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Abstract

In this paper, using the asymmetric LINEX loss function, we examine the
risk performance of the ordinary least squares estimator (OLSE), two-stage
Aitken estimator (2SAE) and pre-test estimator (PTE) after a pre-test for
homoscedasticity in a linear regression model with possible
heteroscedasticity. It is shown that the 2SAE is dominated by the PTE with
the critical value of unity not only under the quadratic loss function but
also under the asymmetric LINEX loss function.
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1. Introduction

In applied regression analysis using economic data, the assumption of

homoscedasticity is often violated. If inequality of the error variances

between two sample periods is suspected, we may conduct a pre-test for

homoscedasticity prior to the estimation of the regression coefficients. We

may use the ordinary least squares estimator (OLSE) if the null hypothesis of

homoscedasticity is accepted in the pre-test, but we may use the two-stage

Aitken estimator (2SAE) if it is rejected. Then, the resulting estimator is

a pre-test estimator (PTE) after the pre-test for homoscedasticity.

Taylor (1978) derives the exact moments of the 2SAE and examines the

performance of the mean squared error (MSE) of the 2SAE. (Since the 2SAE is

unbiased, its MSE and variance are the same.) Greenberg (1980) and Ohtani

and Toyoda (1980) examine the MSE performance of the PTE. (See also, for

example, Mandy (1984), Yancey et al. (1984) and Ad jibolosoo (1991) for

related studies.) In particular, Ohtani and Toyoda (1980) show that the

optimal critical value of the pre-test is unity in the sense of minimizing

the average relative MSE. They also show that the 2SAE is strictly dominated

by the PTE with the critical value of unity if the alternative hypothesis in

the pre-test is one-sided.

The existing literature on the OLSE, 2SAE and PTE in a heteroscedastic

linear model uses a quadratic loss function. When a quadratic loss function

is used, the same penalty is imposed for both positive and negative

estimation errors of the same magnitude as it is symmetric about the origin.

However, positive (or negative) estimation error may be more serious than

negative (or positive) estimation error of the same magnitude in practical

situations. If so, the use Of the quadratic loss function is inappropriate.

Varian (1974) proposes the very useful asymmetric LINEX loss function and
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Zellner (1986) uses the LINEX loss function to compare the risk functions of

several estimators.

Recently, using the LINEX loss function, Giles and Giles (1993a,b)

examine the risk performances of pre-test estimators of the error variance

after a pre-test for linear restrictions on the regression coefficients, or

after a pre-test for error variance homogeneity. They show that these

pre-test estimators can be strictly dominated by the unrestricted estimator

when a negative estimation error is deemed to be much more serious than a

positive estimation error in the construction of the loss function. This

contrasts with the results obtained under quadratic loss, as then the

unrestricted estimator of the error variance is strictly dominated by the

pre-test estimator if the critical value is chosen appropriately. (See, for

example, Ohtani (1988) and Giles (1991).)

In this paper, we examine the risk performance of the OLSE, 2SAE and PTE

in a linear regression model with possible heteroscedasticity when the

asymmetric LINEX loss function is used. The model and estimators are

presented in section 2 and the risk function of the PTE is derived in section

3. It is shown that the necessary condition for the risk function of the PTE

to have extrema is that the critical value of the pre-test is zero, unity or

infinity. Numerical evaluations in section 4 show that the 2SAE is dominated

by the PTE with the critical value of unity, not only under the quadratic

loss function, but also under the asymmetric LINEX loss function. Some final

comments appear in section 5.

2. The Model and Estimators

We consider the following heteroscedastic linear regression model:

y1 = Xl° "1'

y2 = X213 "2

(1)
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where, for i = I and 2, yi is an nixl vector of observations on the dependent

variable, Xi is an nixk matrix of non-stochastic regressors, f3 is a kxl

vector of common regression coefficients, and ci is an nixl vector of error

terms distributed as N(0, cr2, I_ ). We assume that X and X
2 

are of rank k
1

ni

and ci and c2 are mutually independent.

The OLSE of /3 is

b = (X' X
1 
+X' X

2 
) 1(X' y

1 
y
2 
) ,1 2 1 2 

and the 2SAE is

g- = 1(1/s X 2)r + (1/s2)X1 X
2 
1 -1 [(1/s2)X' y

1 
+ (1/s

L 1 1 1 2 2 j 1 1 

2
where si = (yi-Xibi)' (yi-Xibi)/vi, vi = ni-k and bi = (X1X1)

(2)

(3)

We assume that the null hypothesis in the pre-test is I
u
L: Cr

2 
= 

2
cr2 and

1 

the alternative hypothesis is HA: a.21 > cr22. As shown in Greenberg (1980), the

one-sided alternative appears, for example, in a reparameterized version of

22an error component model. The test statistic si/s2 is F-distributed with vi

and v2 degrees of freedom under the null hypothesis.

The PTE for g is

13* = I
(0,d)

(s
1
/s
2
)b + I

[d,.)(51l52)13 (4)

2 2where d is a critical value of the pre-test, and I(0,d)(s
1
/s
2
) = 1 if 0 <

22
s
1
/s
2 

< d and I (s
2
/s
2
) = 0 if s

1
2
/s
2 

d. I Cs 
"2 

is defined
(0,d) 1 2 2

similarly.

Let P be a kxk matrix with full rank such that

P'X'X P = I
1 1 k '

2
P'X'X

2 
P =

where Ak is the diagonal matrix whose diagonal elements, A1,X2,...,Xk (>0),

are the roots of the polynomial

I X' X
21 
-XX' X

1 
I = o.

2 
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Denoting Z. = X.P (i = 1,2) and 7 = P 1/3, model (1) is reparameterized as

yi = Zi7 + ci, i = 1,2. (5)

The OLSE, 2SAE and PTE for 7 are, respectively,

c = (I
k 
+A
k 
)
-1
(Z'y

1 
+Z'y

2 
) ,

1 2 

7 = [(1/s2)Ik 
+(l/s2)A

k 
1-1[(1/s 

1
2)Z'y

1 
+(l/s

2
)Z1 y

1 2 1 2 2 2

2 2 - 2 2 "
= I

(0,d)
(s

1
/s
2
)c + 

Iid,w)
(s

1
/s
2
)7 
'

(6)

(7)

(8)

2
where si = (y.-Zici)1(yi-Zici)/vi = (yi-Xibi)1(yi-Xibi)/vi, c1 = Z' y

1 
and

1 
-

c2 = Ak
1 
Z21 y2.

Denoting the j-th column vector of Z. as Z.. and the j-th element of 7
j

as 7. (i = 1,2, j = 1,2,...,k), the OLSE, 2SAE and PTE for 7. are

. =
j lj 1 2j 2

= rs2s2/(s2+A .s2)] [(1/s2—,
y +(l/s

2
)Z' .y

aj L 1 2 2 j 1 1 lj 1 2 2j 2 '

2 2 - 2 2 -
7*. = I (s /s )c. + I (s /s )7. .
j (0,d) 1 2j [d) 1 2 j

3. Risk Functions

(9)

(10)

As the PTE reduces to the OLSE when d-co and to the 2SAE when d = 0, the

risk functions of the OLSE and 2SAE can be derived from that of the PTE.

Thus, it is sufficient to derive the risk function of the PTE. Hereafter, we

consider the estimators of individual coefficients in the reparameterized

model (5).

The asymmetric LINEX loss function for 7*. is of the form

L(L1 .) = exp(aA .) - a1. - 1 , (12)
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where

A =
J J J 1

is the relative estimation error, and the parameter 'a' determines the

asymmetry of L(A .) about the origin. If a is positive, positive estimation

error is more serious than negative estimation error of the same magnitude,

and vice versa. If ai ( j a 3) is close to zero, the loss function is

approximately quadratic.

Using the Taylor series expansion, the risk function of ;.*i with the

LINEX loss function is

co
R(7*.) = E [L(A .)] = E[ Z (aA .)1/H-aA

Lo

The i-th moment of 7*. - . is given by the following lemma:
J J

Lemma 1.

The odd and even-ordered moments of I.. - . are:
J J

E[( -1.)
2m+1 

= 0
J J

E = [(20,22)m+(i+x j)2m1] id.(v1/2, v2/2)

x E C
m-q

0
q
r(q+1/2)r(m-q+1/2)

2m 2q j
q=0

+

m-q 2m-q
x E C X 

2m 2q j
q=0 •

(13)

(14)

2(in-c1)
1"1 d*

(v
1
,v
2'
m,q,O,A .) , (15)
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2 2
where 0 = cr

1
/cr
2 

?: 1
' 

N.) is the gamma function, B(.,.) is the beta function,

is the incomplete beta function, d* = v1d/(p1d+1,20), aCb =

a!/(bRa-b)! , a, b = 0,1,2,..., and

1
1

= t

d*

V2/2+2q-1[
x (1-t) v (1-t)+0X

j
v
2
t1
j
-2m

dt .
1

Proof.

See the Appendix.

2 2
Substituting (14) and (15) into equation (13) and noting that cr

1 
= Ocr

2'

we have:

Theorem 1.

The risk function of 7* is

co
R(e.) = E [a

2m
/(2m)!] [2

m
±(1+X.)

2m
HId*(v1/2,P2/2)

m=1

x E C X
m-q 

0
q-m

r(q+1/2)r(m-q+1/2)
2m 2q j

q=0

03

Z )!] [2M+B
1 

( 1, /2,
2 
v /2)1]

m=1

x E C A
m-q 

0
m-q

r(q+1/2)r(m-q+1/2)
2m 2q j

q=0

X v v
2iq 

2
2(m-q)

(16)

To examine the extrema of this risk function, the following lemma is

useful:
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Lemma 2.

By straightforward differentiation, we obtain:

d*
(v

1
/2
'
v
2
/2)/ad

v
1
/2 v

2/
2 v

2
/2 v

1
/2-1 -(v

1
+v
2
)/2

= v
1 

v
2 

0 d (v
1
d+v
2
0) /B(v

1
/2
'
v
2
/2) 
' 

(17)

(v v m e x.vad

v1/2-2q v
2
/2+2(q-m) v

2
/2+2(q-m) v1/2+2(m-q)-1

= -v
1 

v
2 

0

-(v
1
+v
2
)/2

x (v
1
d+v
2
0) (1+X .d)

-2m .

So, using Lemma 1 and Lemma 2, we obtain:

aEp- 2mt ]/act
J J

= [ 2 m 
v
1
/2 v

2
/2 v

2
/2 v

1
/2-1

(217
2
) v

l 
v
2 

0 d [TEB(v
1
/2
'
v
2
/2)]-1

-(v
1
+v
2
)/2 m

x (v
1
d+v
2
0) Z 

2m C2q 
Xm.-clOcir(q+1/2)11m-q+1/2)
j

q=0

[
(1+X ) 

-2m 2(m-q)
(1+X .d) 

,-2m1
. -d 

•

(18)

(19)

From (19), we see that if d = 0, 1 or ., then the first derivatives of

all even-ordered moments of y j - y. are zero for vi ?, 3. Also, as Lemma

-*1 shows that all odd-ordered moments of y - y are zero, we have:

Theorem 2.

For vi 2:: 3, the necessary condition for the risk function of 21 to have

extrema is d = 0, 1, or co.
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Using the quadratic loss function, Ohtani and Toyoda (1980) show that

the 2SAE is strictly dominated by the PTE with d = 1. Although Theorem 2

gives only the necessary condition, it indicates that their result may still

hold when the asymmetric LINEX loss function is used. As further exact

analysis of the risk function seems difficult, we compare the risk functions

of the OLSE, 2SAE and PTE numerically in the next section.

4. Numerical Evaluations

The parameter values used in the numerical evaluations are; (v1,v2) =

(10,10), (10,30), (20,20), (30,10), (30,30); X. = 1.0, j = 1,2„...,k; d = 0

(OLSE), d0.05 (critical value corresponding to the size 0.05), 1.0, co (2SAE);

a = 0.1, 1, 3, 5; 0 = various values. As the risk function given in (16)

does not include the term a2m+1, it is sufficient to examine positive values

of a. The integral in the expression for Jd* is evaluated by Simpson's rule

with 200 equal subdivisions, and the infinite series in (16) converges with a

convergence tolerance of 10
-15
.

Some typical results are shown in Figures 1 to 3. These graphs depict

"
relative risk, defined as R(741.)/R(I.). Thus, the relative risk is less than

J J

unity if the PTE has smaller risk than the 2SAE, and the relative risk of the

2SAE is unity. Note that the horizontal axis measures 1/0, and not 0 itself.

From the figures, we see the following. When a = 0.1 (Figure 1), as

expected, the risk performance of the estimators is similar to the case of

quadratic loss. The 2SAE is dominated by the PTE with d = 1, and the

relative risk of the PTE with d = 1 increases monotonically towards unity

from below as 0 increases. Figures 2 and 3 show that the PTE with d = 1

still dominates the 2SAE even if the asymmetry of the loss function is large.

This supports our conjecture that Ohtani and Toyoda's (1980) result is

extended to the case of this asymmetric loss function. In the context of
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estimating the error variance after pre-tests for linear restrictions on the

regression coefficients, or for error variance homogeneity, Giles and Giles

(1993a,b) show that the result obtained under quadratic loss need not be

robust to the change in the loss function. Thus, our result contrasts with

theirs.

As 'a' increases, the point of intersection of the relative risks of the

OLSE and 2SAE shifts to the right. This indicates that the region of 0 where

the risk of the OLSE is smaller than that of the 2SAE increases as the degree

of asymmetry increases. We find a similar tendency for the point of

intersection of the relative risks of the PTE with 
d0 05 

and 2SAE. However,
. 

the point of intersection of the relative risks of the OLSE and the PTE with

d = 1 is not so sensitive to the increase in a. Also, when a = 5, the

relative risk of the PTE with d = 1 is U-shaped. This is not observed when

the loss is quadratic.

5. Conclusions

In this paper we have extended the analysis of an important pre-testing

problem to the case where the loss function is asymmetric. Estimating the

coefficients of a regression model after testing for possible

heteroscedasticity across sub-samples is common practice, and often the

researcher faces a greater implicit loss by (say) over-estimating certain

coefficients than by under-estimating them, or vice versa. When the loss

function is quadratic (and hence symmetric), it is well known that the

strategy of testing for homoscedasticity, and then using either the least

squares or two-stage Aitken. estimator accordingly, strictly dominates the

strategy of applying the latter estimator without such a test. We have shown

that this result is robust to asymmetry (in either direction) in the loss

9



function, and that the potential risk gains increase with the degree of such

asymmetry. Whilst least squares estimation can still be the preferred

strategy if the degree of heteroscedasticity is mild, the risk associated

with this strategy is unbounded under extreme heteroscedasticity, whether the

loss function is symmetric or not. Work in progress by the authors considers

the robustness of these results to other choices of loss function outside the

LINEX family.

Appendix: Proof of Lemma 1

Define uli = - and uzi = c2i - 7j, which are independently

distributed as N(0, cr.2) and N(0, cr2/A .), respectively. Also, let w =
1 2 j

2 2
s
1
/(0s

2
)
' 

where 0 = Cr
2
/c.
r
2

Then, w is F-distributed with vi and v
2 

degrees
1 2 

of freedom.

Using the above notation, 7* - 7 . reduces to
J

I
(0 d)

(0w)(uii+Xiu2j)/(1+X j) + Ifd,.)(0w)(uu+0Xfu2i)/(1+0A .w).
, 

As I(0,d)(0w)xI
Ed,w)

(Ow) = 0, the i-th moment of 7*. - 7 . is
J J

E[(7-1! - 7.)1 = E[I(0,d)(0w){(u .+A.0 .)/(1+A.)J J 1 j j 2j j

+ E[Ild,a)(0w)l (uii+A jewu2j)/(1+0X jw)11

a E1 + E2.

(A.1)

(A.2)

First, we evaluate the first term in (A.2) denoted as El. Using the

binomial expansion, E1 is

E
l 
= E[I

(0,d)
(0w)(1+X.)-1 E C ur (A u )i .

j r=0 ir lj j 2j
(A.3)

V

•
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As all odd-ordered moments of uji and u2 j are zero, and uii and u2 are

independent we have

r i-r
E[u .0 . I = 0

lj 2j

for all odd i. (If i and r are odd, i-r is even. Also, if i is odd and r is

even, i-r is odd. Thus, El is zero for all odd i.) Noting that third = 0

for all odd r, (A.3) reduces to

)-2m z c x2.(m-
c)E [1(0,d)(0w,u2

, 2(m-1
. 

q=0
2m 2q j 1 ju2 j

(A.4)

with i = 2m and r = 2q.

2 2 2 2
Let v1 = uultri and v2 = Aiu2i/cr2, so that v1 and v2 are x2-distributed

with one degree of freedom. As v1, v2 and w are mutually independent, the

expectation in (A.4) is

E
(0,d)

(0w)(cr
2
1
v
1 
)
q
(cr
2
v
2 2 j

= (0'
2
)
q
(cr2
/A)m-q

Ew[I
(0,d/O)

(w)] Ev [vc.1lE ,
1 2 j 1 i v2 2

where E
X
[X] denotes the expectation of the random variable X.

It is easy to see that

f f
E [v . = 2 r(f+1/2)/r(1/2) ,
v.

E
w(0,d/0)

(w)] = I
d*
(v

1
/2
'
v
2
/2) 
'

(A.5)

(A.6)

(A.7)

where Id.(v1/2,v2/2) is the incomplete beta function and d* = v1d/(v1d+v20).

Substituting (A.6) and (A.7) in (A.5), and then substituting (A.5) in (A.4),

Ei is finally written as

E = [2m(cr2)111/{Tr(l+X
1 2 j mll

11

v
2 

q= 0
/2) E C Am. q

2m 2q j 0



x r(q+1/2)r(m-q+1/2). (A.8)

Next, we evaluate the second term in (A.2) denoted as E
2* 

Using the

binomial expansion, E2 is

. i i-r
E
2 
= E[I

[d,03)
(ew)(1+0X .w)-1 E .0 ur .(0A .wu .) .

j r=0 1 r lj j 2j
(A.9)

By the same reason as in the derivation of El, E2 is zero for all odd I.

Thus, all odd-ordered moments of 7*. - . are zero. Putting i = 2m and r =
J J

2q, (A.9) reduces to

E C (Ca .)2(ni-c1)E 03
Ed,)

(0w)u29u2(m-cl)w2(m-q)2m 2q 1 j 2jq=0

(x )1+0X .w

m
= E 

2m
C
2q
(ox 

j
)2(m-c1)(0.

1
2)q(cr2

2
/X )m-cljr =0

x E [
w IEd/O,c0)(w)[w2(m-c1)

/(1+0X .w)2111 E [vcilE [vill-q]. (A.10)
J vl 1 v2 2

The first expectation (over w) in (A.10) is

JCO [w2(m-q)/(1+0x.w)2mi pv1/2vv/2
2

/B(v
1
/2,v

2
/2)1

j 1 
d/O

-(v
1
+v
2
)/2

x w
v1/2-1

(1,
1
w+v

2
) dw . (A.11)

Making use of the change of variable, t = v1w/(v1w+v2), (A.11) reduces to

p v22(m-c1)/B(v1/2, v2/2)] (A.12)

where

1 p1/2+2(m-q)-1 v
2
/2+2q-1

Jjd*(v1' v2'm'cli°' j) =, t (1-t)

d*

-2m
x [v

1
(1-t)+OX

j
v
2
t] dt .

12



Substituting (A.6) and (A.12) in (A.10), E2 is finally written as

E = [2m(o.2)m+B(v /2,v /2)1] Z C 02m-clAm-cl
2 2 1 2 

q=0 
2m 2q

x v2c1v2(m-cl)r(q+1/2)(r(m-q+1/2)Jd.(vi,v2,m,q,0,Xj) .
1 2

Substituting (A.8) and (A.13) in (A.2), we obtain (15) in the text.

13

(A.13)
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