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Abstract

This paper considers the estimation of a dynamic linear regression model after a pre-
test of exact linear restrictions on the coefficient vector. Monte Carlo evidence illustrates that
pre-testing can be risk-superior to both ordinary and restricted least squares.
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1. Introduction

The implications of testing the validity of exact linear restrictions on the coefficients
of a linear regression model, prior to estimating those coefficients, are well known when the
model satisfies the usual "ideal" assumptions. Judge and Bock (1978) and Giles and Giles
(1993), among others, document the risk properties of this and related "pre-test" estimators.

The latter authors also discuss recent work which focuses on the sampling
performance of certain common pre-test regression coefficient estimators when some of the

assumptions underlying the standard regression framework are violated. For example, the

effects of wrongly omitted or included regressors (Ohtani (1983), Mittelhammer (1984),

Giles (1986)); non-Normal errors (Giles (1991a,b)); or a non-spherical error covariance
matrix (Albertson (1993)) have all been considered.

However, to date no account has been taken of the effects of stochastic regressors!
on the risk properties of the regression coefficient pre-test estimator. An important practical
example of this arises with a model which is "dynamic", or autoregressive, in the sense of
including lagged values of the dependent variable as regressors.

In this paper we consider this problem, and use Monte Carlo simulation to compute
the risks of the above pre-test estimator and its "component" estimators in models with one
or two lagged dependent variables. We show, in particular, that the presence of model

dynamics can alter some of the established risk-dominance results.
2. The model framework
Consider the model
y=XB8+u ; u~ NQO, o)
where y is (n X 1), Bis (k X 1), and X is (n X k) and of rank k. We allow for the
possibility that at least one of the columns of X is stochastic. Then, suppose that we test Hy:

RB =r (where R is (m X k) and of rank m, and r is (m X 1), both non-stochastic) prior

to estimating 8. The pre-test estimator of 3, say B, is either B = (X X)Xy (the Ordinary




Least Squares, or OLS, estimator) if H, is rejected; or 8° = 8 + (X X)'R°[R(X “X)'R‘]"
(r - RB) (the Restricted Least Squares, or RLS, estimator) if H, is not rejected.

Typically, one would ignore the randomness of X and test H, using? the ysual "F-
statistic", f = [(u""u”- @°0) / G"T] [(n - k)/m], where u” = y - X" and @i = y - XB. Then,
we can write 8 = 8" T (f) + B I.ay(f), where I, (f) = 1if f € [a,b), zero otherwise; and
¢ is the usual F,,,, critical value for a nominal «% significance level.

We consider the case where X is random because some of its columns are lagged
values of y. Then, it is well known that 3 and 8° are biased (even if H, is true), and their
covariance matrices differ (in a manner depending on the randomness of the data) from what
they would be with fixed regressors. Also, fis not F-distributed in this case (e.g., Evans and
Savin (1982)). We determine the risk of B8 under quadratic loss. That is, we use p(8) =
E(B - B)“(B - B) as the measure of estimator performance. If X is non-stochastic this risk (the
trace of the matrix mean squared error) is readily computed analytically (e.g., Judge and
Bock (1978)). However, if X is random the situation is complicated to the extent that Monte
Carlo simulation must be used. We compare p(B) with p(8) and p(8").

3. Monte Carlo experiment
We consider two situations
Model I: Ye=Bi+Byutu; u~NQOd; t=12,..

with?

Hy:8,=0 vs.H,:6>0.
Model II:  y, =By + By + BsYa + 0 uy, ~ NO,?); t=12,...,n

with
Ho:8,=0 vs. H,: 83> 0.

Our Monte Carlo simulations involve 20,000 replications of each of - several

experimental designs, all of the computations being undertaken with the SHAZAM paékage
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(White et al. (1990)) on a VAX 6340 and a VAXstation 4000 under VMS 5.5. SHAZAM
uses the random number generator proposed by Brent (1974). We set yo, = O and ¢® = 1,
and consider n = 10, 50. .
With Model I we set ¢ = 5.32 (n = 10) and 4.04 (n = 50). These values correspond
to a (nominal) significance level of 5%. We also used Brook and Fletcher’s (1981) "optimal”
critical value (for non-orthonormal regressors) under a mini-max regret criterion in each
case*. These values are functions of the y-data, so they differ across replications of the Monte

Carlo experiment, ceteris paribus. By way of information, the average such critical values

for n = 10 (50) were 2.38 (2.61), corresponding to nominal significance levels of 16.2%
(11.3%). With Model II the (nominal) 5% critical values are-c = 5.59 (n = 10) and 4.05
(n = 50). Brook and Fletcher’s "optimal” values were also used. They are again data-

dependent (though independent of the parameter values), and their average values over the
20,000 replications were 1.13 (1.02) for n = 10 (50), corresponding to nominal significance
levels for the "F-test" of 31.8% (31.7%). With Model I we evaluated the risks of 3, 8 and
B° when 8, = 0.1 (0.1) 1.0, in each case varying 8, so as to compute the risks as functions
of X = (/B,)/(2n). The latter is the non-centrality parameter associated with the® "F-test" of
H, if y = 0. So, A\ = 0 corresponds to H, being true, and A increases monotonically as we
depart from H,. This makes the presentation of our results comparable with those in the
established pre-test literature. With Model II we set 8, = 1, considered 8, = 0.1, 0.5, 0.9,
1.0, and computed the risks in each case as a® function of 8; € [0,1]. These choices of

parameters allow for the important unit root situation and result in 56 design matrices.

4. Results

The précise shapes of the various risk functions for the full regression coefficient
vector depend to some extent, for both Models I and II, on the parameter values, sample
size, and choice of significance level for the pre-test. However, the general qualitative
features of these results are quite systematic and these are illustrated in Figures 1 and 2 for
Models I and II respectively.

When the model includes a single lagged value of the dependent variable, regions of
risk-dominance always arise which qualitatively match those which are well-known (e.g.,

Judge and Bock (1978)) for the fixed-regressor model when testing for exact linear




Figure 1(a)
Risks of OLS, RLS & Pre-Test Estimators
Model | (n=10, Beta2=0.1, 5% critical value)

Pre-Test

Figure 1(b)
Risks of OLS, RLS & Pre-Test Estimators
) Model | (n=10, Beta2=1.0, 5% critical value)




Figure 2(a)
Risks of OLS, RLS & Pre-Test Estimators
Model Il (n=50, Beta2=0.1, Brook-Fletcher critical value)

Pre-Test

Figure 2(b)
Risks of OLS, RLS & Pre-Test Estimators
Model Il (n=50, Beta2=1.0, Brook-Fletcher critical value)

Pre-Test




restrictions on the coefficients. That is, there is always a region of the parameter space (i.e.,
a range of A values) for which the OLS estimator is preferred among the three estimators
under consideration; there is always a region where the RLS estimator is preferred; there is
always a region where the pre-test estimator is the worst of the three; but nowhere is the
latter estimator "best", in the sense of having quadratic risk which is simultaneously less than
that of the other two estimators. This is illustrated in Figures 1(a) and 1(b).

On the other hand, when the model is second-order autoregressive (with a drift term),
it is possible to generate situations where the pre-test estimator simultaneously dominates

both the OLS and RLS estimators. Regardless of the sample size, this arises for relatively

small values of the coefficient (8,) on the first lagged regressor. This effect is less

pronounced when a conventional (nominal) significance level is used for the pre-test itself,
than when the relatively large significance levels associated with Brook and Fletcher’s
"optimal” critical "F-values" are used. In these same cases, there is never a region of the
parameter space where pre-testing is the "worst” of the three estimation strategies under
consideration. This is illustrated in Figure 2(a). Considering larger values of 8, in these cases
(as in Figure 2(b)), we see that the more familiar dominance regions re-emerge, though the

region over which pre-testing is the least desirable strategy is always very small.

5. Conclusions

Recent investigations of a range of preliminary-test estimation problems have
illustrated that if the model is mis-specified in various ways, then a number of the standard
results in the pre-test literature may be violated. In particular, in such cases it is possible for
certain pre-test estimators to_risk-dominate both of the associated component estimators
simultaneously, at least in parts of the parameter space. Examples of these results are
discussed, for instance, by Giles and Giles (1993), and they undermine the common view that
pre-testing is inherently "bad".

We provide another important illustration of the non-robustness of such pre-test results
to model mis-specification, here through the presence of particular stochastic regressors. The
results presented here are preliminary, but they suggest that a more detailed analysis of this
problem is warranted. Such further work might focus on the effects of the presence of other

non-stochastic regressors, and the sensitivity of the results to the choice of loss function.

’
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Footnotes

* This research was supported by University of Canterbury Research Grants # 1770901,
1787147, and 1894183. We are grateful to Judith Giles for several helpful discussions.

1. However, for some properties of autocorrelation pre-test estimators in a dynamic linear
model, see Giles and Beattie (1987).

2. Treating (mf) as asymptotically x? would not effectively alter the following results - it

would be merely equivalent to using a different critical value for the tests.

3. The use of one-sided rather than two-sided alternative hypotheses simply affects the
implicit significance levels being used.

4. Note that these critical values relate to a nominal "F-test", rather than "t-test" of H, in

each case.

5. As the model is autoregressive, we cannot control the Monte Carlo results with respect

to the non-centrality parameter without some constraint on the data.

6. With Model II it is simpler to use the value of 8; as a direct measure of the departure

from H,, rather than re-expressing this measure as a function of the non-centrality parameter

of the (nominal) distribution of f.
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