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which results after a test for exact linear restrictions on the coefficient
vector. The corresponding risks of a Stein-rule and positive-part Stein-rule
estimators are also established. The risks based on loss functions which
allow only for estimation precision, or only for goodness of fit, are special
cases of our results, and we draw appropriate comparisons. In particular, we
show that some of the well-known results under (quadratic) precision-only loss
are not robust to our generalisation of the loss function.
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1. INTRODUCTION

In regression analysis we are often concerned both with the precision

with which the coefficient vector is estimated, and with the "goodness of fit"

of the overall model. However, typically this dual interest has not been

taken into account in the construction of estimators in this context, or in

the formulation of the loss function when comparing estimators' performances

on the basis of "risk".

This has motivated Zellner (1991) to suggest the (quadratic) "Balanced"

Loss Function (BLF), which explicitly takes account of both goodness of fit

and estimation precision. Zellner analyses several standard estimation

problems, including the linear regression model, and develops estimators which

are optimal relative to a BLF. Rodrigues and Zellner (1992) extend this

analysis by generalising the loss function still further, and consider a

further application. In this paper we use the quadratic BLF as the basis for

examining two somewhat related regression problems.

First, we investigate the consequences of adopting a common "pre-testing"

strategy when estimating the regression coefficient vector. Specifically, we

consider the case where either (unrestricted) Ordinary Least Squares (OLS) or

Restricted Least Squares (RLS) is used, depending on the outcome of a prior

test of the validity of certain exact linear restrictions on the coefficients.

The BLF risks of the OLS and RLS estimators are compared with that of the

Pre-Test Estimator (PTE), and the results are shown to differ from their well

known counterparts based on the standard (quadratic) - precision-only loss

function (e.g., Judge and Bock (1978)).

Second, we consider Stein-Rule (SR) and Positive-part Stein Rule (PSR)

estimators for the regression coefficient vector (e.g., Stein (1956) and James

and Stein (1961), and Baranchik (1964) and Stein (1966) respectively), using

(quadratic) BLF risk as the basis of comparison with OLS estimation. It is
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found that the standard risk-dominance results that are associated with the

usual quadratic precision-only loss generalise naturally to the BLF case,

provided that the shrinkage factor is chosen appropriately. The appropriate

such choice differs from that under precision-only loss.

By considering the properties of these regression estimators under the

BLF we add to our understanding of the robustness of certain key results to

the choice of performance measure. Other recent examples of this type of

investigation have focused on the use of the asymmetric LINEX loss function

(Varian (1974) and Zellner (1986)), of which quadratic loss is a special case.

Recent LINEX risk evaluations in the regression context include those of Giles

and Giles (1993a,b), Ohtani et at. (1993) and the references cited therein.

Section 2 introduces the model and notation more formally, and the

"pre-test" estimation problem is discussed and analysed in Section 3. Section

4 deals with the SR and PSR estimators, and some general discussion is given

in Section 5. Proofs of the main analytic results appear in Appendices A and

B.

2. MODEL AND NOTATION

We are concerned with estimating the coefficients in the linear

regression model

y = xi3 + (1.1)

where c N(0,cr2I), X is non-stochastic, of full rank, and (Txk), f3 is (kxl)

and y and c are (Txl).

If Ti is some estimator of 13, and L(j3) is a loss function which takes

zero value if 1 = g and is otherwise strictly positive, then the risk

associated with j§ is

R(0) = E [L(f3)1 (1.2)

where the expectation is taken over the sample space.
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For example, if we have quadratic loss, then

L = A(13--13) (1.3)

where A is a non-stochastic matrix of weights. Choosing A = S = X' X, it is

well known that the risk associated with using X-fi as a predictor of E(y I X) is

the same as the risk of using 13- as an estimator of f3 if the regressors are

orthonormal. We shall exploit this idea to make the results below independent

of the X data.

The loss function in (1.3) focuses only on estimator (or predictor)

precision. Zellner's (1991) BLF is a generalisation of (1.3) to

L
B
(F3,13) = w(y-X.-13--)1 (y-X13-) + (1-w)16-vs(-6-13) (1.4)

where w E [0,1] is non-stochastic, and the first term in (1.4) clearly allows

for "goodness of fit".

3. PRE-TEST ESTIMATION

Suppose that in estimating (1.1), we are also interested in the

possibility that g should be constrained. In particular, suppose that,

potentially, 13 satisfies Rg = r, where R and r are known and non-stochastic, R

is (mxk) and of rank m, and r is (mxl). Such restrictions are encountered

frequently in applied regression analysis. In particular, this fnrm'ilation

allows for "zero" restrictions on one or more elements of 13. So, the

estimation of the regression model after a prior test for the significance of

regressors is covered by our analysis here.

If the restrictions in question are valid, there is an incentive to

impose them and use the Restricted Least Squares estimator (which is also the

restricted maximum likelihood estimator) of 13. Ignoring them in this case,

and using the Ordinary Least Squares (unrestricted maximum likelihood)

estimator will result in inefficient estimation. On the other hand, if the

restrictions are invalid, their imposition will result in an RLS estimator
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which is biased, but it may have smaller MSE than OLS (e.g., see

Toro-Vizcarrondo and Wallace (1968)).

Clearly, there is an incentive to (pre-) test the hypothesis, Ho: 1213 = r

(vs. HA: R13 * r) and choose the RLS or OLS estimator according to the outcome

of this test. In the special case of a single zero restriction on one

coefficient when k = 2, this problem was first considered by Bancroft (1944),

who derived the bias of the least squares pre-test estimator of the other

coefficient. The (quadratic) risk properties of the above general pre-test

estimator of g are discussed, for example, by Judge and Bock (1978), the

choice of an optimal significance level for the pre-test is considered by

Brook (1976), and much of the recent pre-testing literature associated with

inference in the context of the regression model is surveyed by Giles and

Giles (1993c).

A uniformly most powerful invariant size-a test of Ho against HA is based

on the statistic f = [(r-173)' (RS-1R' 11(r-R131 /(m'cir'2), where 13- = S-1X' y is the

OLS estimator of 13 in (1.1) and .0; 2 = (y-Xli)' (y-Xii)/(T-k). The statistic f is

non-central F-distributed with m and v (= T-k) degrees of freedom, and

non-centrality parameter A = (r-R13)' (RS-1R)-1(r-143)/(2cr2). We reject Ho if f

> c, where f p(f )df = (1-a) and p(f ) is central F with m and v degrees of

freedom. i ne associated pre-test estimator of g is (3 
= I[0,c](/)/3''

= (13*--13')I[ c i(f ), where /3* =13 + S-11V [RS-1R' ]-1(r-Ref) is the

RLS estimator of 13, and I[a,b ( f ) is an indicator function which is unity if f

[ a, b ], and zero otherwise.

While the risks of 13, /3* and fi are well documented under quadratic

(precision-only) loss (and Giles (1993) considers the corresponding problem

under absolute error loss), our purpose here is to re-consider the situation

under the more general BLF in (1.5). Under such a loss structure, the risks

of these three estimators are given in the following theorem.
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Theorem 3.1

Under the quadratic BLF, (1.5), the risks of 13, 13* and g are given by

R(Th = crlwv + (1-w)k]

R(13*) = R(13') + cr2[m(2w-1)+2A]

R(13) = R() + o2[(m(2w-1)+4A(1-w))P2 + 2A(2w-1)P4]

where Pi = Pr. [F' i = 0,1,... and F' is
(m+i,v;X) < 

(cm/(m+i));
(n

l' n2' 
•6)

non-central F with n
1 
and n

2 
degrees of freedom, and non-centrality parameter

S.

Proof

See Appendix A.

Remark 3.1

Clearly, R((3*) = R(3) when X = Ao = m(1-2w)/2, and Xo = 0 if w = 0.5.

For w > (a--) 0.5, 13 risk-dominates /3* for all A a (>) 0. For w < 0.5, R((3.) <

R(Th for X < Ao.

Remark 3.2

Clearly, 73# risk-dominates 13- and 13- risk-dominates g* for all X a (>) 0 if

w > (at) 0.5).

When w < 0.5, the situation is ambiguous, as is .typified in' Figure 1,

which corresponds to the traditional quadratic loss situation.2 In that

particular case (w = 0) it is known that R((3) = R(i) at X = A1, where Xi E

[n1/4,m/2] (e.g., see Judge and Bock (1978, p.73)). These bounds on the

intersection of R(ti) and R((3) are readily generalised when w E [0,0.5], and a

BLF is used.
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Corollary 3.1

When w 0.5, the intersection of R(i) and R(g) occurs at A = A*, which

is bounded by m(1-2w)/4 A* .5- m(1-2w)/2.

Proof

First,

A = R(Th - R(13) = cr
2 
[m(1-2w)-2+

2 
+ (P

4
-P
2
)2A(1-2w)1

and as P
2 

> P
4' 

a sufficient condition for A 0 is A ?: m(1-2w)/2, if w 0.5.

Second,

A = cr 
2
{ [m(1-2w)-4X]P

2 
+ 4Aw(P

2
-P
4
)+2XP 

'

and as P
2 

> P
4' 

a sufficient condition for Aa 0 is A m(1-2w)/4, if w 0.5.

These results are illustrated further in Figures 2 to 4. The well known

result associated with this particular pre-test estimation problem, namely

that pre-testing can never be the best of the three strategies considered, and

. may be the worst (as in Figure 1) is clearly negated if goodness of fit is

given sufficient weight in the loss function (i.e., if w a 0.5). Then,

pre-testing is always "second-best" to simply applying OLS with no prior

testing of Ho, and naively applying the RLS estimator is the worst of the

three strategies in terms of BLF risk. It is also clear from these figures

that when w 2-- 0.5 the "optimal" choice of pre-test critical value is c = 0,

which corresponds to OLS estimation. Finally, when 0 < w < 0.5 the "optimal"

choice of c (under a mini-max regret criterion) will be less than that

suggested by
3 

Brook (1976).
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,

4. STEIN-RULE ESTIMATION

A Stein-rule estimator of g in (1.1) is

bSR = 
11-p(y-XTh' (y-X73-)/ii' Sri) .- (4.1)

where p e [0, 2(k-2)/(v+2)] , for k ?.-- 3. It is well known that R(bSR) < R(i)

under quadratic loss for k -,: 3, and that the "optimum" choice of p is p* =

(k-2)/(v+2), in terms of maximising the risk-gain in using bSR over II

Further, the positive-part Stein-rule estimator,

bPSR 
= max [0, 1-p(y-X13) ' (y-43')/gi' Stil ji (4.2)

is known to risk-dominate b
SR 

under the same conditions in the case of

quadratic loss.

To facilitate our analysis of bSR and b
PSR 

under the BLF, it is

convenient to define a different pre-test estimator of 13, namely

,.
b = I

(a/c*,,o)(f*)(1-a/f*)13- (4.3)

where I is a conventional indicator function; f* = p' ST3)/(kc7-2)1 ; a = (pv/k);

c* is the critical value for the pre-test of Ho: Xf3 = 0 vs HA: xg # 0; and f*

- 
F'kv;er 

where 0 = /V 513/20.2. Then,(, 
-.

(i) b = ii ; if p = O.

(ii) b ---> bSR ; if c* 9 co.

UM b = 
bPSR ' 

• if c* = 1.

Theorem 4.1

Under the quadratic BLF, (1.5), the risk of i; is given by

co -0.d
R(b) = cr f w(v+k) + 20 + 2 Z e ' 

d! 
[(1-2w)g

d
(0
'
1) + P2 (21)

'
1)

d=0

+ (1-w) 12p0gd+1(1,0) 
- 2e+1(°°) 

- 2pgd(1,1)) i 1gd' 

7
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where

g (i,j) = rt—
k
+-r+i-or(Y+i)/ 1111-4-01(-v-))
2 2 2 2

k x 
co 6+r+-1 

; 
-1 
• .4._v 

= 0,1'2'•••'' 2

I (.,. ) is the incomplete beta function and co = p/(p+c*).
c0

Proof

See Appendix B.

Remark 4.1

Clearly, R(b) = Rai) when p = 0.

Corollary 4.1

When c* 4 co, R(b) R(bsR), which is given by

R(bsR) = crIvw+k(1-w)+pv(v+2) [p-2(1-w)(k-2)/(v+2)1 E (1/x2dc;c0) 1 (4.5)

Proof

When c* -> co, co = 0 and I, (.,. ) = 0. Then, (4.4) becomes
-0

R(b I c->co) = (w+2p(w-1)) + k(1-w)

co -0.d co 
e
-0
0
d

+ p2v(v+2) 
d=0 

 + 4(1-w)Opv E  (k+2d)-1
d ! d !

d=0

= cr
2
fv (w+2p(w-1)) +k(1-w)

+ p
2
V(V+2)E (1/X

2

'k;0) 
+4(1-w)OpvEl1/x

2

( ( k+2;0)) 1 '
(4.6)

co
e
-Oed

as E[1/x20; 0)1 = Z
d' 

(J+2d-2) = 3,4,... (Bock et al. (1984)).
d=0
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Further, (Judge and Bock (1978, p.202))

20E (1/x2(k' +2;0)) = 1-(k-2)E (1/x2((' ;0))

and so using this relationship in (4.6) gives (4.5) directly.

Remark 4.3

We can write (4.5) as

R(bsR) = R(li) + cr2pv(v+2) (p-2(1-w)(k-2)/(v+2)) E (1/x2(6)) (4.7)

which implies that bsR risk-dominates for all p E [0, 2(1-w)(k-2)/(v+2)1 ,

k 3.

Remark 4.4

Using (4.7) it is straightforward to show that the maximum risk gain in

using bsR over Ti occurs when p* = (1-w)(k-2)/(v+2).

Remark 4.5

When w = 0, (4.5) becomes

R(bsR I w=0) = crIk+pv(v+2) [p-2(k-2)/(v+2)1E (1/x2dc;0))

which is the usual expression for R(bsR) under quadratic loss. (See, for

example, Judge and Bock (1978, p.188)).

Remark 4.6

When w = 1, p* = 0, and bs = hR -PSR =

These results are illustrated in Figures 5 and 6 where p = p*. Clearly,

if the value of p which is optimal when w = 0 is used instead when w * 0, then

there is no guarantee that b
SR 

and b
PSR 

will risk-dominate This is

illustrated in Figures 7 and 8.
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5. DISCUSSION

In this paper we have examined the risk properties of several estimators

of the coefficient vector in the standard linear regression model under the

so-called "balanced" loss function. This loss structure takes account of

goodness of fit, as well as estimation precision.

In looking at this estimation problem after a preliminary test for the

validity of a set of exact linear restrictions on the regression coefficients,

we find that the well known risk results which hold under conventional

(precision-only) quadratic loss also hold under a balanced loss function as

long as less than 507. weight is given to goodness of fit. On the other hand,

if less than 507. weight is given to estimation precision in the loss function,

then the strategies of pre-testing or applying the restricted maximum

likelihood estimator are strictly dominated by the strategy of simply applying

the unrestricted maximum likelihood estimator. This, of course, reflects the

fact that here the maximum likelihood and least squares estimators coincide,

and the underlying goodness of fit component in the loss function is quadratic

in form.

We have also shown that the unrestricted maximum likelihood estimator is

itself inadmissible relative to balanced loss, unless all of the weight is

given to goodness of fit. This result is established by considering both

Stein-rule and positive-part Stein-rule estimators of the coefficient vector

(which coincide with the maximum likelihood estimator when estimation

precision gets zero weight in the loss function). Our results show that if at

least 507. weight (w) is given to goodness of fit then the optimal estimator

among those considered in this paper is the positive-part Stein-rule estimator

with a shrinkage factor of p* = (1-w)(k-2)/(v+2), where k is the number of

regressors, and v is the degrees of freedom. It is never preferable to
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to pre-test. This is a natural generalisation of the corresponding

conventional result under quadratic loss. Moreover, our findings tentatively

suggest a case for the positive-part estimator when w < 0.5.

Clearly, the balanced loss function proposed by Zellner (1991), and .

applied by Rodrigues and Zellner (1992), has many interesting applications.

The use of a penalty function which allows for both the goodness of fit of the

model, as well as the precision of parameter estimation, has considerable

appeal in regression analysis. Work in progress by the authors explores some

of the associated pre-test issues in various directions.
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APPENDIX A: PROOF OF THEOREM 3.1

Rah = wE [(y-Xii)' (y-X131 + (1-w)E [64-13Y s(ii-g]

where S = X' X, 13- = S-1X1 y and 0 w 1. Now, E[(y-Xii)' = cr2v, v =

2
T-k, as (y-X)' (y-Xibicr2 = Mu/c-2 x(v) where M = I-X(X1 X) 1X1. Further,

E = cr2k (see, for example, Judge and Bock (1978), Giles and

Giles (1993c)). Equation (3.1) then follows directly.

R(13*) = wE [(y-X13*)' (y-X13*)1 + (1-w)E[(g*--13)1s(g.-(3)1

where 13* = 73 + (RS-1R! li(r-R13). As (y-X13*)' (y-X[3*)/(72 - x2 where
(v+rn,A)

A = (143-r)' (R5-1Ri )-1(Rg-r)/(2or
2
), we have that E [(y-Xf3*)l (y-X/3*)1 =

cr2(v+m+2X). It is also straightforward to show that E[(*_)' s(g*--(3)1 =

sr2(k-m+2X) (see, for example, Judge and Bock (1978), Giles and Giles (1993c)),

and so R(g*) follows.

Finally,

R(f3) = wE [(y-Xf3)1(y-X13- + (1-w)E [(f3-13)1 S(g--(3)] . (A.1)

Let u = y-Xg and u = so that

uAiu- = - 2isii mir-13)1[0,c1(f) (g.-Thi s(13.-Thiro,ci(f)

= s(g.-13')I[0,c](f)

as X = 0. Then,

Now,

A A A A

E[(y-X13)' (y-X13)1 = E(u' u)

= E(tiqi) + E[(g*-ii)' SQ3*--.13)I[0,ci(f)] . (A.2)

E[(t3*--13)'S(13*-13-)I[0,ci V)]

= E[I[0,ci(f )(r-Rii)1 (R5-1R' )-1(r-R13)]

= cr
2
(mP

2
+2XP

4
)

12
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using Lemma 1 of Clarke et at. (1987), with

P. = Pr. [Fs 5- (cm/(m+i)), i = 0,1,2,... .I (m+i,v;A)

Further, from Judge and Bock (1978) for example,

E[(13-13)1 S(13--(3)1 = crIk+(4A-m)P
2
-2AP

4
1
' (A.4)

The desired result follows by substituting (A.2), (A.4) and E(iii ii) = o-2v into

(A.1).

APPENDIX B: PROOF OF THEOREM 4.1

The SR estimator of g is

b
SR 

= (1-pii' il/73'' Sii)13

where p is a constant such that 0 5. p --s 2(1-w)(k-2)/(v+2) for k ?... 3 and the

PSR is

bPSR 
= max [0 , 1-p il ' ii/13- ' S illi .

Let a = pv/k and f* = (ii'Sli/k)/(iii ii/v) so that

b
PSR 

= I
(a,co)(f*)(1-alf*)13-

where I(a,co)(f*) = 0 if f* 5. a and 1 otherwise. To derive the risk of the SR

and PSR estimators we define a PTE of 0
..
b = I

(a/c*,0a)(f*)(1-a/f*)13

where c* is the critical value for the pre-test of Ho: Xg = 0 vs HA: Xf? * 0

(see, for example, Judge and Bock (1978, p.184) and Ohtani (1993)). Then, f*

- 
F'kv;0) 

where 9 = g'Sg/(2cr
2
) and note that(, 

.. _
(i) b = g when p = 0,

..
(ii) b 4 b

SR 
when 0 4 co,

-,
(iii) b = b

PSR 
when c* = 1.

13



So,

R(Z) = wE [(y-X[3-)' (y-Xfi)] + (1-w)E [(13--13)' S(b-(3)]

We consider first T
2
:

Now,

= wT
1 
+ (1-w)T

2 
.

T
2 
= E[(b-g)' S(1;-(3)]

= E(bi Sb)-2/3' SE(b)+f?' Si3 . (13.2)

A. A

E(b' Sb) = EfI(a/c*,c0)(f*)731 S13# - 2pI(a/c*,00)(f*)(iii

+ p2I(a/c.,.)(f*)(ie ii)2(ik ST3)-11

= Ef I(a/c.,03)(f*)i Sii-2pI( a/c. 03) (f*) 11:.• 113.-1 S73-
/3 Si3

' u -+ p
2
I (f*) 2(,3, St3)1
(a/c*,o3) -

(3' Si3

To evaluate this expression further we require the following Lemma:

Lemma 1.

For i,j = 0,1,2,... ; k > 2(i-j),

where

E (I(a/cii,c0)(f*)(ti' Sib1(131 Sig))

= (20.2)i 0E3 e-Ood

d' 
gd(ii)

d=0 

k vr(-
2
+d+j-i )r(-

2
+i)

g
d
(i,j) -   (1-I (I-S-+d+j-i,1;-+i)) ,

r(—k+d )11E) x 2
2 2

x = p/(p+c*) and I(.,.) is the incomplete beta function.
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Proof

(
(k

Let
= ipsii/T2 _ 2,7 = -1-1, i-2 _ x2 

T X ;0)• Then,and 

E [I(a/c.,03)(f1)( ii/iii Sibi(iP SR)]

= E [I(a/c.,c0)(f*)(7/T)i(Tcr2)]

= E [I(p/c*,c0)(T/7)(7tr)i(tcr2) il

co -0 d 
e 0 2j = 
d! a [2 

(k+v)/2+dr(k--+d)r(v—)] 1E
(. )  2 2d=0

-If 7
v/2+i-1

t 
j-i+k/2+d-1

exp (--(7+T )/2) dydr , (B.4)

as 7 and I" are independently distributed quadratic forms.

-1
Let A

d 
= e

-0
0
d
(cr
2
)
j [
2
(k+v)/2+d

11—
k+con—v)cui 

' 
z = (T/T) and z

2 
= 7, so2 2  1

that (B.4) is

co co co
EA I f

z
v 2 /2+i-1

(z
1
z
2
)1(a+d-1+j-i exp (-(z

1
z
2
+z
2
)/2) (z

2
)dz
2
dz

1Ad j
d=0

p/c* 0

co
= E A

d 
1 rz( k+v)/2+ j+d-lzi

k/2+d-1+ j-i 
 d=0

p/c* 0 
2

x exp (-(1+z1)z2/2) dz2dzi .

Now, let z3 = (1+z1)z2/2 and z1 = z1. Then (B.5) is

co
EA I z 

1 
ka+d-1+ 

j-i(1+z )
-I(k+v)/2+ j+d]

d=0 
d 1
p/c*

x 2(k+v)/2+j+ddz
1 
r z
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exp(-z
3
)dz
3

o
co 

k ) 
,3 2k/ +d 

ddz
1 •
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v+ 

, .

d=0
p/c*
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Finally, let z4 = z1/(1+z1) and x = p/(p+c*), so that (B.6) is

03

z A ri )2(k+v)/z÷i+d fi z41c/2+d+j—i-1(1—z4)v/2+i-1
d=0 dz4d 2 J '

x

co
= E AdriE2-21(4-i+d) 2(k+v)/2+i+d B (ii+d+j-i+i)
d=0 k

x (1-Ix

where B(. ,. ) is the beta function. The lemma then follows directly.

Applying Lemma 1 repeatedly to (B.3) we have

co -0 d
2 0E(b' Sb) = 2a. dZ 
0 

e 
d! 

(g (0,1)-2pg
d
(1,1)+p

2
g
d
(2,1)}

d
= 

.,
To complete the expression for T2 we need SE(b).

„
S E(b) = S E[I(a/c„,c0)(fil)73-I(a/c.,.)(f*)(a/f*)131

= S .1 I lip()p(iii ii)d(Thd(ii' il)

R

(8.6)

- S pf f ii(Pti' ii/13..' S;4)p(3)p(iii ii)diid( i isi ) (B.7)
il

where il. is the region, IZ = f (i, 1 ill ) I ii ' s / ' ii ' > p/c*} and p() and p(Zi! ii) are

the probability density functions of ii and ii' ii respectively. We require the

following Lemma to proceed further.

Lemma 2

Let Q(i) be defined by

Q(i) = f f lei(iii ii/Pfi' Sii)ip(ii)p(iii ii)dlid(i? ii), i = 0,1,2,... .

il.
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Then

CO 
e
-Ood

S Q(i) = SI3 E  
d'd=0

Proof

Let

G(i) = E[I(a/c.,03)(f*)(iii Sii)1

= f(' /' SR) ip(R)p(iii

= I [(270k/210-2s-111

x exp [-(R-13)' S(R-g)/(2r2)]

as N((3,o-2S-1). Then,

1_8G(i) _ f sr3) [(270k/2 I Cr2S-1a I 
1813

Further,

x (Sii/cr2)exp (- S(i-13))
2cr

1 -1

- (Sf3/cr2)exp (- --170-13w s(ii-13))1p611
2cr"

= (S/cr2)f J 5r3)ip(r3)p(ilqi)dlid(iii - (S13/(r2)G(i)

= (S/cr2)Q(i) - (Sf3/a.2)G(i) . (B.8)

co -0ed
(i0)G(i) = E  

d=0 

e
(B.9)

and avag = Sf3/T2 so that using (B.9) we have
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co 
e
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e
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03 
e
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e
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Equating (B.8) and (B.10) gives the required result.

Using Lemma 2 with i = 0 and i = 1 in (B.7) we have

so that

A 03 -0
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e
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2
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e
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1O)} + IV Sg

03 
e
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e
d

= 2010 + E  
d! 

[gd
(0'

1)-2pg
d
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2
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d=0

- 2egd+1(°'°)+ 20Pgd+1(1mil -
Finally, we require

,. ,.
T
1 
= Ety-XbY (y-Xb)

= E(iiiii) + E(ii'Sji) - E(fliSi3I(a/c.,03)(fl ,

+ E tiii SjiI(a/c,,,,o)(f*)(a2/f*2)) -

(B.10)

(B.11)

(B.12)

As (1' ii/o-2) - x20, ) and (13'' Si3/0-2) - x2(cc;0), it follows that E(ii' ii) = o-
2
I, and

VT:3'SM = cr2(k+20).

Further, using Lemma 1
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and

co 

(a/c* 
4. -0d(*)) = 20,2 E e 

.
g
d
(0,1),co)"

d=0 
d!

03 -0 d(4..,t_2/f*2)) = 20.2p2 E e e 
(aic*,c0)" d!

d=0

so that (B.12) becomes

03 -0.d
T = cr2P+k+20-2 Z e (g (0,1)-p2g

d
(2,1))1 

•1 d! dd=0
(B.13)

Substituting (B.11) and (B.13) into (B.1) and rearranging terms gives the

required result.
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FOOTNOTES
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1. The evaluations for the figures in this paper were undertaken with

FORTRAN code written by the authors, incorporating routines from Press et

at. (1986), and executed on a VAXstation 4000 under VMS

5.5. In all of the figures cr2 = 1, which results in no loss of

generality.

2. In Figures 1-4, two choices of c are considered: c = 4.35 (a = 57.), and

c = 1.895 (a = 18.57.). The latter choice is Brook's (1976) "optimal" c in

the case of quadratic loss.

3. That is, regardless of the value of m or v, the "optimal" value of c will

lie between zero and two in value, approximately.
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