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Abstract

We consider the power functions of five popular tests for AR(1) errors in a
linear regression model from which relevant regressors have inadvertently
been omitted. These functions are derived by numerically evaluating the
finite-sample distributions of the test statistics. With this form of
model mis-specification, it is found that the performances of the tests are
not independent of the scale of the errors' distribution. The omission of
seasonal effects or a linear trend component can have serious implications,
especially if testing against positive autocorrelation, and some of the
well known advantages of the "Alternative Durbin Watson test" (King (1981))
are found to still apply when the model is underspecified.

Keywords: Regression disturbances, serial independence, power, ratios of
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1. INTRODUCTION

When the residuals from a regression are found to be autocorrelated it

is often concluded that one or more regressors may have been omitted from

the fitted model. In particular, the typical time series characteristics

of economic variables suggest that such an omission will induce or magnify

an autoregressive error process. This argument is most convincing when

both the true disturbances and the omitted variable(s) are positively

autocorrelated, but it is questionable in other circumstances. More

importantly, this argument takes no account of the effects of omitting

variables on the probability of detecting autocorrelation. The purpose of

this paper is to provide some exact finite sample numerical evidence of

these effects on the power functions of several popular autocorrelation

tests.

We consider five tests for first order autoregressive disturbances,

all of which are well known and easily applied. These are the

Durbin-Watson (DW) test of Durbin and Watson (1950), King's (1981)

alternative DW (ADW) test, the Berenblut and Webb (1973) test (BW) and two

versions of the point optimal test (S(pi)) (Kadiyala (1970), King (1985)).

These tests have well known power properties in correctly specified models,

a thorough numerical evaluation of which is provided by King (1985).

The balance of the paper begins with an outline of the tests used in

the next section. The distributions of the test statistics are discussed

in Section 3, along with various computational considerations. Section 4

presents the models used in our evaluations and the results of these

evaluations are given in Section 5. The final section offers some

recommendations for applied workers.
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2. THE TESTS

The statistic for each test studied here can be written in the form

r - 
w' Qw
w' Mw

2
where w N(0,cr

w
I) is an nxl random vector, M = I - X(X' X) 

-1
X , and Q is

some non-stochastic nxn matrix.

The particular Q matrix for each test statistic is as follows. For

the DW test, Q = MAM where

A=

1 -1 0 • • • 0
-1 2 -1 0
0 -1 2 -1 '

0

2 -1
0 • • • 0 -1 1

The ADW test has Q = MA0M where Ao is A with the top left and bottom

right elements replaced by 2.

For the point optimal tests

Q = E(p1 
)
-1 

- E(p )
-1
X(X1E(p )

-1
X)
-1
X1E(p

1
)
-1

1 1

where E(pi) = Tw2

T-1
1 p p

2
•••

1

2 
1

p1 p1

•

•

T-1 T-2

p1 
p
1 

1

and p1 is chosen by the researcher. Following King (1985) we choose p1 =

0.5 and 0.75.

2



The BW test has Q = B - BX(X' BX) IX' B where B is A with the top left

element replaced by 2. This test can be seen as the limit of a sequence of

point optimal tests as the autoregressive parameter, p, approaches unity.

For some purposes it is useful to write the s(pi) and BW test

statistics in the form of a DW type test with a particular A matrix. This

can be accomplished by noting, from Evans and King (1985), that as

Q = B - BX(X' BX)-1X' B, then MQ = QM = Q, and so Q = MQM.

3. THEORY

Suppose that the true data-generating process is in the form of the

following multiple regression model with AR(1) errors:

y = + ZT + u

u = pu 1 + c

N(0,cr
2
I)

where y and u are nxi vectors of observations on the dependent variable and

the random disturbances respectively, X and Z are non-stochastic regressor

matrices of dimension nxk and nxp, and g and 29 are their associated

parameter vectors. Note that u N(0,C2(p)), where

Sl(p) = cri2„

2 T-1 -
1 P1 p •••

P1 1

2

PI

1

T-1 T-2
• • • 1

If the model fitted to the data is

y = X13 + v

then the residuals from this regression are given by
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where

and

= y - Xi

= My

= Mw

W = U

= + U.

M = I - X(X' X) 1X' .

We are interested in testing Ho: p = 0 vs H: : p > 0, or 11-a : p < 0,

but we are constrained to using ;,/' to do so, rather than being able to use

the residuals associated with the fully specified model. This is because

either it is not known that the fitted model is misspecified, or because

the Z data are unavailable.

The distribution of the test statistic r is non-standard (since E(w) =

* 0) but we can follow the manipulations suggested by Koerts and

Abrahamse (1969, pp.81-82) to compute the distribution function of r:

Pr (r < r*) = Pr{ve (Q-r*M)w < 0).

-1Let z = 0
-1/2

w, such that C2
-1/2

0
-1/2

=

Now, w' (Q-r*M)w = z' c2
1/2

(Q-r*M)
1/2
0 z

and

= z' Sz

z N(C2
-1/2

0,I
T
).

Since S is symmetric, there exists an orthogonal matrix P

such that P' SP = A = diag (Xi).

We can now make the orthogonal transformation P' z = q, so that z' Sz = q' Aq

and q N(P'

Then Pr(r<r*) = Pr(q' Aq < 0)

= Fri E
Li J J

4
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2'where the 
Ai 
's are the eigenvalues of S and the ' s are independent,

Xi

non-central chi-square variates with 1 degree of freedom and non-centrality

parameters given by

o = [(P' S-2-1/215) .1
2

(2)

When r* is a 100a% critical value, the probability in (1) is the power of

the test. The numerical evaluation of (1) is a fairly standard

computational problem. Notice from (2) that the distribution of r depends
ae .

on the scale of c, through 0-1/2. In particular < 0 so the effect of
acr'

misspecification is reduced by more variable et's.

We can gain further insight into the effect of omitting variables on

the tests considered by observing the following consequences of the

diagonalisation of S.

P' P = PP' = I implies that S = PAP', and since S
-2-1/2n1/2 = 

I we can

write

S2
-1/2

PAP' c2
-1/2 

= Q - r*M

AP' S-2
1/2 

= PI S.2
1/2

(Q-r*M)

= P' S2
1/2

M(A-r*I)M .

The last step uses the fact that, for each test, Q can be written as a

quadratic form in M. We can now exploit the diagonality of A to show that

the jth non-centrality parameter is given by

tIe'.) 2 = ( 1 pi c n21/2m(A_r.m, .) 2
.A (3)

If is linearly dependent on the included regressors, then MO = 0 and the

non-centrality parameters are all zero. Alternatively, if is orthogonal
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to all of the included regressors, then all of the non-centrality

parameters are positive.

For the k eigenvalues satisfying Ai = 0, the expression in (3) is

undefined. Fortunately these cases are irrelevant for the determination of

the tests' powers as the corresponding x2 variates receive zero weight in

(1).

This result provides an interesting contrast with the well known

dependence of the bias of the OLS estimator on the degree of linear

dependence between X and Z. In testing for autocorrelation, an orthogonal

regressor is the worst type of omission possible, notwithstanding the fact

that the OLS estimator is unbiased. This is intuitively appealing in the

case of OLS residuals, which are orthogonal to X and, by definition,

contain all possible omitted variables.

We can also use (3) to see that 0. 4 0 as p 1 for all j, providing

the regression has an intercept. This is because as p 1, 2 4 ii' where i

= so 01/2 is a matrix with all elements being T-1/2. 
121/2 is

therefore linearly dependent on X when a constant is included in the

regression, and so 01/2M = 0. This means that the mis-specified power

functions must approach those for the true model as p approaches unity.

The distribution function of the non-central chi-square distribution

with 1 degree of freedom lies to the right of that for the corresponding

central distribution. Thus, drawings from a non-central distribution are

likely to be smaller than their central counterparts. This does not allow

a priori prediction of the direction of power shift however, as each

chi-square variate in (1) will have a different 0 . (in general) and a

weight (A.) which may be positive or negative. There is, therefore, a need

to evaluate the power functions numerically to reveal both the direction

and extent of shift in power under this form of model mis-specification.
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The calculation of the power functions given by (1) and (2) is

straightforward and was performed using the Davies (1980) algorithm option

with the DISTRIB facility in the SHAZAM (1993) package. It is, however,

worth noting that 0-1l2 need not be computed unless non-centrality

parameters are present, in which case it must be a symmetric matrix. All

of the computations were undertaken on a VAX6340 computer under VMS 5.3.

4. MODELS

Recognising the data dependence of each test statistic's distribution,

the numerical evaluations that we have undertaken involved a variety of

data based on seven different design matrices, as characterised in Table 1.

The numerical evaluations were conducted in two groups. For the first

group, real variables were omitted which had varying degrees of linear

dependence on the X matrix. To measure the degree of linear independence

between the included and excluded variables, for this first group, we used

the vector coefficient of alienation, defined by

E
ll
 E12

E
21 

E
22

A
E 
1 1 

E
22

where E
ll 

is the sample covariance matrix of the included variables, X, E
22

= cov(Z) and E
12 

= cov(X,Z) and all variables measured are in deviations

from their sample means. When Z has only one non-constant variable,

is equivalent to the uncentred R2 from regressing Z on X.
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Table 1 Regressors used in numerical evaluations

Model (1-pA) R2(omitted/included) Included Omitted

1 0.79 .79 C INC PRI

2 0.95 .95 C CPI CPI(-1)

3 0.01 .01 C NOR T

4 0.07 .07 C LNOR T

5 0.00 .00 C X1 X2

6 0.17 .11 C LNOR T Si S2 S3

7 0.37 .25 C CPI CPIL Si S2 S3

In this table C is a constant, INC and PRI are the income and price

variables from Durbin and Watson's (1950) "consumption of spirits" example,

CPI is the quarterly Australian consumers' price index commencing 1951(1),

NOR - N(30,4), T is a linear time-trend, LNOR - lognormal (2.23, 19.58),

Si-S3 are quarterly seasonal dummy variables, and XI-X5 are the first five

vectors from the series (a2+an)/V2, (a3
+an-1)N2

'-', where are

the eigenvectors corresponding to the eigenvalues of A arranged in

ascending order. These data have been used in previous studies of this

type, such as Evans (1992).

Each model was fitted with 20 observations and some limited

experimentation with 60 observations was performed. All tests were

conducted at a nominal 57. size and no size corrections were made. The

variance of c was set to unity although limited experiments were conducted

with higher values.

The second set of power functions was constructed using a single

variable, which was orthonormal to X, as the omitted regressor. This

variable was constructed by normalizing the OLS residual vector from a
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regression of a standard normal random variable on the X matrix of the

model concerned. The normal variable was generated via Brent's (1974)

algorithm in the SHAZAM package.

The degree of mis-specification for both groups of power curves was

controlled through 7, the values of which were chosen to reveal the degree

of movement in the power curves. Notice that, from (1) and (2), the

probability of rejection is independent of the sign of 7. When 7 = 0 the Z

matrix does not enter the true data generating process and 0 = 0. The

reported results include the relevant values of 7.

5. RESULTS

The characteristics of all of the power functions in the correctly

specified models (7 = 0) were in accord with those obtained in previous

studies. With the exception of models using Watson's matrix (models 6 and

12) the power differences between the tests were relatively minor,

particularly against H:. Where differences were apparent they revealed

lower power for the ADW test against H: and higher power for this test

against H. As noted by King (1985) the S(pi) and BW tests can have far

greater power than the DW and ADW tests when used with Watson's matrix

against Ha+, but this ranking is reversed against H.

The effect of omitting variables appears to depend mainly on the

associated coefficient and the form of the omitted variable. The nature of

the included regressors is generally of less importance, as is the

particular test used.

The most serious power losses encountered in the first group of

evaluations occurred when a seasonal shift in the intercept was not allowed

for in testing against H:. In this case the true sizes of all tests fell

dramatically from their nominal 57. level with an associated loss of power
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for all p > 0. This effect occurred in model 6 and can be clearly seen in

Figure 1. No single test emerged as being any more or less robust to this

type of mis-specification across the relevant models.

[Figure 1 about here]

In models 3 and 4 the omission of a linear trend resulted in the true

sizes of the tests against Ha+ increasing to an average of 20.47. when the

trend coefficient was 0.8. The ADW test was consistently the least

distorted but still had an average size of 18.77. over the same three

models. Testing against 1-1: in these models reduced the true sizes below 57.

to a similar degree for all tests. These effects can be seen in Figure 2

which is based on model 3. While the size distortions in these models had

predictable effects on the test powers in the neighbourhood of the null,

the effects against high absolute values of p was less marked and the

limiting powers were virtually identical. This effect was foreshadowed in

the theoretical discussion above.

Models 1,2 and 7 involved the omission of real variables and produced

broadly similar results, an example of which is given in Figure 3.

Against H: there are power gains available by using the DW or BW tests

rather than the other tests considered in these models. This conclusion is

unambiguous in model 1 but is offset by size distortion, analogous to the

case of an omitted linear trend discussed above, in models 2 and 7. Figure

3 also reveals a feature common to all models, though less discernable in

others. This is the tendency for the power rankings of the tests to be

reversed when moving from H+a to FCa.

[Figures 2 and 3 about here]

For the second group of power functions, which examine the effect of

the scale of an omitted orthogonal regressor on the powers of the tests,

selected powers are presented in Tables 2 and 3. In each case considered

10



the true sizes of tests against H+a are reduced by the omission of an

orthogonal regressor, the degree of reduction increasing with 171. The

size of the DW test in model 7, for example, is reduced from 57. to 0.37. by

the omission of an orthogonal variable which would have had a coefficient

of -±5. It is also clear from Tables 2 and 3 that the powers of the tests

are correspondingly lower as 171 increases.

The sizes and powers of tests against H: are considerably more robust

than those against H+
' 

as the tabulated values show. No general statement
a 

about the direction of size distortion is supported by the representative

values in Tables 2 and 3.

[Tables 2 and 3 about here]

6. CONCLUSIONS

There are several results of interest emerging from this study.

First, when relevant variables are omitted from a regression the

distribution of all of the test statistics considered here is no longer

independent of o-2. It has also been shown that a failure to allow for a

seasonal shift in the intercept can seriously weaken all of these tests,

particularly against H. The dominance of the ADW test when testing

against 1-1-a is confirmed and extended to models mis-specified by the

omission of variables. Furthermore the ADW test is the most robust to the

effect of omitting a linear trend when testing for positive

autocorrelation. The omission of an orthogonal regressor constitutes an

informal bound on the degree of power function distortion. In all cases

considered the true sizes and powers of tests against H+a were reduced by

this form of model mis-specification. The scale of the omitted variable

has been shown to be important but the results are invariant to the sign of

the associated coefficient.
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In the light of these findings we make the following recommendations.

First, the possibility of a seasonal shift in the regression intercept

should be investigated before testing for AR(1) disturbances. This could

be achieved by testing the significance of seasonal dummy variables prior

to testing for autocorrelation. Of course, this involves a pre-test

strategy, with commensurate implications for the size and power of the

second test. Some evidence concerning the distortions associated with this

type of strategy is provided by Giles and Lieberman (1992). Second, we

recommend the use of the ADW test when negative autocorrelation is being

investigated because it continues to have superior power against this

alternative when relevant variables have been omitted. Finally, the

rejection of H+ using any of these tests should be regarded with suspiciona

unless one can be sure that a linear trend has not been omitted.
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Table 3 Power of AR(1) tests with Omitted Orthogonal Variables (T=20)

DW s(0.5) BW

7=0 -y = 1 -y = 5 .y=0 7=1 7=5 b3=0 b3 =1 b3=5

Model 5

-0.9 0.669 0.658 0.484 0.488 0.482 0.367 0.448 0.441 0.330
-0.6 0.611 0.590 0.332 0.547 0.529 0.306 0.511 0.494 0.284
-0.3 0.268 0.260 0.148 0.260 0.252 0.141 0.250 0.242 0.132
0.0 0.050 0.053 0.053 0.050 0.052 0.049 0.050 0.053 0.047
0.0 0.050 0.047 0.009 0.050 0.046 0.007 0.050 0.048 0.015
0.3 0.266 0.241 0.034 0.277 0.250 0.029 0.263 0.240 0.040
0.6 0.602 0.561 0.124 0.695 0.650 0.132 0.689 0.646 0.156
0.9 0.680 0.652 0.248 0.928 0.905 0.408 0,933 0.912 0.463

Model 6

-0.9 0.949 0.941 0.770 0.947 0.940 0.772 0.936 0.929 0.754
-0.6 0.707 0.681 0.328 0.705 0.678 0.310 0.689 0.663 0.303
-0.3 0.282 0.268 0.103 0.282 0.266 0.092 0.277 0.262 0.091
0.0 0.050 0.051 0.032 0.050 0.050 0.027 0.050 0.051 0.028
0.0 0.050 0.048 0.014 0.050 0.048 0.014 0.050 0.048 0.014
0.3 0.262 0.239 0.043 0.268 0.246 0.046 0.263 0.241 0.045
0.6 0.626 0.581 0.135 0.644 0.602 0.147 0.642 0.600 0.146
0.9 0.846 0.809 0.293 0.859 0.826 0.312 0.862 0.830 0.319

Model 7

-0.9 0.965 0.961 0.852 0.963 0.958 0.834 0.950 0.943 0.788
-0.6 0.737 0.720 0.476 0.732 0.712 0.401 0.710 0.687 0.337
-0.3 0.290 0.285 0.199 0.289 0.279 0.134 0.283 0.269 0.099
0.0 0.050 0.054 0.073 0.050 0.051 0.040 0.050 0.050 0.026
0.0 0.050 0.044 0.003 0.050 0.045 0.004 0.050 0.046 0.006
0.3 0.274 0.240 0.014 0.277 0.246 0.019 0.273 0.246 0.027
0.6 0.638 0.583 0.072 0.647 0.597 0.091 0.645 0.600 0.115
0.9 0.844 0.800 0.215 0.851 0.812 0.244 0.854 0.819 0.282
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