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SUMMARY

We consider the estimation of the error variance of a regression when
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INTRODUCTION AND MODEL FRAMEWORK

Suppose we have two linear regressions of the form:

¥ = XiBi + g, i=12 (1)

where ¥y is a (Tixl) vector of observations on the dependent variable; Xi is
a (Txki) full column rank matrix of non-stochastic regressors with ki < Ti;

Bi is a (kixl) vector of parameters; and €, is a (Tixl) vector of

disturbance terms. We assume that € and €, are independently generated

from multivariate Student-t (Mt) distributions, with probablitity density
functions (pdf):

vi/2
f(e.lv., ¢.) = [v.
i i i

1

T./2 T\,
I‘((vi+Ti)/2)] [ni rw/2le, ]

x [viﬂ:'i z:i/zrz] _(Ti+vi)/2 i=1,2.

i
v is the degrees of freedom parameter and o is the scale parameter of the

distribution.  If v>2, then E(e) = O and Varle) = °§ = vivf/(vi—z).
i

When v, = 1, the pdf is Cauchy for which no finite integral moments exist;
when v, = it is normal.

. . 2 .
We suppose that the researcher desires an estimate of Oc the variance
1

of the first sample, when it is suspected that €, may have the same

2

variance. When the error variances are unequal we use the so-called

never-pool estimator (NPE), 52

. 2
N’ to estimate o-e :

1

= t:lle:l/v1 (2)

. _ _ rv v lyr. i 2
where v K ., = I_I.i Xi(xixi) Xi' i=1,2. sy uses only the

information from the first sample. Alternatively, if a‘i = o-z it is then
1 2

more efficient to use the "always-pool" estimator (APE), s::

2 _ 2 2
Sy = (vlsl + vzsz)/(vl+v2)




where sg is defined analogously to s Given the uncertainty about the

It
equality of the error variances a typical strategy is to pre-test for
homogeneity and then use sﬁ} if we reject homogeneity or use s: if we cannot

reject homogeneity. The estimator actually reported after such a procedure

is the so-called pre-test estimator (PTE) s; :

2
A
2

SN if J>c

s if J=c¢

(4)

.. a.z
(0] cl
ol < ¢ and c is the critical value of the test
g €,

corresponding to an a7 significance level.

where J = s;/si is the test statistic used to test the hypothesis1 H

(e'l 8'2) is distributed as a member of the elliptically

symmetric family of distributions then it is well known that f(J) =

¢-1f F where ¢ = o /6% is a measure of the hypothesis error and
(VZ’VI) e’ e

1 72
F is a central F random variable with v, and v, degrees of freedom
(v2,v1) 2 1
(see King (1979) and Chmielewski (1981)). However, if LA and €, are
independent Mt random vectors then J has a non-standard distribution.

Ohtani (1990) derives the density of J in this case:

1 vl/2 vl/z-l
f(J) = [ B(vl/z, v2/2) B(vl/z, v2/2) ] :] J

o (v +v_)/2-1 (v +v,)/2-1 -(v,+v, )72
x [+ 22 a P wesu-y N2 a
0
where 8 = (vz/vl)[vla‘f/(vzzr;)] and B(.,.) is the Beta function. Ohtani also
tabulates a limited number of critical values for the test under this

assumption, assuming a 5% significance level.

The particular pre-test problem considered here has been well




investigated in the literature but not under the above specified error term
assumptions. For example, Bancroft (1944), Toyoda and Wallace (1975),

Ohtani and Toyoda (1978), and Bancroft and Han (1983) all consider this

problem from various aspects under normal errorsz. Bancroft (1944)

concludes from his numerical evaluations that the PTE which uses a critical
value of unity strictly dominates the NPE.

Toyoda and Wallace (1975) show that the risk of the APE always has two
intersections with the risk of the NPE and that one intersection always lies
in the range ¢ € (0, 1). This implies that the NPE cannot strictly dominate
the APE and vice versa. Toyoda and Wallace also show that a PTE with a
critical value in the range c € (0, 2) strictly dominates the NPE, and that
the PTE with c=1 "almost always" dominates the APE, except in the
neighbourhood of the null hypothesis. They consequently suggest c=l as a
reasonable choice for the pre-test (p.399) and go on to show that this
choice of critical value maximises relative average efficiency.

Ohtani and Toyoda (1978) consider optimal critical values for this
pre-test problem according to a minimax regret criterion. They show that
the risk function for the PTE declines monotonically for c¢ € (0, 1], and
obtains a local minimum at c=l. Using a minimax regret criterion they solve
numerically for an "optimal" critical value, c*. They find that c* depends
on v, and vy and ranges from 1.7 to 2.8 (for the cases evaluated) which
correspond to sizes from 6% to 22%. Bancroft and Han (1983) also consider
the choice of an optimal critical value according to another criterion - so
called relative efficiency. Their results suggest significance levels
ranging from 247 to 487, depending on A and Vo

As the processes generating many time-series are non-normal, Giles

(1990, 1992) extends the above cited work to one where the joint error term

in the model is distributed according to the scale mixture of Rrormals family




of distributions, which are members of the elliptically symmetric family of
distributions. It is then possible to consider error term assumptions which
result in more or less kurtosis than under a normality assumption. One
special member of this family is the Mt distribution which r:esults in
uncorrelated but dependent errors. She shows that the risk function for the
PTE has a minimum when c=1 and also that for small values of the Mt shape
parameter, v, (i.e. "fat-tailed" distributions) this PTE strictly dominates
both the NPE and the APE.

Here we extend the error term assumptions further by assuming that the
errors in each sample are Mt but are independent. This allows for the error
distributions for the samples to have potentially different shape, as well
as scale, parameters. The outline of this paper is as follows: Section 2
derives the risk functions of the NPE, APE and PTE under the independent Mt
assumption and undertakes some comparisons of the risk properties of the
three estimators. In Section 3 we consider some numerical evaluations of
these risk functions. Here we use Ohtani’s (1990) critical values where
possible but we also consider that a researcher may incorrectly assume
normality of the errors and so use critical values from the central-F
distribution. For the latter, of course, the true significance level will
differ from the assigned nominal significance level. We conclude with some
final remarks in Section 4 followed by an appendix which contains brief

proofs of the theorems.

THE RISK FUNCTIONS

Let s° be any estimator of 0‘2 and let its risk under quadratic loss be
1

defined by R(s?) = E(5° - 0'2 >
1

independent Mt distributions with v

Then, if el and 62 are generated from

1>4 and v2>4 we have:




Theorem I:
R(sg) = 2vf¢;(vl+vl-2)/[vl(vl-z)z(vl-“o)] (5)
R(s:) = vfa;{(vz-ﬂ[vl(2v1+v1)+(v;+v1)(vl—4)] +v2(v2+2)(1:2-2)(1)1—4)/<15Z
_2v;(vl—4)(v2-4)/¢}/[(vl'+v2)z(vl-2)2(vl—4)(v2-4)] 6)

4 2
vlol{(vlwz) (v1+2)(v1-2)+v1v2(v2+2)[-’0440(v1 2) (v -4)

-v2(2v1+v2)(v1+2)}’4004(v1 -2)% (v 4)+2v1v21>2222(v1 -2) (v -4)

-2v (v +v )((v +, )(v 4)+v2P0220(V 2)(v -4)

-V, 2002(v1 =2)(v —4)] +V (v +v ) (v -4)}

2
[vl(vlwz) (vl—z)(v1—4)]

v, /2
2212 w,-b2 (v,-al2
v 2 (cvz)

(v -a-b)/2 1 (vz-b)/z-l (vl-a)/z-l

o (asb)r2 w-2) t (1-t))

(a+b- -V 7V )/2

X (vltl(vz-z)/¢+(vl-z)cvz(l—tl)

1 o1 R
X Itl[z(vzﬂ),z(vxﬂ)] dt1

See the appendix.




Remarks:

1

When c=0 (a=1) we always reject HO and the risk of the PTE collapses to
that of the NPE. Conversely, if c»o («-0) we never reject HO ‘and R(s;)
= R(s).

The risk functions of s> and s’

N A
¢. Let these be ¢, and ¢,. Their values are ¢, = (0w + 1:],2)/§ and ¢,
1 2 1 2

have two intersections with respect to

= (0 - r’lz)/c, where © = =-2v,vi(v -4)(v2—4), T =8v

2
Yoy v, (v, -4)(v1—4)

1272

x [Zvi(vz-Z)(VﬁZ) - v [v;(vl—v2-2)+v2(2—v2)(v1+2)—4(v2—2)(v1-2)] +

2

v2(v2-2)(v1-2)(v2+2)], and ¢ = 2‘«'2(1)2-4)(4\!l

+ v1(4(v1-2) - v2(v1—6)) +
2v2(v1-2) . As R(s:) is a quadratic in 1/¢, with an asymptote at ¢=0,
one of these intersections will lie in the range (0, -») and the other
in the range (0, +w). "I'here are three possibilities. First, one
intersection lies in the range (0, 1). This implies that neither of
the NPE or the APE strictly dominates the other, and accords with the
results under spherically symmetric disturbances. The second
alternative is that the positive intersection is greater than unity.
Then, the NPE strictly dominates the APE over the range ¢ € (0, 1].
The third possibility is that there are no real intersections. This
occurs when T is negative and in this case the NPE again strictly
dominates the APE. We consider these cases further in the next
section.

When Ve and vy, the risk functions collapse to their normal
counterparts (see, for example, Toyoda and Wallace (1975))?

As ¢50, R(Sl_.z,) > R(s:j) while R(s:) > o. That is, pre-testing leads us
to follow the correct strategy when the prior information is very

false.

Typically R(SZ) < R(S:I) when ¢=1, although there are exceptions as




noted in the above point 2. It is also possible for R(s;) < R(s;] when
¢=1. We illustrate such cases in the next section.

Theorem 2:

Extrema of R(s;) result when c=0, c»», and c=l.

Proof: See the appendix.

So, for any particular value of ¢, the minimum risk estimator among
those considered in this paper may be either the APE, the NPE, or the

PTE with c=I.
NUMERICAL EVALUATIONS OF THE RISK FUNCTIONS

To illustrate the results we have numerically evaluated the risk
functions.  Various values of the arguments were considered: Vp Yy = 10,

30, 40; vl, v2 = 5, 10, 50, 100, w; those critical values corresponding to a
true size of 5% (Ohtani (1990)), those from the central-F distribution
corresponding to nominal sizes of 1%, 5%, 30% and 75% and a critical value
of unity. Full details of these results are available on request. The
evaluations were undertaken using a FORTRAN program written by the authors,
which utilises several subroutines from Press et al. (1986). We executed
the program on a VAX 7610 and a VAXstation 4000. Figures 1 to 4 provide
representative results. The horizontal axis, in each figure, measures the
extent of the hypothesis error ¢ € (0, 1. The vertical axis measures risk
and we have assumed, without loss of generality, that o‘f = 1. The following
points can be noted:

1. The figures illustrate the possible cases referred to in the previous

Section as point 2. Specifically, the risk functions of the NPE and

APE can intersect at a value of ¢ € (0, 1) (see for example Figure 1).

Our results suggest that this will occur for all values- of v and v,




when v, = v, Figure 2 provides an example where the NPE strictly
dominates the APE for all ¢ € (0, 1l. The evaluations suggest that

this case is likely when v, is sufficiently smaller than v.. So, if

2 1

the error term of the model for the second sample has~ marginal
distributions which have "fatter" tails than that for the first sample
then it is never optimal to pool the data, even if the variances are
equal. This result contrasts to that found when the joint disturbance
is spherically symmetric. Then it is always preferable to pool the
samples when the variances are equal rather than to simply ignore the
prior information.

An increase in v vy shifts the risk functions downwards, as does also
an increase in v v,

There is no strictly dominating estimator when the disturbances are

normal or v and v, are "large" (see for example Figure 3). Then, the

APE has the smallest risk around the neighbourhood of HO' while it is
generally preferable to employ the PTE with c=1 otherwise.

For small vl, vz (e.g. 5, 10) the PTE can strictly dominate both the
NPE and the APE (see for example Figure 4). Typically, the PTE which
uses c=l strictly dominates all other PTE’s. This result accords with
those of Toyoda and Wallace (1975), Ohtani and Toyoda (1978), and Giles
(1992).

Using the central-F critical values, as opposed to the values provided
by Ohtani (1990), typically has a significant effect on the risk
function; that 1is, there is a significant difference between the
nominal and true sizes for the F-test. The distortion in size
increases as vp v, decrease.

The PTE which uses c=1 always strictly dominates the NPE. It is never

optimal to ignore the prior information.




4. CONCLUDING REMARKS

In this paper we have examined the risks of estimators of the
regression error variance after a preliminary test for homogeneity, when the
disturbances in each sample are Mt but independent. In summary our
investigation suggests that for large v, and v, the results under the
independent Mt assumption are qualitatively similar to those under normal
errors (e.g. Toyoda and Wallace (1975)) - no strictly dominating estimator
exists; the APE has the smallest risk around the neighbourhood of the null
hypothesis; and the PTE with c=1 strictly dominates the NPE. Secondly, our
results suggest that for v, = v, we have similar qualitative conclusions to
Giles (1992) - neither the NPE nor the APE can strictly dominate the other;
and the PTE with c=1 can strictly dominate both the APE and the NPE.
Finally, if vy > v, the NPE strictly dominates the APE, but both are then
strictly dominated by the PTE which uses c=l. So, the optimal strategy when
v > v, is to pre-test with c=l.

There remain a number of issues for future work. For example, it would

be interesting to consider this problem with a different variance mixing

distribution4; to consider other pre-test problems under a similar

disturbance assumption as used here; to investigate the choice of an optimal
critical value according to some explicit optimality criterion; to assume
that the disturbances are non-normal though identically independently
distributed; and to consider the case where v, and v, are estimated rather

1 2

than assumed to be known.




APPENDIX

Proof of Theorem 1.

2
2, _ 22
R(sN) = E[s1 a~cl] .

o0
flep) = [ ez, (A.D)
0 .
. 2 . 2 -
where fN(z:l) is the pdf of £ when € ~ N(o, 'rlI.rl) with T, a positive
scalar. (A.1) is the density of a Mt random variable when T, is an inverted

gamma variate. Then,

2,V /2 2 2
][v o ] 1 -(v1+1) -v,0,/2T]

_ 2
fzr)) = [r(vl/z)

11
—_— L) e s

2

and we write L IG(vl, c'f). So,
2 4 2, 2 2,)?
R(s) = E(s}) - 2EGDE(D + [E(tl)] .

o
2y _ 2
Es) = J' E(sDr(z )dr,
0

where EN(A) is the expected value of A under the normality assumption. As

- 1 g , 2 2
Tl XI(XIXI) Xl, we have z:lMlel/'l:l xvl under the
assumption that e, ~ N(O, <T2L.) So, E.(s?) = <% and E(s?) = E(T?)

P 1 i) » EN'sy 1 1 v

Likewise, E(s;) = (v1+2)E(t‘;)/v1. Then,
2 4 2,)?
R(sN) = l:(vl+2)E(1:1)-vl [E(rl)] ]/v1

and equation (5) follows directly as E(ti) = vlo-i/(vl-z) and E(Ti) =

2
It a'l).

vfa‘4/{(vl-2)(vl-4)] when T~ IG(v




Similarly,

2
2, _ 2_ 2
R(SA) = E[SA o-cl]

2
_ 4 2 2 2
= E(sA) ZE(tl)E(sA) + [E(rl)] .

(c M g€ Mzcz)/(v +, )

2

where MZ is defined analogously to Ml' Then,

2 e 2
E(sA) J I EN(SA)f(rlrz)drldrz

J I Ey(s2)f(x,)f(z,)dv,dr,,
. , 2 2
as g, and €, are independent. As »:1M181/1.'1 X, and CZMZCZ/TZ

2
€ ~ N(o, TllT) and €

~ N(O, T IT ) respectively, we have that
1

2 2

E (s ) = (v-r +v 12)/(v +V )

2

J' I 2(r, ) f(z,)dr,

V2
v J. J rzf(rl)drlf(rz)drz
o0

2 2
[vll-:('i:I )+v2E(12)] /(v1+v2)
2 2
[le(‘L'l )+v2E('rl)/¢] /(vl+v2)

_ 2,2 2, _ 2 _ 2
as ¢ = o'cl/rrc2 and E('cz) = 0‘82 = E('L‘l)/¢.

Likewise,

4y _ 4 2
E(SA) = {vl(v1+2)E(rl)+v2(v2+2)E('rz)




2., 2 2
+ Zvlsz(rl)E(rz)}/(vlwz)

= {vx(vl+2)E(r;)+v2(v2+2)E(r;)

2 2
+ (vg-vf) (E(Tf)] +2v;[s(rf)] /¢}/(vl+v2)2.

. 2 2
Using 7 IG(VI' o*l), T, IG(vZ, 0‘2) then

2 4 2 4
E(s*) = vl(vl+2)vlo~1 +v2(v2+2)vl(v2-2)o~l
S R e O T e

vee? et
+ (v2v%) 11 5~ ZVS 11 > /(v1+v2)2
(vl-2) (vl-z)

so that R(sz) follows.

We now turn to the risk of the pre-test estimator:
2 4 2. 2 2,)?
R(sp) = E(sp) - ZE(Tl)E(SP) + [E(rl)] .

2 _ 2 2__2
sp =Sy * (SA SN)IIO,c]U)

- ’ . - ’
= (slMlel)(vlwz) + (vlt:ZMZz:2 vzelMlel)

X To,c1V1EaMaE Ve (M)

where I[a b](J) is an indicator function which takes the value one when J

lies within the subscripted range, O otherwise. So,

2
/‘cl)

2, _ [ 2 ,
R(SP) = {'cl(vlwz)(z:lMlcl

2 , 2y 2
+ [‘CZVI(CZM £./T )-V, T

, 2
22722 1(°1M181/"1)]

’ 2 7 2
X I[O,c*] [(vlezMzez/rZ)/(vzclMlel/tl)] }/ (vl(vlwz)]

R
where ¢ C‘L’l/‘tz.

Under the assumption that e 2

2
1 I

Tl) and g, ~ N(o, T, Tz

~ N(O, T ) and

1




using, for example, Lemma 1 of Clarke et al. (1987) we have
’ 2 —
EN[(CZMZCZ/TZN[O,C*](')] = V,Poq s

7 2 -
Ey [(elMlcl/rl)IIO,c'](' )] = ViPos

- . . .
PU Pr. [F(vz"'i'vl"'j) = [c v2(vl+J)]/[vl(v2+x)]]
_ 1 a.1 .
= Ix[i(vzﬂ)’z(vl”)]
and x = ctfvz/(vltgi-cvztf). lx(.;.) is the incomplete beta function. So,
E(s2) = {(v +v )E(t)+v E(z2P, )-v_E(x?P. )\ /(v +v.)
P 12 177°2772°20" 2771 02 12"

Following similar steps,

)

2, _ 2 4 4
E(SP) = {(VIWZ) (v1+2)E(Tl-)+v1v2(v2+2)E(rzP4o

4 2 2 2 2
- V2(2v1+V2)(v1+2)E(‘clP04) + 2v1v2E('rlt2P22)}/[vl(v1+v2) ] (A.4)

Substituting (A.2) and (A.3) into (A.1) we have
R(s2) = {(v +v,) v +2)E(th v v (v, +2)E(x P, )
P 1"V2! Yy 17"1Y2'V2 2" 40
- v2(2v1+v2)(v1+2)E(r;P0 4) + ZVTVZE(TTTEPZZ)
- zz(zf)vl(vlwz)[(vl+v2)1-:(rf)+v2p:(répzo)-vZE(rfPOZ)]

2
+ vltvlwz)z[mrf)] }/ [vl(vl+v2)2]. (A.5)

To evaluate (A.5) under the inverted gamma assumptions we require the

following lemma:




a_b _ ;.2 2,(a+b)/.
E(TITZPU) = (vlo‘l) ZPabij

v +v_-a-b
2 v, /2
_ r! 2 I -(a+b)/2[” -2 ] "2

Pabij T T N (V2 ")
"))

vl(vz-b)/z (vl—a—b)/z .

(cvz)(vl-a)/z

(vl—Z)

00
% J' tl(vz-b)/z l(l t )

(v -a)/b-1
[vltl(vz—z)/cp

0

] (a+b—v1—v2)/2 [

1 1 .
+ (vl—z)cvz(l-tl) E(v2+n);§(vl+,1)] dt

E(z30p ) = mfmrarbl Lv +H)ii (v +4)
172°ij 1°2x[2""2 721
00

X f(tl)f(rzldrldtz .

Substituting in f('tl) and f(‘l.'z) we have

a_b
E(tlrzPij) =

-1 2 2
2 exp[ (vlol/rlﬂ)za-z/tz)/Z]

[ (v +1) (v +J)]dr d-r

Note that Ix(.) does not depend on T, or T Now, using the following

1 2
changes of variables:

1 z-"rzz—'z.'2
) 1 127 "2




2. t, = cv

1 A/ V2 2 by = 2,

3. s=p/2) =t

- 2 2 _ .
where p = v2¢r2 + vlzrlcvz(l tl)/(vltl)' it follows that

v +v_-a-b
172 l 2 (a+b)/2
I‘[—-—z vla-l v22 2
2

it

(vl—a)/z

< v (vz—b)/z

(v,-a-b)/2
L 12) 1

(cv2) (v

t. (v —2)/¢

1 (vz—b)/z—l (v,-a)/b-1
["11 2

1
x I t (l-tl)
0

(a+b-v -v,)/2
172 1 .1 .
] It [E(vzﬂ)’i(vl”)] dtI

+ (v1-2)cv2(1—t1) .

_ 2.(a+b)/2,
= (vla'l) Pabij .

Using this Lemma repeatedly in (A.S) gives the desired result.

Proof of Theorem 2.

Now,
2 2 2 212

R(sp) = E[sAllo,c](J)+sNI(c,m)(J)-E(Tl)]

_ 2 2
= E[[SA E(tl)]

2
2 2
+ (sN—E(tl)] I(c,m)(.!)] .

2
I[O,c](”

- ’ — ’
Let q = t:lMlcI and q, = cZMzt:2 so that

2 = 2 - . -
Sy = (q1+q2)/(vl+v2), sy = ql/vl, J = vlqz/(vqu) and

2
R(s;) = E{[(ql+q2)/(vl+v2)—E(rf)] l[qz = cvqu/vl]




2
+ [ql/vl-E('tf)] [l-l[q2 =< cvqu/vl]]}

0 0 2 2
= j I EN[[(ql+q2)/(vl+v2)-E('rl)] I[q2 = cvqu/vJ]
00

2
+ [ql/vl-E(rf)] [1~I[q2 = cvqu/vl]]}f('l.'l)f('l:z)d't.'ld-l:2

0 00 2
= _r(e2
- I j Ey [EN [(ql+q2)/(vl+v2) E(‘rl)] I[q2 < cvqu/vl]
oo 4 %

2
+ [ql/vl-E(tf)] [l-I(q2 = cvqu/vl)]]

X f(‘rl)f('rz)d‘rld‘rz

00 00 2 2
= J' j Ey { r[(ql+q2)/(vl+v2)-E(tl)] £(a,)da,
oo %o

2
+ [ql/vl-E(tf)] [l-rfN(qz)dqz] }f ('rl)f (‘l.'z)d'l'ld'tz
0

where x = cv‘?‘ql/v1 and fN(qz) is the density function of a Chi-squared random
variable with vy degrees of freedom.

So,

aR(s;),_
ac _I
)

00

00 2

ax|a 2
_[EN {%[ﬁ | [(ql+q2)/(vl+v2)-E(‘rl)] fN(qz)qu
o 9 0

2
2,)78
[ql/vl-E(tl)] | fN(qz)dqz]}
(o]

f(‘tl)f(‘tz)drldrz

® (0 v,q cv,q
J‘E 21, 21]

N v1 N vl
o 9

2
[(q1+°v2q I/v1 )/ (v1+v2)-E(tf)]




2
[ql/vl-E('tl)] ]}f(tl)f(rz)dtldtz .
A sufficient condition for this derivative to be zero is c=0, c»®, and

2 2
[[(q1+cv2ql/vl)/(vl+v2)-E('rf)] -{(ql/vl)-E(Tf)] ] = 0. (A.5)

2
. . A —_ - - 2 =
This will hold if c=1 or 1 2v1(vl+v2) [(ql/vl) E(rl)] /(qlvz) 0. It does

not appear possible to sign the second partial derivative with respect to ¢
and so it was not possible to analytically confirm whether c=l corresponds to

a minimum or a maximum. Our numerical evaluations suggested a minimum.
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FOOTNOTES

The authors are grateful to David Giles for his helpful comrﬁents and

suggestions.

1. For simplicity we assume a one-sided alternative hypothesis. It is
straightforward, though tedious, to extend our analysis to the two-sided

case.

2. See Giles and Giles (1993) for a survey of this literature.

3. Note that although the risks under normality are a special case of our

results, those of Giles (1992) are not.

4. For example, Giles (1992) also considers the case where the mixing

distribution is gamma.










