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SUMMARY

We consider the estimation of the error variance of a regression when

additional information is available in the form of a second sample, which

may be generated from a process with the same variance. This problem has

received attention in the literature when the joint errors are members of

the spherically symmetric family. We extend this assumption to one in which

the errors in each sample are independent multivariate Student-t random

vectors. We derive the exact risk under quadratic loss of the pre-test

estimator which results after a test for homogeneity of the variances and we

compare the risk of this estimator with that of its component estimators.

• AMS (1980) Subject Classifications: Primary 62J05, 62F11; secondary 62P20.

Key words and phrases: Preliminary testing, conditional inference,

non-normal disturbances, testing for homogeneity.

CORRESPONDENCE: Dr Judith Giles, Department of Economics, University of

Canterbury, Private Bag 4800, Christchurch, New Zealand.

FAX:64-3-3642635; VOICE:64-3-3642520; EMAIL: j. gil es@csc. canterbury. ac. nz



1. INTRODUCTION AND MODEL FRAMEWORK

Suppose we have two linear regressions of the form:

yi = Xigi + ci, i = 1,2 (1)

where yi is a (Tixl) vector of observations on the dependent variable; Xi is

a (Txki) full column rank matrix of non-stochastic regressors with ki < Ti;

gi is a (kixl) vector of parameters; and ci is a (Tixl) vector of

disturbance terms. We assume that ci and c2 are independently generated

from multivariate Student-t (Mt) distributions, with probablitity density

functions (pdf):
v./2 T./2 T.

f(ci vi, a'.) = 11(v.+T.)/2))(Tr
i 

r(v
i
/2)cr

i
1 
)_1

VI

x (v.+c1. cja.2.) -Cr1
+v

1
)/2 i=1,2.

1 1 1 1)

is the degrees of freedom parameter and o-i is the scale parameter of the

2
distribution. If v.>2 then then E(ci) = 0 and Var(ci C.) = a•2 =

I I 1

When vi = 1, the pdf is Cauchy for which no finite integral moments exist;

when vi = co it is normal.

We suppose that the researcher desires an estimate of cr2 , the variance
el

of the first sample, when it is suspected that c2 may have the same

variance. When the error variances are unequal we use the so-called

2
never-pool estimator (NPE), sN, to estimate 0.2 :c

l
2 2 , 

sN - - c iMici/vi (2)

-
where vi = Ti-k; Mi = I -X.(X'. X.) 1X'. • i=1,2. s 

2 
N uses only the

T. ill i'
1

information from the first sample. Alternatively, if a•2 = o-2 it is then
el 

c2

more efficient to use the "always-pool" estimator (APE), sA2:

s 2A = (vis21 vzsz2)/(vi+v2)

1

(3)



x t

0

2 2where s2 is defined analogously to si. Given the uncertainty about the

equality of the error variances a typical strategy is to pre-test for

homogeneity and then use sN2 if we reject homogeneity or use sA2 if we cannot

reject homogeneity. The estimator actually reported after such a procedure

is the so-called pre-test estimator (PTE) sp2 :

2
Sp -

where J =

2
sA if J c

2 
(4)

sN if J > c

2 2 2s2/si is the test statistic used to test the hypothesis' H
0 
: cr

e
l

cr
2 

VS. H o.
2 

< cr
2 

and c is
A the critical value of the testC2
 

e
l c2

corresponding to an a7. significance level.

If e' = (el q) is distributed as a member of the elliptically

symmetric family of distributions then it is well known that f(J) =

0
-1
f IF

(v
2

v
1
)) 

where = 
TelATc2 

i 
2 2 

s a measure of the hypothesis error and
' 

F
(vv1) 

is a central F random variable with v2 and v1 degrees of freedom
2
, 

(see King (1979) and Chmielewski (1981)). However, if el and c2 are

independent Mt random vectors then J has a non-standard distribution.

Ohtani (1990) derives the density of J in this case:

f(J) 
v/2

= [ B(v
1
/2
' 

v
2
/2) B(v

1
/2
' 

v
2
/2)

-1 
0

1 
J
v/2-1
1 

o3 (v
2
+v
2
)/2-1 (v

1
+v

1
)/2-1

(1-t) (t+0J(1-t)) dt

2 2
where 0 = (v2/v1)[v1cri/(v2o.2)] and B(.,.) is the Beta function. Ohtani also

tabulates a limited number of critical values for the test under this

assumption, assuming a 57. significance level.

The particular pre-test problem considered here ha. been well
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4

investigated in the literature but not under the above specified error term

assumptions. For example, Bancroft (1944), Toyoda and Wallace (1975),

Ohtani and Toyoda (1978), and Bancroft and Han (1983) all consider this

problem from various aspects under normal errors2. Bancroft (1944)

concludes from his numerical evaluations that the PIE which uses a critical

value of unity strictly dominates the NPE.

Toyoda and Wallace (1975) show that the risk of the APE always has two

intersections with the risk of the NPE and that one intersection always lies

in the range 0 E (0, 1). This implies that the NPE cannot strictly dominate

the APE and vice versa. Toyoda and Wallace also show that a PTE with a

critical value in the range c E (0, 2) strictly dominates the NPE, and that

the PTE with c=1 "almost always" dominates the APE, except in the

neighbourhood of the null hypothesis. They consequently suggest c=1 as a

reasonable choice for the pre-test (p.399) and go on to show that this

choice of critical value maximises relative average efficiency.

Ohtani and Toyoda (1978) consider optimal critical values for this

pre-test problem according to a minimax regret criterion. They show that

the risk function for the PTE declines monotonically for c E (0, 1), and

obtains a local minimum at c=1. Using a minimax regret criterion they solve

numerically for an "optimal" critical value, c*. They find that c* depends

on v1 and v2 and ranges from 1.7 to 2.8 (for the cases evaluated) which

correspond to sizes from 67. to 227.. Bancroft and Han (1983) also consider

the choice of an optimal critical value according to another criterion - so

called relative efficiency. Their results suggest significance levels

ranging from 247. to 487., depending on v1 and v2.

As the processes generating many time-series are non-normal, Giles

(1990, 1992) extends the above cited work to one where the joint error term

in the model is distributed according to the scale mixture of normals family

3



of distributions, which are members of the elliptically symmetric family of

distributions. It is then possible to consider error term assumptions which

result in more or less kurtosis than under a normality assumption. One

special member of this family is the Mt distribution which results in

uncorrelated but dependent errors. She shows that the risk function for the

PTE has a minimum when c=1 and also that for small values of the Mt shape

parameter, v, (i.e. "fat-tailed" distributions) this PTE strictly dominates

both the NPE and the APE.

Here we extend the error term assumptions further by assuming that the

errors in each sample are Mt but are independent. This allows for the error

distributions for the samples to have potentially different shape, as well

as scale, parameters. The outline of this paper is as follows: Section 2

derives the risk functions of the NPE, APE and PTE under the independent Mt

assumption and undertakes some comparisons of the risk properties of the

three estimators. In Section 3 we consider some numerical evaluations of

these risk functions. Here we use Ohtani's (1990) critical values where

possible but we also consider that a researcher may incorrectly assume

normality of the errors and so use critical values from the central-F

distribution. For the latter, of course, the true significance level will

differ from the assigned nominal significance level. We conclude with some

final remarks in Section 4 followed by an appendix which contains brief

proofs of the theorems.

2. THE RISK FUNCTIONS

Let ;2 be any estimator of cr2 and let its risk under quadratic loss be
el

defined by R(;2) = E( 2 - cr
2 
)
2
. Then, if e

l 
and e

2 
are generated from

e
l

independent Mt distributions with 1 i>4 and v2>4 we have:
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Theorem 1:

R(s
2
) = 2v

2
1
0
-4
1
(V

1 
+1, 

1 
-2)/ (N7

1 
(v

1 
-2)

2
(V

1 
-4)) (5)

R(S 2 ) = 1,20'4f (I,
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-4) [V
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(2V
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+V
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+2)(v
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)2(v1

-2)2 (v
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2 
)2(v

1
+2)(v

1 
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1 
v
2 
(v
2 
+2)P

0440 
(v

1 
-2)2(v

1 
-4)

P 1 1 
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-v
2
(2v

1
+v
2
)(v

1
+2)P4004(v

1
-2)

2
(v

1 
-4)+2v

2

1v2 P2222 
(v

1 
-2)

2
(1, 
i4

-2v
1 
(v

1 
+v
2 )1(v1 

+v
21 -4)+v2 P0220 

(v
1 
-2)(

1
v -4)

-v2P2002(v1-2)(v1-4))+v1(v1+v2)

(v1(v1+v2)2(v1-2)(v1-4))

ri
P -
atm.] ri pi

-2 )

vi+v2-a-b

2

ri P2
-2

-4)1/

v
2
/2

( (v
2
-b)/2 

(cv )(v
1
-a)/2

V1 
t 0 1 2

(6)

(7)

(V -
x 
2a+b)/2 

(v 
1 
a-b)/2 1 (v

2
-b)/2-1 (v -a)/2-1

(1-t
1 
) 1-( 

t
1 1 

0

x (v1t1(v2-2)/0+(v(2)cv2(1-t1))

x It1(1(v2+i);

Proof: See the appendix.

(a+b-v1-v2)/2
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Remarks:

1. When c=0 (a=1) we always reject Ho and the risk of the PTE collapses to

that of the NPE. Conversely, if c4co (a40) we never reject Ho and R(s)

= R(sA2).

2. The risk functions of sN2 and sA2 have two intersections with respect to

ç. Let these be 01 and 02. Their values are 0 
(w 

1 = T112)/c- and 02

(w - -r1/2)/(, where w = -2v
1 
v2(

1
v -4)(v

2 
-4) t =8v

1 
v
2
(
2

1, -4)(v
1 
-4)

2 2 

x (2v2(v2 
-2)(v

1 
+2) - v

1 
[v2(

1
v -v

2 
-2)+v

2 
(2-v

2 
)(v

1 
+2)-4(v2-2)(v1-2)] +

1 2 

v2(v2-2)(v1-2)(v2+2)), and = 2v2(v2-4)(4v21 + v1(4(v1-2) - v2(1,1-6)) +

2v
2
(1,

1
-2)). As R(s

2
) is a quadratic in 1/0, with an asymptote at 0=0,
A

one of these intersections will lie in the range (0, -co) and the other

in the range (0, +co). There are three possibilities. First, one

intersection lies in the range (0, 1). This implies that neither of

the NPE or the APE strictly dominates the other, and accords with the

results under spherically symmetric disturbances. The second

alternative is that the positive intersection is greater than unity.

Then, the NPE strictly dominates the APE over the range e (0, 11.

The third possibility is that there are no real intersections. This

occurs when -r is negative and in this case the NPE again strictly

dominates the APE. We consider these cases further in the next

section.

3. When vi4co and v2-co, the risk functions collapse to their normal

counterparts (see, for example, Toyoda and Wallace (1975))3.

4. As 040, R(s) 4 R(s) while R(s) 4 co. That is, pre-testing leads us

to follow the correct strategy when the prior information is very

false.

5. Typically R(sA2) < R(sN2) when 0=1, although there are exceptions as

6



noted in the above point 2. It is also possible for R(s) < R(s) when

0=1. We illustrate such cases in the next section.

6. Theorem 2:

Extrema of R(s
2
) result when c=0, c4co, and c=1.

Proof: See the appendix.

So, for any particular value of 0, the minimum risk estimator among

those considered in this paper may be either the APE, the NPE, or the

PTE with c=1.

3. NUMERICAL EVALUATIONS OF THE RISK FUNCTIONS

To illustrate the results we have numerically evaluated the risk

functions. Various values of the arguments were considered: v1, v2 = 10,

30, 40; vi, v2 = 5, 10, 50, 100, co; those critical values corresponding to a

true size of 57. (Ohtani (1990)), those from the central-F distribution

corresponding to nominal sizes of 17., 57., 307. and 757. and a critical value

of unity. Full details of these results are available on request. The

evaluations were undertaken using a FORTRAN program written by the authors,

which utilises several subroutines from Press et at. (1986). We executed

the program on a VAX 7610 and a VAXstation 4000. Figures 1 to 4 provide

representative results. The horizontal axis, in each figure, measures the

extent of the hypothesis error 0 e (0, 1]. The vertical axis measures risk

and we have assumed, without loss of generality, that cr2i = 1. The following

points can be noted:

1. The figures illustrate the possible cases referred to in the previous

Section as point 2. Specifically, the risk functions of the NPE and

APE can intersect at a value of 0 E (0, 1) (see for example Figure 1).

Our results suggest that this will occur for all values of v1 and v
2

7



when v2 v1. Figure 2 provides an example where the NPE strictly

dominates the APE for all (/) e (0, 1]. The evaluations suggest that

this case is likely when v2 is sufficiently smaller than v1. So, if

the error term of the model for the second sample has marginal

distributions which have "fatter" tails than that for the first sample

then it is never optimal to pool the data, even if the variances are

equal. This result contrasts to that found when the joint disturbance

is spherically symmetric. Then it is always preferable to pool the

samples when the variances are equal rather than to simply ignore the

prior information.

2. An increase in v1, v2 shifts the risk functions downwards, as does also

an increase in v1, v2.

3. There is no strictly dominating estimator when the disturbances are

normal or vi and v2 are "large" (see for example Figure 3). Then, the

APE has the smallest risk around the neighbourhood of Ho, while it is

generally preferable to employ the PTE with c=1 otherwise.

4. For small vi, v2 (e.g. 5, 10) the PTE can strictly dominate both the

NPE and the APE (see for example Figure 4). Typically, the PTE which

uses c=1 strictly dominates all other Pit's. This result accords with

those of Toyoda and Wallace (1975), Ohtani and Toyoda (1978), and Giles

(1992).

5. Using the central-F critical values, as opposed to the values provided

by Ohtani (1990), typically has a significant effect on the risk

function; that is, there is a significant difference between the

nominal and true sizes for the F-test. The distortion in size

increases as vi, v2 decrease.

6. The PTE which uses c=1 always strictly dominates the NPE. It is never

optimal to ignore the prior information.

8



4. CONCLUDING REMARKS

In this paper we have examined the risks of estimators of the

regression error variance after a preliminary test for homogeneity, when the

disturbances in each sample are Mt but independent. In summary our

investigation suggests that for large vi and v2 the results under the

independent Mt assumption are qualitatively similar to those under normal

errors (e.g. Toyoda and Wallace (1975)) - no strictly dominating estimator

exists; the APE has the smallest risk around the neighbourhood of the null

hypothesis; and the PTE with c=1 strictly dominates the NPE. Secondly, our

results suggest that for v2 ?: vi we have similar qualitative conclusions to

Giles (1992) - neither the NPE nor the APE can strictly dominate the other;

and the PTE with c=1 can strictly dominate both the APE and the NPE.

Finally, if vi > v2 the NPE strictly dominates the APE, but both are then

strictly dominated by the PTE which uses c=1. So, the optimal strategy when

vi > v2 is to pre-test with c=1.

There remain a number of issues for future work. For example, it would

be interesting to consider this problem with a different variance mixing

distribution
4
; to consider other pre-test problems under a similar

disturbance assumption as used here; to investigate the choice of an optimal

critical value according to some explicit optimality criterion; to assume

that the disturbances are non-normal though identically independently

distributed; and to consider the case where vi and v2 are estimated rather

than assumed to be known.

9



APPENDIX

Proof of Theorem 1.

2R(s
2

N
) = Eis2-cr2 )

1 e
l

Now,

co
f(c1) = fN(ci)f(tddri (A.1)

0

2 2
where fN(ei) is the pdf of ei when ei - N(0, 

I1 
) with ti a positive
1

scalar. (A.1) is the density of a Mt random variable when Ti is an inverted

gamma variate. Then,

2 V /2
2 1 ILioiI1 -(v1+1) -v1a-21/2-r21

f(T
1
) 
= r(v

1
/2) 2 T1

and we write T ••• IG(v
I' 

c'). SO,

Now,

2

R(s) = E(S4) - 2E(T2)E(S2) + (E(T))
1 1 1 1 •

E(s2) = E (s2)f(t )dt
1 N 1 1 1

0

where EN(A) is the expected value of A under the normality assumption. As

2
Si = cM1c1, M1 = - Xi(XIXiiiri, we have 

1 
e'M

11
/T
2 

••• X
2 

under the 
 1

1 
vi

assumption that el - N(0, T
2
I
T 

). SO, E
N 
(s2) = T

2 
and E(s2) = E(1-2).

1 1 1 1 1
1

4
Likewise, E(s) = (v1+2)E(1-1)/v1. Then,

2

R(S2) = [(v1+2)E(T4)-v
1
 (E(T)) 

N 1  1 1

2
and equation (5) follows directly as E(T

1
) = v

1 
a.
2
/(V

1 
-2) and E(T4) =

1  1

V
2
cr
4
/1(v when t IG(v

l' 
cr2).

1 1 1 1 1  1
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Similarly,

Now,

R(s2) = Eis2-cr2 )2
A i A e

l

2

= E(S 4 ) - 2E(T2)E(S2) + (E(T)) •
A 1 A 1

2 ,

SA = (elM
1
e
1
+e2M2c2)/(v1+v2)

where M2 is defined analogously to MI. Then,

E(s) = ITEN(s2A)f(Tit2)&ridt2

00

= ii
00

E (s2)f(T )f(T )dT dr
N A 1 2 1 2

2 2 2 ,, 2
as el and c2 are independent. As c'M

1 
c
1 
/T - x and 

cm'2c2/1. x 
when

11 v
l 

2  2 v
2

C
1 

•••• N(0, T
2
i ) and c

2 
- N(0, 

T2
2

1T 
) respectively, we have that

1 T 
1 2

and

E
N 
(s2) = (v

1 
T2+v

2 
T2)/(v

1 
+v
2 
)

A 1 2 

V oo co

E(s) - 
1  .1 .1 2,, ,__, „, "

A V 14-V2 
TIl
I

T
1
)0IT

1
ikT
2

pti.T
2

00

v2 CO CO

+   
V 1 +V2 

f .1 T22f(T1)dr1f(T2)dT2

00

2 2
= [V1E(TI)+V2E(T2)] /(V1+V2)

= p1E(T21)+v2E(T21)/01/(v1i-v2)

as 0 = 0-2 /0'2 Tand E( 2) = 0'2 T= E( 2)/0.
C1

c2 
2 c2 1

Likewise,

E(s) = {v1(v1+2)E(T41.)+v2(v2+2)E(T)
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+ 2v1v2E(1-21)E(T;)1/(v1+v2)2

4= {VI (Vi+2)E(T1)+V2(V2+2)E(T2)

2 2
+ (1122-1121) (E(T2i )) +2V22 (E(T2i)) /01/(v1+v2)2.

Using t1 - IG(vi, (721), t2 - IG(1,2, cr22) then

v.

I 
(vi+2)v2,cr, v,,(v,)+2)v2i(v2-2)cr4i

E(s4) = + ' '
A (v

1
-2) (v

1-4) (v 
1
-2)2(v

2
-4)02

24
V 0' (V

2
cr
4
)

2v 
2  1 1 + (V

2
2-111

2
)  

1 1 
/(3/ +V )

2

(1, 
1
-2)

2 2
(v

1
-2)

21 1 2

so that R(s
2
) follows.
A

We now turn to the risk of the pre-test estimator:

We have

2
R(S 2 ) = E(S 4 ) - 2E(t)E(s) ) +P P 1 p 1

2 2 2 2_
SP - SN + (5A-SO[0,C] )

= (cim1c1)(v1+v2) + (v1qm2c2-v2cim1c1)

x iro,ci(v1.?2.2/v2.1m1.1)

(A.2)

where 
I[a,b]

(J) is an indicator function which takes the value one when J

lies within the subscripted range, 0 otherwise. So,

R(s) = trf(Vi+V2)(C 1 Miel/T21 )

+ [2 2 2
T2V1(C2' M2C/T2)-V2T1(C 1 MiCitr21)1

X IE 0, C*1 [(V1C2' M2C/T22 )/(V2C1M1C1/T21)) HV1(V1+V2))

where c* = Cr2/T2
1 2.

2Under the assumption that c - N(0, T1IT1) and c
2 
- N(0, 7"

2
1 ) and

1 t2 IT
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using, for example, Lemma 1 of Clarke et a/. (1987) we have

EN [(c2i M2c2/1.22)I[0,c*1(• )1 = v2P20 '

EN PIM1c1/T21)I[0,c*](*)] = v1P02

where

Pii = Pr. [F . (c*v2(vi+j))/(v1(v2+i))]
(v2+I'v

1
+J)

= Ix pi(v2+i);1(v1+jd

and x =
2
V
2 
/(V

1 
T
2
+cv
2 
r2). I (.•'.) is the incomplete beta function. So,1 2 1 x 

E(s) = (vi
+v_)E(T+v

!) (
z 2E T22P20)-v2E(T21P02)1/(v1"2).

Following similar steps,

E(s) = (v1+v2)2(v1+2)E(T:-)+v1v2(v2+2)E(T24P40)

- v
2
(2v

1
+v
2
)(v

1
+2)E(T4P

04 
) + 

2v2iv2E(T21-r22P22)1+1(v1" )1 

Substituting (A.2) and (A.3) into (A.1) we have

2
R(s) = (v

1
+v
2
)
2
(V

1
+2)E(T4)+V

1 
V
2 
(V
2 
+2)E(T4P

40 )2 

- v
2
(2v

1
+v
2
)(v

1
+2)E(T4P

04 
) + 2v2v

2 
E(T2t2P

22 
)1 1 1 2 

- 2E(T2i)vi(vi+v2)[(vi+vz+v2ET2P20)JE(T) ( -v2E(T2IP02)2 

2
+ v1(v1+V2)2 (E(T2)) HVI(V1+V2)2)

(A.3)

(A.4)

(A.5)

To evaluate (A.5) under the inverted gamma assumptions we require the

following lemma:
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Lemma:

where

Proof.

E(
= ,v20.2)(a+b)/2.. p TaibP'

1 2 1 1 abi j

Tr i+v2-a-b)

2 j 2-(a+b)/2 I
v
2
-2v2/2

P -
abij v v

rHr(-4)

(v -b)/2 (v -a)/2 (v -a-b)/2x v1 2 (cv2) 1 (v1-2) 1

x fcci
tl
(P2-b)/2-1

(1-t1
0

+ (v
1
-2)cv

2
(1-t

1
)
(a+b-v1-1,2)/2 (1 

I -(v,+i);!(v.+j)
t
1 
2 2 1

co co
E(T

1
a-rb
2
P..) = T

1
at-
2
I r(v

2 
+i)
21
;!-(v +j)]ij x 

00

x f(t
1
)f(t

2
)d-r

1
dr
2 
.

Substituting in f(ii) and f(r2) we have

Cr
2 11

1
/2 

a. 
2 

1'2
/2

ararbp..) 

n v

_  4 1 1 2 2 
1 2 j

T 2 
2 

2 2

co co

J. .1 Tai.-1,1-1T1-112—lexp[_(pia.21/T21+1,2,722/T22)/2]
00

X I [1(v_+i);!(v,+j)id-ridt,
X 2 2 1 1 Z.

Note that I
x
(.) does not depend on ri or T2. Now, using the following

changes of variables:

1. Z = T
2
, Z =

2

1 1 2 2
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2. t1 = cv2z1/(cv2z1+v1z2), t2 = z2

3. s = p/(2t2), t1 = t1

2
where p = v2.7 + v1cr1cv2(1-t1)/(v1t1), it follows that

r v1-i-v
2
-a-b

2 (a+b)/2 v2/2
v
2
-2

E(rarbp.. 

pA P 

i) _  ( 
i )

2  vlcrl 
1 2 1 j 1 2 

1 
) 0 )

rir 
k 2) 2)

x v1
(v
2
-b)/2

(cv2)(v1-a)/2(v1-2)
(v

1
-a-b)/2

1 (v
2 

(1-t
1
) 

-b)/2-1 (v -a)/b-1
1

x t [v
1
t
1
(v
2
-2)/0

0

(a+b-v
1
-v
2
)/2

+ (v
1
-2)cv

2
(1-t

1)1 
I
t 
(l

4 
(v„+i);-1- 

1 
(v,+ j)) dt

2 2 1
1

= (v cr2)(a+b)/2D
1 1 a abij •

Using this Lemma repeatedly in (A.5) gives the desired result. #

Proof of Theorem 2.

Now,

R(s)E
2
 = 21 (J)+s

2
1 .0)-E(T1

2
)] 2

P [sA [0,cl N (c,03)

2 2
= ERSA-E(y 

2

) 
I[O,C1(j)

12

+ (s1\12-E(T211 I(C,03)(3)] •

Let q1 = elMici and q2 = qM2c2 so that

2 2 _
SA = (q1+q2)/(v1+v2), sN - qi/vi; J = v1q2/(v2q1) and

R(s) 
= E{ [( ql+q2)/(v1+v2)-E(T21)1 

I[2
 -1 

cv2q1/v1]
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+ (qi/vi-E(T 
2

f)) (1-I [q2 --s cv2q1/vi] ) }

co co
2

= f .1 EN [((qii-q2)/(vi+v2)-E(ri)) 2I [q2 cv2q1/v.i]

O 0

2

+ (
1
q /v

1 
-E(T2)) (1-I[

2 
q ts cv

2 
q
1 
/v

1 
Blf(t

1 
)f(t

2 
)dr dr1 12

oo co
2

= f f EN [EN ((qi+q2)/(vi+v2)-E(Ti)) 21 [q2 -..s. cv2qi/vd

O 0 91 92

+ (
1

q /v
1 
-E(T2)) 2(1—I(q

2 
is cv

2 
q
1 
/v

1 
))]1 

x f(t
1
)f(t

2
)dr

1
di-
2

CO 03 2

= LI E f .1 ((q
1 
+q )/(v

12 
+v )-E(T2)) f (

2
q )dqN 2 1 N 2

O 0 ql 0

+ (
1

q /v
1 
-E(T2))2(i_fxr

N 
(q
2 
)dq
2 
ilf(t

1 
)f(t

2 
)d-r dr1 1 2

0

where x = cv2q1/v1 and fN(q2) is the density function of a Chi-squared random

variable with v2 degrees of freedom.

So,

2
8R(s) co co 2

aC - — f r N faa: rax fx
((qi+q2)/(vi+v2)-E(T21)) f( 2)d 2

J 
00 9 1 0

- (q
1
/v

1
-E(T2.))

1 2aax rfN(q2)1q2il
0

x f(t.
1
)f(t

2
)dr

1
dr
2

= f
c° fc°E riv2qnf (cv2q1l

j N 11 v j N( vi j
00 q1 1

x 
[((qii-cv2qi/v1)/(vi+v2)-E(T21))2
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- (qi/v1-E(t1))11f(ti)f(r2)d-ridt2 .

A sufficient condition for this derivative to be zero is c=0, c903, and

[ ((qi-e-cv2q1/v1)/(vi+v2)-E(T21)) 2- ((q1/v1)-E(1.21)) = 0. (A.5)

2

This will hold if c=1 or 1-2v
1 
(v

1 
+v
2 
) ((q

1 
/v

1 
)-E(T

2
)) /(q

1 
v
2 
) = 0.

1 
It does

not appear possible to sign the second partial derivative with respect to c

and so it was not possible to analytically confirm whether c=1 corresponds to

a minimum or a maximum. Our numerical evaluations suggested a minimum.

17



REFERENCES

Bancroft, T.A. (1944). On biases in estimation due to the use of preliminary
tests of significance. Annals of Mathematical Statistics, 15, 190-204.

Bancroft, T.A. and Han, C-P. (1983). A note on pooling variances. Journal of
the American Statistical Association, 78, 981-983.

Chmielewski, M.A. (1981). Invariant tests for the equality of K scale
parameters under spherical symmetry. Journal of Statistical Planning
and Inference, 5, 341-346.

Clarke, J.A., Giles, D.E.A. and Wallace, T.D. (1987). Estimating the error
variance in regression after a preliminary test of restrictions on the
coefficients. Journal of Econometrics, 34, 293-304.

Giles, J.A. (1990). Preliminary test estimation of a mis-specified linear
model with spherically symmetric disturbances. Ph.D. thesis, University
of Canterbury.

Giles, J.A. (1992). Estimation of the error variance after a preliminary
test of homogeneity in a regression model with spherically symmetric
disturbances. Journal of Econometrics, 53, 345-361.

Giles, J.A. and D.E.A. Giles (1993). Pre-test estimation and testing in
econometrics: Recent developments. Journal of Economic Surveys,
forthcoming.

King, M.L. (1979). Some aspects of statistical inference in the linear
regression model. Ph.D. thesis, University of Canterbury.

Ohtani, K. (1990). Testing equality of scale parameters between two linear
regressions when error terms have multivariate distributions and two
error terms are mutually independent. Mimeo., Faculty of Economics,
Kobe University.

Ohtani, K. and Toyoda, T. (1978). Minimax regret critical values for a
preliminary test in pooling variances. Journal of the Japan Statistical
Society, 8, 15-20.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986).
Numerical Recipes: The Art of Scientific Computing, Cambridge
University Press, New York.

Toyoda, T. and Wallace, T.D. (1975). Estimation of variance after a
preliminary test for homogeneity and optimal levels of significance for
the pre-test. Journal of Econometrics, 3, 395-404.

18



NPE
Re
la
ti
ve
 R
is
k 

NPE

3.0

2.5

2.0

1.5

1.0

0.5

0.0
1.0
NULL
TRUE

0.9

APE

0.8 0.7

PTE
True
a=0. 05

PTE
Nominal
a=0. 05

PTE
Nominal
a=0. 01

0.6 0.5 0.4 0.3 0.2

Figure 1. Relative risk functions for sN2, sA2 and sp2

= v2 = 30, vi = 5, v2 = 10

APE PTE
True

c'=0.05

PTE
Nominal
cc=0.05

PTE
Nominal
a=0.01

0.1

PTE
c=1

0.0

PTE
c=1

..• 
• • 
• • 
• • 
• • 
•• • 

••

0.9 0.8 0.7 0.6 00.5 0.4 0.3 0.2

Figure 2. Relative risk functions for sN2, s2A and sp2

= v2 = 30, vi = 10, v2 = 5

19

0.1 0.0



Re
la
ti
ve
 R
is

k 

NPE

0.30

0.25

0.20

APE PTE PTE PTE PTE
True Nominal Nominal c=1
a=0.05 a=0.05 a=0.01

•
•

0.15- • •
/' ,•••-• •

••/ •.••••••
•• 

0.10   
•

**•••••••,..

0.05

/
/
,

. \
./ \

./
./ \

/ \
./ \

- - -./

•

0.00  
1.0 0.9 0.8 0.7 0.6 00.5 0.4 0.3 0.2 0.1 0.0
NULL
TRUE Figure 3. Relative risk functions for sN2, sA2 and si2,

= v2 = 30, vi = v2 = 100

Re
la
ti
ve
 R
is

k 

NPE

12

10

APE PTE
True
a=0.05

PTE PTE
Nominal Nominal
a=0.05 a=0.01

PTE
c=1

... 

•••••••••

, 

...........................

0  
1.0 0.9 0.8
NULL
TRUE

•

-•""
•••••

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Figure 4. Relative risk functions for s2
' 

s2 and s2
N A P

= v2 = 30, vi = v2 = 5

20



FOOTNOTES

* The authors are grateful to David Giles for his helpful comments and

suggestions.

1. For simplicity we assume a one-sided alternative hypothesis. It is

straightforward, though tedious, to extend our analysis to the two-sided

case.

2. See Giles and Giles (1993) for a survey of this literature.

3. Note that although the risks under normality are a special case of our

results, those of Giles (1992) are not.

4. For example, Giles (1992) also considers the case where the mixing

distribution is gamma.
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