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ABSTRACT

In regression analysis we are often interested in using an estimator
which is "precise” and which simultaneously provides a model with "good fit".
In this paper we consider the risk properties of several estimators of the
regression coefficient vector under "balanced" loss. This loss function
(Zellner (1991)) reflects both of the above attributes. Under a particular
form of balanced loss, we derive the predictive risk of the pre-test estimator
which results after a test for exact linear restrictions on the coefficient
vector. The corresponding risks of a Stein-rule and positive-part Stein-rule
estimators are also established. The risks based on loss functions which
allow only for estimation precision, or only for goodness of fit, are special
cases of our results, and we draw appropriate comparisons. In particular, we
show that some of the well-known results under (quadratic) precision-only loss
are not robust to our generalisation of the loss function.
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1. INTRODUCTION

In regression analysis we are often concerned both with the precision
with which the coefficient vector is estimated, and with the "goodness of fit"
of the ‘overall model. However, typically this dual interest has not been
taken into account in the construction of estimators in this context, or in
the formulation of the loss function when comparing estimators’ performances

on the basis of "risk".

This has motivated Zellner (1991) to suggest the (quadratic) "Balanced"

Loss Function (BLF), which explicitly takes account of both goodness of fit
and estimation precision. Zellner analyses several standard estimation
problems, including the linear regression model, and develops estimators which
are optimal relative to a BLF. Rodrigues and Zellner (1992) extend this
analysis by generalising the loss function still further, and consider a
further application. In this paper we use the quadratic BLF as the basis for
examining two somewhat related regression problems.

First, we investigate the consequences of adopting a common "pre-testing"
strategy when estimating the regression coefficient vector. Specifically, we
consider the case where either (unrestricted) Ordinary Least Squares (OLS) or
Restricted Least Squares (RLS) is used, depending on the outcome of a prior
test of the validity of certain exact linear restrictions on the coefficients.
The BLF risks of the OLS and RLS estimators are compared with that of the
Pre-Test Estimator (PTE), and the results are shown to differ from their well
known counterparts based on the standard (quadratic) - precision-only loss
function (e.g., Judge and Bock (1978)).

Second, we consider Stein-Rule (SR) and Positive-part Stein Rule (PSR)
estimators for the regression coefficient vector (e.g., Stein (1956) and James
and Stein (1961), and Baranchik (1964) and Stein (1966) respectively), using

(quadratic) BLF risk as the basis of comparison with OLS estimation. It is




found that the standard risk-dominance results that are associated with the
usual quadratic precision-only loss generalise naturally to the BLF case,
provided that the shrinkage factor is chosen appropriately. The appropriate
such choice differs from that under precision-only loss.

By considering the properties of these regression estimators under the
BLF we add to our understanding of the robustness of certain key results to
the choice of performance measure. Other recent examples of this type of
investigation have focused on the use of the asymmetric LINEX loss function
(Varian (1974) and Zellner (1986)), of which quadratic loss is a special case.
Recent LINEX risk evaluations in the regression context ‘include those of Giles
and Giles (1993a,b), Ohtani et al. (1993) and the references cited therein.

Section 2 introduces the model and notation more formally, and the
"pre-test" estimation problem is discussed and analysed in Section 3. Section
4 deals with the SR and PSR estimators, and some general discussion is given
in Section 5. Proofs of the main analytic results appear in Appendices A and

B.

2. MODEL AND NOTATION
We are concerned with estimating the coefficients in the linear
regression model

y=XB +¢ (L.1)

where £ ~ N(O,ozl), X is non-stochastic, of full rank, and (Txk), B is (kxl)
and y and € are (Txl).

If B is some estimator of B, and L(B,8) is a loss function which takes
zero value if B = B and is otherwise strictly positive, then the risk

associated with B is

R(B) = E[L(E,B)]

where the expectation is taken over the sample space.




For example, if we have quadratic loss, then

LQ(E,B) = (B-B)’ A(B-B) (1.3)

where A is a non-stochastic matrix of weights. Choosing A = S = X’X, it is
well known that the risk associated with using XB as a predictor of E(y|X) is
the same as the risk of using B as an estimator of B if the regressors are
orthonormal. We shall exploit this idea to make the results below independent
of the X data.

The loss function in (1.3) focuses only on estimator (or predictor)

precision. Zellner’s (1991) BLF is a generalisation of (1.3) to
Lp(B.B) = w(y-XB)' (y-XB) + (1-w)(B-B)’ S(B-B) (1.4)

where w € [0,1] is non-stochastic, and the first term in (1.4) clearly allows

for "goodness of fit".

3. PRE-TEST ESTIMATION

Suppose that in estimating (1.1), we are also interested in the
possibility that B should be constrained. In particular, suppose that,
potentially, B satisfies R8 = r, where R and r are known and non-stochastic, R
is (mxk) and of rank m, and r is (mxl). Such restrictions are encountered
frequently in applied regression analysis. In particular, this formulation
allows for "zero" restrictions on one or more elements of B. So, the
estimation of the regression model after a prior test for the significance of
regressors is covered by our analysis here.

If the restrictions in question are valid, there is an incentive to
impose them and use the Restricted Least Squares estimator (which is also the
restricted maximum likelihood estimator) of B. Ignoring them in this case,
and using the Ordinary Least Squares (unrestricted maximum likelihood)
estimator will result in inefficient estimation. On the other hand, if the

restrictions are invalid, their imposition will result in an RLS estimator




which is biased, but it may have smaller MSE than OLS (e.g., see
Toro-Vizcarrondo and Wallace (1968)).

Clearly, there is an incentive to (pre-) test the hypothesis, HO: RB =r
(vs. H " RB # r) and choose the RLS or OLS estimator according to the outcome
of this test. In the special case of a single zero restriction on one
coefficient when k = 2, this problem was first considered by Bancroft (1944),
who derived the bias of the least squares pre-test estimator of the other
coefficient. The (quadratic) risk properties of the above general pre-test
estimator of B are discussed, for example, by Judge and Bock (1978), the
choice of an optimal significance level for the pre-test is considered by
Brook (1976), and much of the recent pre-testing literature associated with
inference in the context of the regression model is surveyed by Giles and
Giles (1993c).

A uniformly most powerful invariant size-a test of Ho against H A is based

on the statistic f = [(r—Rg)'(RS-IR’ )_l(r—RE)]/(mg'z). where B = SX’y is the

OLS estimator of B in (1.1) and o2 = (y-XE)’(y—Xg)/(T—k). The statistic f is

non-central F-distributed with m and v (= T-k) degrees of freedom, and

non-centrality parameter A = (r-RB)’ (RS'R) (r-RB)/(207). We reject Hy if f

> ¢, where Icp(f)df = (1-«) and p(f) is central F with m and v degrees of
0

freedom. ‘IThe associated pre-test estimator of B is B = i[O c](f')ﬁ’ +

Ie m)(t‘)i§ = B + (BB, . .(f), where B* = B + S'R’[RSR/I™(r-Rf) is the

[0,c]
RLS estimator of B, and I[a,b](” is an indicator function which is unity if f
€ [a,bl, and zero otherwise. .

While the risks of §, B* and ;3 are well documented under quadratic
(precision-only) loss (and Giles (1993) considers the corresponding problem
under absolute error loss), our purpose here is to re-consider the situation

under the more general BLF in (1.5). Under such a loss structure, the risks

of these three estimators are given in the following theorem.




Theorem 3.1

Under the quadratic BLF, (1.5), the risks of E, B* and B are given by

R(B) = o-z[wv + (l-w)k] (3.1)

R(B%) = R(B) + 0'2[m(2w-1)+27\]

R@B) = R(@ + 02[[m(2w-1)+4l(1—w)] P, + 2A(2w-DP 4]

where Pi = Pr.[F < (cm/(m+i)]; i = 0,,... and F/ is

(n,,n

(m+i,v;A) r 2;6)

non-central F with n and n_, degrees of freedom, and non-centrality parameter

2
8.

Proof

See Appendix A.

Remark 3.1
Clearly, R(8*) = R(B) when A = 7\0 = m(1-2w)/2, and 7\0 =0 if w = 0.5.
For w > (=) 0.5, § risk-dominates B* for all A = () 0. For w < 0.5, R(B*) <

R(E) for A < 7\0.

Remark 3.2

Clearly, § risk-dominates t} and é risk-dominates B* for all A = () 0 if
w > () 0.5).

When w < 0.5, the situation is ambiguous, as is _typified in1 Figure 1,
which corresponds to the traditional quadratic loss situa’cion.2 In that

particular case (w = 0) it is known that R(ﬁ;) = R(B) at A = A, where Al €

v
[m/4,m/2] (e.g., see Judge and Bock (1978, p.73)). These bounds on the
intersection of R(8) and R(B) are readily generalised when w € [0,0.5], and a

BLF is used.




Corollary 3.1
When w = 0.5, the intersection of R(E) and R(B) occurs at A = A*, which

is bounded by m(1-2w)/4 =< A* = m(1-2w)/2.
Proof
First,
A =R@ - RB) = crz{[m(l-ZW)-ZA]PZ + (P 4-P2)2A(l—2w)}

and as P2 > P4, a sufficient condition for A = 0 is A = m(1-2w)/2, if w =< 0.5.

Second,

2
A =c {[m(l-Zw)—4>\]P2 + 4}\w(P2-P4)+2AP4} ,

and as P2 > P4, a sufficient condition for A = 0 is A = m(1-2w)/4, if w =< 0.5.

These results are illustrated further in Figures 2 to 4. The well known
result associated with this particular pre-test estimation problem, namely
that pre-testing can never be the best of the three strategies considered, and
.may be the worst (as in Figure 1) is clearly negated if goodness of fit is
given sufficient weight in the loss function (i.e., if w = 0.5). Then,
pre-testing is always "second-best" to simply applying OLS with no prior
testing of HO’ and naively applying the RLS estimator is the worst of the
three strategies in terms of BLF risk. It is also clear from these figures
that when w = 0.5 the "optimal” choice of pre-test cri'fical value is ¢ =0,
which corresponds to OLS estimation. Finally, when 0 < w < 0.5 the "optimal"
choice of ¢ (under a mini-max regret criterion) will be less than that

suggested by3 Brook (1976).




4. STEIN-RULE ESTIMATION

A Stein-rule estimator of 8 in (1.1) is
beg = [1-p(y-x§wy-x§v§'s§]§ (@0

where p € [O, 2(k—2)/(v+2)], for k = 3. It is well known that R(bSR) < R(B)
under quadratic loss for k = 3, and that the "optimum" choice of p is p* =
(k-2)/(v+2), in terms of maximising the risk-gain in using bSR over B.

Further, the positive-part Stein-rule estimator,

~

bpsg = max[O, 1-p(y-XB)’ (y-XB)/B’ sE]B (4.2)

is known to risk-dominate bSR under the same conditions in the case of
quadratic loss.

To facilitate our analysis of bSR and b under the BLF, it is

PSR

convenient to define a different pre-test estimator of B, namely

b = Ty en o)) -a/ 1B (4.3)

where I is a conventional indicator function; f* = [(E’SE)/(k;Z)]; a = (pv/k);

c* is the critical value for the pre-test of H.: X8 = 0 vs H A XB # 0; and f*

0
~ F’ =R’ 2
F(k,v;e)' where 6 = B/SB/2¢°. Then,

-~

(i) b= ;ifp=o.

(ii) l;-> SR ; if c* 5 «.

-

'Y ° = s *
(iii) b bPSR’ if ¢ 1.

Theorem 4.1

Under the quadratic BLF, (1.5), the risk of g is given by

R(b) = o 3 e’ 2
=cdwlv+k) + 20 + 2 £ (1-2w)gd(0,l) +p gd(z,l)

d=0 d!

+ (l-w)[ZpegdH(l,O) - 29gd+1(0'0) - 2pgd(1,l)]]}




g (i) = r(§+r+j-i)r(g+i)/(r(-‘zf»«z)r(-;-)]

x |1-1 Ereeji 2], 6j = oL2,...,
c02 2

I1_(.,.) is the incomplete beta function and c. = p/(p+c*).

g 0

Proof

See Appendix B.

Remark 4.1

Clearly, R(b) = R(B) when p = O.

Corollary 4.1

When c* 5 o, R(b) » R(bSR), which is given by

2 2,
R(bSR) =0 {vw+k(1—w)+pv(v+2) [p-Z(l—w)(k-Z)/(v+2)] E[l/x(k;a)]} (4.5)

Proof

When c* > o, o = 0 and I_ (.,.) = 0. Then, (4.4) becomes
0

R(l;|c->eu) = o‘z{v [w+2p(w-l)] + k(1-w)

2 [ —Oed ‘o e-Ged 1
+pY2) T S(e2d-2)7 + 4l-wlepy £ Zgr-(ks2d)
d=0 ¢ =0 ¢

= o-z{v [w+2p(w—1)] +k(1-w)

+ pP(v+2)E [1/74?}'(. 9)] +4(1-w)BpvE (1/;%’62' e)]} , (4.6)

-6_d

ed? (J+2d-2)", J = 3,4,... (Bock et al. (1984)).

as E[l/x?",e)] =
! d=0




Further, (Judge and Bock (1978, p.202))

2, = 1—(l— 2,
26E[1/x(k+2;e)] = 1-(k 2)E[1/x(k;9)]

and so using this relationship in (4.6) gives (4.5) directly.

Remark 4.3

We can write (4.5) as

R(bgp) = R(E) + czpv(v+2)[p-zu-w)(k—zv(m))E[l/xfl'(;e)] 4.7

which implies that bSR risk-dominates B for all p € [0, 2(1—w)(k—2)/(v+2)],

k = 3.

Remark 4.4
Using (4.7) it is straightforward to show that the maximum risk gain in

using bSR over B occurs when p* = (I-w)(k-2)/(v+2).

Remark 4.5

When w = 0, (4.5) becomes

R(bsR |w=0) = a-z{k+pv(v+2) [p-Z(k—-Z)/(v+2)] E(l/x?l’(;e)]_

which is the usual expression for R(bsR) under quadratic loss. (See, for

example, Judge and Bock (1978, p.188)).

Remark 4.6
= * = = =g
When w =1, p 0, and bSR bPSR B.
These results are illustrated in Figures S and 6 where p = p*. Clearly,
if the value of p which is optimal when w = O is used instead when w = 0, then

there is no guarantee that bSP and b will risk-dominate 5 This is

PSR
illustrated in Figures 7 and 8.




S. DISCUSSION

In this paper we have examined the risk properties of several estimators
of the coefficient vector in the standard linear regression model under the
so-called "balanced" loss function. This loss structure takes account of
goodness of fit, as well as estimation precision.

In looking at this estimation problem after a preliminary test for the
validity of a set of exact linear restrictions on the regression coefficients,
we find that the well known risk results which hold under conventional
(precision-only) quadratic loss also hold under a balanced loss function as
long as less than 507 weight is given to goodness of fit. On the other hand,
if less than 507 weight is given to estimation precision in the loss function,
then the strategies of pre-testing or applying the restricted maximum
likelihood estimator are strictly dominated by the strategy of simply applying
the unrestricted maximum likelihood estimator. This, of course, reflects the
fact that here the maximum likelihood and least squares estimators coincide,
and the underlying goodness of fit component in the loss function is quadratic
in form.

We have also shown that the unrestricted maximum likelihood estimator is
itself inadmissible relative to balanced loss, unless all of the weight is
given to goodness of fit. This result is established by considering both

Stein-rule and positive-part Stein-rule estimators of the coefficient vector

(which coincide with the maximum likelihood estimator when estimation

precision gets zero weight in the loss function). Our results show that if at
least 507 weight (w) is given to goodness of fit then the optimal estimator
among those considered in this paper is the positive-part Stein-rule estimator
with a shrinkage factor of p* = (1-w)(k-2)/(v+2), where k is the number of

regressors, and v is the degrees of freedom. It is never preferable to




to pre-test. This is a natural generalisation of the corresponding
conventional result under quadratic loss. Moreover, our findings tentatively

suggest a case for the positive-part estimator when w < 0.5.

Clearly, the balanced loss function proposed by Zellner (1991), and’

applied by Rodrigues and Zellner (1992), has many interesting applications.
The use of a penalty function which allows for both the goodness of fit of the
model, as well as the precision of parameter estimation, has considerable
appeal in regression analysis. Work in progress by the authors explores some

of the associated pre-test issues in various directions.




APPENDIX A: PROOF OF THEOREM 3.1
R(R) = wp:[(y-xé)'(y-xﬁ)] + (1—w)E[(§-B)'S(§-B)]

where S = X’X, B = S'lx’y and 0 = w = 1. Now, E[(y-Xé)’(y—Xﬁ)] = o-zv. v =
T-k, as (y-XE)'(y-Xﬁ)/a‘2 = u’ Mwo?® ~ x?v) where M = I-X(X’X)'X’. Further,
E[(g-ﬁ)‘S(E—B)] = o’k (see, for example, Judge and Bock (1978), Giles and

Giles (1993c)). Equation (3.1) then follows directly.

R(B*) = wE[(y-XB‘)’(y-XB*)] + (l-w)E[(B‘-B)'S(B*-B)]

- _ 1 - ~ 2,
where B* = B8 + S 1R‘[RS lR’] 1(r—RB). As (y-XB*")'(y-X/B“*)/t:l‘2 ~ x(v+m;l) where
A = (RB-r)(RSTR')'(RB-r)/(2c?), we have that E[(y-XB*)'(y—XB*)
cZ(v+m+22). It is also straightforward to show that E[(B'-B)'S(B*-B)
c2(k-m+2A) (see, for example, Judge and Bock (1978), Giles and Giles (1993c)),
and so R(B*) follows.
Finally,

R(B) = ws[(y-xs)'(y-xé)] + (l-w)E[(B-B)’S(B-B)] )
Let l: = y-XB and U = y-XE, so that

W = W0 - 207 X(B*-R)I

[0,c)(P) + (B*-B)S(B"B;g ¢)(F)

=30 + (B*-B)' S(B*-B), ., ()

[0,c]
as u’X = 0. Then,

E[(y-xé)'(y-xé)] = E(a’u)
= E(u'u) + E[(s*-E)'S(B*—E)Im c](f)] .
E[(s*—'é)'sm*-én[o ol (f)]

- _RRY 15,1 bR
E[I[O‘c](f)(r RE)’ (RSR) (e RB)]

2
o (mP2+2kP 4)




using Lemma 1 of Clarke et al. (1987), with

P. = Pr. [F’
i

(m+vin) = (cm/(m+i)], i=0,12,...

Further, from Judge and Bock (1978) for example,

E[(é-ﬁ)'S(é-B)] = 02[k+(47\—m)P2—2AP4]. (A.4)

The desired result follows by substituting (A.2), (A.4) and E(W'Y) = ov into

(A.1).

APPENDIX B: PROOF OF THEOREM 4.1

Thé SR estimator of B is
bSR = (1-pu’u/B’SB)B

where p is a constant such that 0 = p = 2(1-w)(k-2)/(v+2) for k = 3 and the

PSR is

bPSR = max[o, 1-pu’ wB SB]B .

Let a = pv/k and f* = (B’SB/k)/(4’ W/v) so that

bPSR = I(a,m)(f‘)(l—a/f‘)ﬁ

where I(a m)(f") = 0 if f* = a and 1 otherwise. To derive the risk of the SR
and PSR estimators we define a PTE of B

b = *)(1-a/f*)R

b I(a/c,’w)(f N1-a/f*)B
where c* is the critical value for the pre-test of HO: XB = 0 vs HA: XB # 0

(see, for example, Judge and Bock (1978, p.184) and Ohtani (1993)). Then, f*

’ -— ’ z
~ F(k,v;e) where 8 = B’SB/(20“) and note that
(63)] = B when p = 0,
> bSR when c* 5 o,
= bpep When c* = L.




ws[(y-xé)'(y-xé)] + (1-w)s[(£~m'5(8—m]
le + (l-w)T2 .

We consider first TZ:

T, = E[(B-B)'S(G-B)]

= E(b’Sb)-28"SE(b)+B’ SB .

(£*)(u’ 1)
)

E(b’Sb) = E{I(a/c"m)(f*)B'SB =201 n

+ pzl(a/c.,m)(f*)(ﬁ’ﬁ)z(é' 85)"}

i o AT
) E{I(a/<:**.uu)(fm)’3 S’B'zp’(a/c'*,en)“m)[E'sfa]'3 ¢

™2
2 u'u )y, o
P I(a/c*,m)(f‘) [~ ..,] 8 SB)} .

B’ SB

To evaluate this expression further we require the following Lemma:

Lemma 1.

For i,j = 0,1,2,... ; k > 2(i-j),
E (1o, 00 /B ' s

= (Za'z)j ; e %o iJj
= I 8 d(1,J)
d=0 )

k V..
T(5+d+j-i)T(5+i)
glid) = 2 ——2 [1-1x(.12§+d+5-i,§+i)] ,
I‘(§+d)l‘(§)

x = p/(p+c*) and I(.,.) is the incomplete beta function.




Proof

Let ¥ = Wi/o® ~ 7 ) and T = B'si/e” ~ xfl’(;e). Then,
E[‘(a/c-_m)(f’)(ﬁ’G/ﬁ'S’é)’(E'SE)J]
[ o (f‘)(w/r) (zo )J]

[(p /e o@D/ (26 )J]

-0 d
2 e 9(0_)_]

- [ (k+v)/2+d
d=0

k v
I'(-Z-fd)l'(z)]

x ‘[ I VV/2+1_11J-1+V2+d-1exp[—(7+1:)/2] dydt ,

(t/7)>(p/c*)

as ¥ and T are independently distributed quadratic forms.

-1
Let Ay = e-eed(o‘z)‘] d)l"( )d'] ,Z) = (t/7) and z, =7, so

that (B.4) is

[ (k+v)/2+d k

(-]
P72+ 1 k/2+d-1+j-i ~
2 Ad ,[ J' z2,) exp [ (2122+22)/2](22)d22dzl

p/c* 0

; A (k+v)/2+J+d—l k/2+d-1+j-i
d 3
p/c* 0

X exp [—(1+zl)22/2] dzzdz1

Now, let zy = (1+zl)22/2 and z = 2. Then (B.5) is

o
ZA

J"” k/2+d-1+j~i
d %
d=0

U+zl)-[(k+v)/2+j+d]

p/c*

(k+v)/2+j+d ® (k+v)/2+j+d-1
2 dz1 J EA exp(—z:;)dz3

o

00 . o N
v+k J+d] J‘ zlk/2+d—1+J—1(2/(”21))(kw)/zﬂafddz1 )

= dEOAdF[—§—+
p/c*




Finally, let z, = zl/(l+zl) and x = p/(p+c*), so that (B.6) is

dz

ool . .
- Adl"[l"k d] (k+v)/2+J+dJ' Z4k/2+d+J i 1(1_24)v/2+1l .

d=
X

= A r[UKe )k i2nind gk vy
il 2ty

o)

where B(.,.) is the beta function. The lemma then follows directly.

Applying Lemma 1 repeatedly to (B.3) we have

[ -Ged 2
E(b’Sb) = 20 5 & g.(0,1)-2pg ,(1,1)+p°g (2,1 } .
qo @' |5 d d

To complete the expression for T2 we need SE(b).

SE® =5 E[I( aen )T, a/c,'m)(f’)(a/f')ﬁ]

=s j_J‘ Bp(B)p(a’ DA@)(G’ T)
R

-s pI J' (3 3/B SB)p(B)p(3’ WdRA(R’ B) (B.7)

where R is the region, R = {(E,G’G)]é’sﬁ/ﬁ’ﬁ” > p/c“} and p(E) and p(G’G) are

the probability density functions of § and u‘a respectively. We require the

following Lémma to proceed further. ‘

Lemma 2

Let Q(i) be defined by

Ql) = I J'E(G'Gxé'sé)‘p(é)p(ﬁ'ﬁ)déd(ﬁ'ﬁ), i=o012.. .




e-Ged

(-]
sQi=sg z S g

d=0

(i,0) .

Proof

Let

Gli) = E[I( a/c,’m)(f*)(E'G/E’SE)l]
= [ [ @ad st pidipdr drafa
R

1
. -1
= I I (G’G/E’SE)‘[(ZK)k/Zlvzs'llﬂ
R

x exp[-(é—s)'S(E-m/(zcrz)]p(G'EmEd(G'G)

as B ~ N(B,o°s™h). Then,

1
aG(i) wym o, o i k/20 21,7
- J‘J (O sB)‘[(Zn) |o®s ‘]]
R

x {(SE/O‘Z)exp [— —IE(E-B)'SU;‘B)]
20
- (SB/c*z)exp [— %(E-B)’ S(E-B)] }p(ﬁ’ u)dBd(u’ 1)
20

= (S/oz)f IE(G'G/E'sé)ip(é)p(ﬁ'G)dﬁd(ﬁ'ﬁ) - (5B/¢%)G(i)
R

= (s/¢9)Q(i) - (SB/e)G() . (B.8)
Further,

© e-Bed
Gi) = = a7 gd(i,O)
d=0 :

and 86/8B = SB/(J'2 so that using (B.9) we have




-6,.d

e 6
d!

(<]
= —(SB/c%) T

g (i,0)
d=0 d

2 e e-eed
(SB/c”) = —r0n

g,..(i,0)
d=0 d! d+1

© -0.d
-(sB/a)Gi) + (sprehy £ -2

— &,.,(1,0) .
d=0 d! d+1

Equating (B.8) and (B.10) gives the required result.

Using Lemma 2 with i = 0 and i = 1 in (B.7) we have

© -6_d © -6_d

SE(b) =S8 £ & (0,0) - pSB T d? 84,,(1,0)

]
a7 &

[]
d=0 d! d+1 d=0

so that

® 6 d
.2 e 0 l ~ 2
T2 = 20 dio 0 gd(O,l) Zpgd(1,1)+p gd(z,l)}

o -6.d
-2p'spz &0 {gdH(O,O)—pgdH(l,O)} + B'SB

d=0

© -0 d
= 20‘2{6 + 3 &8 [gd(o,1)-2pgd(1,1)+ngd(2.1)

d=0 d!

- 26gd+1(0,0)+ 26pgd+l(1,0)]} .
Finally, we require

T, = E(y-Xb)’ (y-Xb)

EG'3) + EF ) - E[B'SBI( a/c-,m)“"]

B o 2 2
E[B By oo o T2/ )] . (B.12)

As (U'u/cd) ~ xﬁv) and (8’SB/c%) ~ xf{(. oy it follows that E(W'%) = v and
E(B’SR) = o%(k+20).

Further, using Lemma 1




o 2 ® e %
E[B SBI(a/C‘,m)(f*)] = 20 d§0 dr gd(oyl)

o -8 _d
R R 2 2 2 2 e 6
E[B SBI(a/C',m)(f*)(a /1% )] = 20 P dfo T! gd(Z.l)

so that (B.12) becomes

-6.d

«©
z & f [gd(O,l)-ngd(Z,l)]] : (B.13)

1 d=0

T, = 0‘2[v+k+29—2

Substituting (B.11) and (B.13) into (B.1)

and rearranging terms gives the

required result.
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The evaluations for the figures in this paper were undertaken with
FORTRAN code written by the authors, incorporating routines from Press et
al. (1986), and executed on a VAXstation 4000 under VMS
S.5. In all of the figures ¢ = 1, which results in no loss of
generality.

In Figures 1-4, two choices of c are considered: c¢ = 4.35 (¢ = 57), and
¢ = 1.895 (x = 18.5%). The latter choice is Brook’s (1976) "optimal" c in
the case of quadratic loss.

That is, regardless of the value of m or v, the "optimal" value of c will
lie between zero and two in value, approximately. .




FIGURE 1
RISKS UNDER BALANCED LOSS FUNCTION
wW=00m=1,v=20k=3)

FIGURE 2
RISKS UNDER BALANCED LOSS FUNCTION
w=05m=1,v=20k=3)




FIGURE 3
RISKS UNDER BALANCED LOSS FUNCTION
W=075m=1,v=20k=23)

FIGURE 4
RISKS UNDER BALANCED LOSS FUNCTION
W=10,m=1,v=20,k=3)




FIGURE 5
RISKS UNDER BALANCED LOSS FUNCTION
(W=0.0,k=3,v =20, p = 0.045045)

FIGURE 6

RISKS UNDER BALANCED LOSS FUNGTION
(W =0.75,k = 3, v = 20, p = 0.01136363)




FIGURE 7
RISKS UNDER BALANCED LOSS FUNGTION
(W=0.75,k = 3, v = 20, p = 0.045045)

FIGURE 8
RISKS UNDER BALANCED LOSS FUNCTION
(w=1.0,k = 3,v =20, p = 0.045045)










