^2 \)-distributed with one degree of freedom. As \(v_1, v_2 \) and \(w \) are mutually independent, the expectation in (A.4) is

\[
E[I_{0,d}(\theta w)\sigma_1^2 v_1^q \sigma_2^2 v_2^{m-q}] = (\sigma_1^2)^q (\sigma_2^2/\lambda_j)^{m-q} E_w[I_{0,d}(\theta w)] E_{v_1}[v_1^q] E_{v_2}[v_2^{m-q}] \]

(A.5)

where \(E_X[X] \) denotes the expectation of the random variable \(X \).

It is easy to see that

\[
E_{v_1}[v_1^r] = 2^r \Gamma(r+1/2)/\Gamma(1/2), \quad (A.6)
\]

\[
E_w[I_{0,d}(\theta w)] = I_d^*(\nu_1/2,\nu_2/2), \quad (A.7)
\]

where \(I_d^*(\nu_1/2,\nu_2/2) \) is the incomplete beta function and \(d^* = \nu_1 d/(\nu_1 d+\nu_2 \theta) \). Substituting (A.6) and (A.7) in (A.5), and then substituting (A.5) in (A.4), \(E_1 \) is finally written as

\[
E_1 = \left[2^m (\sigma_2^2)^m / \left(\pi (1+\lambda_j)^{2m} \right) \right] I_d^*(\nu_1/2,\nu_2/2) \sum_{q=0}^{m} \frac{\lambda_j^{m-q} q^q}{2^q 2m C_q \lambda j^q} \theta
\]

11
Next, we evaluate the second term in (A.2) denoted as E_2. Using the binomial expansion, E_2 is

$$E_2 = \mathbb{E}\left[I_{1,d,\omega}(\theta w)^{-1} \sum_{i=0}^{\infty} C_i r \left(\theta \lambda_j w \right)^{2i} \right].$$ \hspace{1cm} (A.9)

By the same reason as in the derivation of E_1, E_2 is zero for all odd i. Thus, all odd-ordered moments of $\gamma^*_j - \gamma_j$ are zero. Putting $i = 2m$ and $r = 2q$, (A.9) reduces to

$$\sum_{q=0}^{m-2m} \prod_{r=0}^{2m} C_{2q} \left(\theta \lambda_j \right)^{2(m-q)} \mathbb{E}\left[I_{1,d,\omega}(\theta w)^{2q} \left(\theta \lambda_j w \right)^{2(m-q)} \right] \times \left(1+\theta \lambda_j w \right)^{-2m}$$

$$= \sum_{r=0}^{m-2m} \prod_{q=0}^{2m} C_{2q} \left(\theta \lambda_j \right)^{2(m-q)} \left(\sigma^2_1 \right)^q \left(\sigma^2_2 / \lambda_j \right)^{m-q} \times \mathbb{E}_w\left[I_{1,d,\omega}(w)^{2(m-q)} / (1+\theta \lambda_j w)^{2m} \right] \mathbb{E}_{\nu_1} \mathbb{E}_{\nu_2} \left[\nu_1^{m-q} \right].$$ \hspace{1cm} (A.10)

The first expectation (over w) in (A.10) is

$$\int_{\theta}^{\infty} w^{2(m-q)} / (1+\theta \lambda_j w)^{2m} \left[\nu_1^{1/2} \nu_2^{1/2} / B(\nu_1/2, \nu_2/2) \right] \nu_1^{1/2-1} w^{-(\nu_1+\nu_2)/2} \times w^{(\nu_1 w+\nu_2)} \, dw.$$ \hspace{1cm} (A.11)

Making use of the change of variable, $t = \nu_1 w / (\nu_1 w + \nu_2)$, (A.11) reduces to

$$\left[\nu_1^{2q} \nu_2^{2(m-q)} / B(\nu_1/2, \nu_2/2) \right] J_{d^*}(\nu_1, \nu_2, m, q, 0, \lambda_j)$$ \hspace{1cm} (A.12)

where

$$J_{d^*}(\nu_1, \nu_2, m, q, 0, \lambda_j) = \int_{d^*}^1 t^{(1-t)} \left[\nu_1 (1-t) + \theta \lambda_j t \nu_2 t \right]^{-2m} \, dt.$$
Substituting (A.6) and (A.12) in (A.10), \(E_2 \) is finally written as

\[
E_2 = \left[2^m (\sigma_2^2)^m \left\{ nB(\nu_1/2,\nu_2/2) \right\} \right]^m \sum_{q=0}^{2m} C_{2q} \theta^{2m-q} \lambda_j^{m-q} \\
\times \nu_1^{2q} \nu_2^{2(m-q)} \Gamma(q+1/2) \Gamma(m-q+1/2) J_d (\nu_1, \nu_2, m, q, \theta, \lambda_j) .
\]

(A.13)

Substituting (A.8) and (A.13) in (A.2), we obtain (15) in the text.
References

Figure 1. Relative risk functions for $v_1 = v_2 = 10$ when $a = 0.1$.
Figure 2. Relative risk functions for $v_1 = v_2 = 10$ when $a = 3$.

OLS $d=1$

2SAE

θ

Relative Risk
Figure 3. Relative risk functions for $v_1 = v_2 = 10$ when $a = 5$.
LIST OF DISCUSSION PAPERS*

No. 8902 Provisional Data and Unbiased Prediction of Economic Time Series by Karen Browning and David Giles.
No. 8903 Coefficient Sign Changes When Restricting Regression Models Under Instrumental Variables Estimation, by David E. A. Giles.
No. 8904 Economies of Scale in the New Zealand Electricity Distribution Industry, by David E. A. Giles and Nicolas S. Wyatt.
No. 8905 Some Recent Developments in Econometrics: Lessons for Applied Economists, by David E. A. Giles.
No. 8909 Pre-testing for Linear Restrictions in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.
No. 9001 The Durbin-Watson Test for Autocorrelation in Nonlinear Models, by Kenneth J. White.
No. 9002 Determinants of Aggregate Demand for Cigarettes in New Zealand, by Robin Harrison and Jane Chetwyd.
No. 9003 Unemployment Duration and the Measurement of Unemployment, by Manimay Sengupta.
No. 9004 Estimation of the Error Variance After a Preliminary-Test of Homogeneity in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.
No. 9005 An Expository Note on the Composite Commodity Theorem, by Michael Carter.
No. 9006 The Optimal Size of a Preliminary Test of Linear Restrictions in a Mis-specified Regression Model, by David E. A. Giles, Offer Lieberman, and Judith A. Giles.
No. 9007 Inflation, Unemployment and Macroeconomic Policy in New Zealand: A Public Choice Analysis, by David J. Smyth and Alan E. Woodfield.
No. 9008 Inflation — Unemployment Choices in New Zealand and the Median Voter Theorem, by David J. Smyth and Alan E. Woodfield.
No. 9009 The Power of the Durbin-Watson Test when the Errors are Heteroscedastic, by David E. A. Giles and John P. Small.
No. 9010 The Exact Distribution of a Least Squares Regression Coefficient Estimator After a Preliminary t-Test, by David E. A. Giles and Virendra K. Srivastava.
No. 9011 Testing Linear Restrictions on Coefficients in a Linear Regression Model with Proxy variables and Spherically Symmetric Disturbances, by Kazuhiro Ohtani and Judith A. Giles.
No. 9012 Some Consequences of Applying the Goldfeld-Quandt Test to Mis-Specified Regression Models, by David E. A. Giles and Guy N. Saxton.
No. 9013 Pre-testing in a Mis-specified Regression Model, by Judith A. Giles.
No. 9014 Two Results in Balanced-Growth Educational Policy, by Alan E. Woodfield.
No. 9015 Bounds on the Effect of Heteroscedasticity on the Chow Test for Structural Change, by David Giles and Offer Lieberman.
No. 9016 The Optimal Size of a Preliminary Test for Linear Restrictions when Estimating the Regression Scale Parameter, by Judith A. Giles and Offer Lieberman.
No. 9017 Some Properties of the Durbin-Watson Test After a Preliminary t-Test, by David Giles and Offer Lieberman.
No. 9018 Preliminary-Test Estimation of the Regression Scale Parameter when the Loss Function is Asymmetric, by Judith A. Giles and David E. A. Giles.
No. 9019 On an Index of Poverty, by Manimay Sengupta and Prasanta K. Pattanaik.
No. 9020 Cartels May Be Good For You, by Michael Carter and Julian Wright.
No. 9021 Lp-Norm Consistencies of Nonparametric Estimates of Regression, Heteroskedasticity and Variance of Regression Estimate when Distribution of Regression is Known, by Radhey S. Singh.

(Continued on next page)
No. 9108 Optimal Telecommunications Tariffs and the CCITT, by Michael Carter and Julian Wright.
No. 9111 The Exact Power of Some Autocorrelation Tests When the Disturbances are Heteroscedastic, by John P. Small.
No. 9112 Some Consequences of Using the Chow Test in the Context of Autocorrelated Disturbances, by David Giles and Murray Scott.
No. 9113 The Exact Distribution of R^2 when the Disturbances are Autocorrelated, by Mark L. Carrodus and David E. A. Giles.
No. 9114 Optimal Critical Values of a Preliminary Test for Linear Restrictions in a Regression Model with Multivariate Student-t Disturbances, by Jason K. Wong and Judith A. Giles.
No. 9115 Pre-Test Estimation in a Regression Model with a Misspecified Error Covariance Matrix, by K. V. Albertson.
No. 9116 Estimation of the Scale Parameter After a Pre-test for Homogeneity in a Mis-specified Regression Model, by Judith A. Giles and David E. A. Giles.
No. 9201 Testing for ARCH-GARCH Errors in a Mis-specified Regression, by David E. A. Giles, Judith A. Giles, and Jason K. Wong.
No. 9202 Quasi Rational Consumer Demand — Some Positive and Normative Surprises, by John Fountain.
No. 9203 Pre-test Estimation and Testing in Econometrics: Recent Developments, by Judith A. Giles and David E. A. Giles.
No. 9205 Optimal Capital Requirements for Admission of Business Immigrants in the Long Run, by K-L. Shea and A. E. Woodfield.
No. 9207 The Sampling Performance of Inequality Restricted and Pre-Test Estimators in a Mis-specified Linear Model, by Alan T. K. Wan.
No. 9208 Testing and Estimation with Seasonal Autoregressive Mis-specification, by John P. Small.
No. 9210 Pre-Test Estimation in Regression Under Absolute Error Loss, by David E. A. Giles.
No. 9211 Estimation of the Regression Scale After a Pre-Test for Homoscedasticity Under Linex Loss, by Judith A. Giles and David E. A. Giles.
No. 9302 Preliminary-Test Estimation in a Dynamic Linear Model, by David E. A. Giles and Matthew C. Cunneen.
No. 9303 Fans, Frames and Risk Aversion: How Robust is the Common Consequence Effect? by John Fountain and Michael McCosker.
No. 9304 Pre-test Estimation of the Regression Scale Parameter with Multivariate Student-t Errors and Independent Sub-Samples, by Juston Z. Anderson and Judith A. Giles
No. 9305 The Exact Powers of Some Autocorrelation Tests When Relevant Regressors are Omitted, by J. P. Small, D. E. Giles and K. J. White.
No. 9306 The Exact Risks of Some Pre-Test and Stein-Type Regression Estimators Under Balanced Loss, by J. A. Giles, D. E. A. Giles, and K. Ohtani.
No. 9307 The Risk Behavior of a Pre-Test Estimator in a Linear Regression Model with Possible Heteroscedasticity under the Linex Loss Function, by K. Ohtani, D. E. A. Giles and J. A. Giles.

* Copies of these Discussion Papers may be obtained for $4 (including postage, price changes occasionally) each by writing to the Secretary, Department of Economics, University of Canterbury, Christchurch, New Zealand. A list of the Discussion Papers prior to 1989 is available on request.