

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

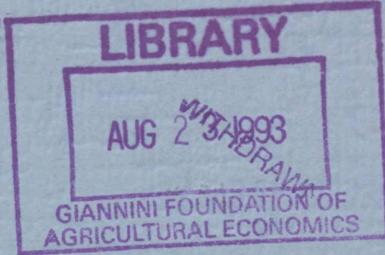
CANTER

9302

Department of Economics
UNIVERSITY OF CANTERBURY

CHRISTCHURCH, NEW ZEALAND

ISSN 1171-0705



**PRELIMINARY-TEST ESTIMATION IN
A DYNAMIC LINEAR MODEL**

David E. A. Giles and Matthew C. Cunneen

Discussion Paper

No. 9302

This paper is circulated for discussion and comments. It should not be quoted without the prior approval of the author. It reflects the views of the author who is responsible for the facts and accuracy of the data presented. Responsibility for the application of material to specific cases, however, lies with any user of the paper and no responsibility in such cases will be attributed to the author or to the University of Canterbury.

Department of Economics, University of Canterbury
Christchurch, New Zealand

Discussion Paper No. 9302

January 1993

**PRELIMINARY-TEST ESTIMATION IN
A DYNAMIC LINEAR MODEL**

David E. A. Giles and Matthew C. Cunneen

**Preliminary-Test Estimation in
a Dynamic Linear Model***

David E.A. Giles

and

Matthew C. Cunneen

Department of Economics

University of Canterbury

Christchurch

NEW ZEALAND

January, 1993

Abstract

This paper considers the estimation of a dynamic linear regression model after a pre-test of exact linear restrictions on the coefficient vector. Monte Carlo evidence illustrates that pre-testing can be risk-superior to both ordinary and restricted least squares.

J.E.L. Classification: C22

1. Introduction

The implications of testing the validity of exact linear restrictions on the coefficients of a linear regression model, prior to estimating those coefficients, are well known when the model satisfies the usual "ideal" assumptions. Judge and Bock (1978) and Giles and Giles (1993), among others, document the risk properties of this and related "pre-test" estimators.

The latter authors also discuss recent work which focuses on the sampling performance of certain common pre-test regression coefficient estimators when some of the assumptions underlying the standard regression framework are violated. For example, the effects of wrongly omitted or included regressors (Ohtani (1983), Mittelhammer (1984), Giles (1986)); non-Normal errors (Giles (1991a,b)); or a non-spherical error covariance matrix (Albertson (1993)) have all been considered.

However, to date no account has been taken of the effects of stochastic regressors¹ on the risk properties of the regression coefficient pre-test estimator. An important practical example of this arises with a model which is "dynamic", or autoregressive, in the sense of including lagged values of the dependent variable as regressors.

In this paper we consider this problem, and use Monte Carlo simulation to compute the risks of the above pre-test estimator and its "component" estimators in models with one or two lagged dependent variables. We show, in particular, that the presence of model dynamics can alter some of the established risk-dominance results.

2. The model framework

Consider the model

$$y = X\beta + u ; u \sim N(0, \sigma^2 I)$$

where y is $(n \times 1)$, β is $(k \times 1)$, and X is $(n \times k)$ and of rank k . We allow for the possibility that at least one of the columns of X is stochastic. Then, suppose that we test H_0 : $R\beta = r$ (where R is $(m \times k)$ and of rank m , and r is $(m \times 1)$, both non-stochastic) prior to estimating β . The pre-test estimator of β , say $\tilde{\beta}$, is either $\tilde{\beta} = (X'X)^{-1}X'y$ (the Ordinary

Least Squares, or OLS, estimator) if H_0 is rejected; or $\beta^* = \tilde{\beta} + (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(r - R\tilde{\beta})$ (the Restricted Least Squares, or RLS, estimator) if H_0 is *not* rejected.

Typically, one would ignore the randomness of X and test H_0 using² the usual "F-statistic", $f = [(u^* u^* - \bar{u} \bar{u}) / \bar{u} \bar{u}] [(n - k)/m]$, where $u^* = y - X\beta^*$ and $\bar{u} = y - X\tilde{\beta}$. Then, we can write $\hat{\beta} = \beta^* I_{[0,c)}(f) + \tilde{\beta} I_{[c,\infty)}(f)$, where $I_{[a,b)}(f) = 1$ if $f \in [a,b)$, zero otherwise; and c is the usual $F_{m,n-k}$ critical value for a nominal $\alpha\%$ significance level.

We consider the case where X is random because some of its columns are lagged values of y . Then, it is well known that $\tilde{\beta}$ and β^* are biased (even if H_0 is true), and their covariance matrices differ (in a manner depending on the randomness of the data) from what they would be with fixed regressors. Also, f is *not* F-distributed in this case (e.g., Evans and Savin (1982)). We determine the risk of $\hat{\beta}$ under quadratic loss. That is, we use $\rho(\beta) = E(\hat{\beta} - \beta)'(\hat{\beta} - \beta)$ as the measure of estimator performance. If X is *non-stochastic* this risk (the trace of the matrix mean squared error) is readily computed analytically (e.g., Judge and Bock (1978)). However, if X is random the situation is complicated to the extent that Monte Carlo simulation must be used. We compare $\rho(\hat{\beta})$ with $\rho(\tilde{\beta})$ and $\rho(\beta^*)$.

3. Monte Carlo experiment

We consider two situations

Model I: $y_t = \beta_1 + \beta_2 y_{t-1} + u_t$; $u_t \sim N(0, \sigma^2)$; $t = 1, 2, \dots, n$

with³

$$H_0: \beta_1 = 0 \text{ vs. } H_1: \beta_1 > 0.$$

Model II: $y_t = \beta_1 + \beta_2 y_{t-1} + \beta_3 y_{t-2} + u_t$; $u_t \sim N(0, \sigma^2)$; $t = 1, 2, \dots, n$

with

$$H_0: \beta_3 = 0 \text{ vs. } H_1: \beta_3 > 0.$$

Our Monte Carlo simulations involve 20,000 replications of each of several experimental designs, all of the computations being undertaken with the SHAZAM package

(White *et al.* (1990)) on a VAX 6340 and a VAXstation 4000 under VMS 5.5. SHAZAM uses the random number generator proposed by Brent (1974). We set $y_0 = 0$ and $\sigma^2 = 1$, and consider $n = 10, 50$.

With Model I we set $c = 5.32$ ($n = 10$) and 4.04 ($n = 50$). These values correspond to a (nominal) significance level of 5%. We also used Brook and Fletcher's (1981) "optimal" critical value (for non-orthonormal regressors) under a mini-max regret criterion in each case⁴. These values are functions of the y -data, so they differ across replications of the Monte Carlo experiment, *ceteris paribus*. By way of information, the average such critical values for $n = 10$ (50) were 2.38 (2.61), corresponding to nominal significance levels of 16.2% (11.3%). With Model II the (nominal) 5% critical values are $c = 5.59$ ($n = 10$) and 4.05 ($n = 50$). Brook and Fletcher's "optimal" values were also used. They are again data-dependent (though independent of the parameter values), and their average values over the 20,000 replications were 1.13 (1.02) for $n = 10$ (50), corresponding to nominal significance levels for the "F-test" of 31.8% (31.7%). With Model I we evaluated the risks of $\hat{\beta}$, $\tilde{\beta}$ and β^* when $\beta_2 = 0.1$ (0.1) 1.0, in each case varying β_1 so as to compute the risks as functions of $\lambda = (\sqrt{\beta_1})/(2n)$. The latter is the non-centrality parameter associated with the⁵ "F-test" of H_0 if $\bar{y} = 0$. So, $\lambda = 0$ corresponds to H_0 being true, and λ increases monotonically as we depart from H_0 . This makes the presentation of our results comparable with those in the established pre-test literature. With Model II we set $\beta_1 = 1$, considered $\beta_2 = 0.1, 0.5, 0.9, 1.0$, and computed the risks in each case as a⁶ function of $\beta_3 \in [0,1]$. These choices of parameters allow for the important unit root situation and result in 56 design matrices.

4. Results

The precise shapes of the various risk functions for the full regression coefficient vector depend to some extent, for both Models I and II, on the parameter values, sample size, and choice of significance level for the pre-test. However, the general *qualitative* features of these results are quite systematic and these are illustrated in Figures 1 and 2 for Models I and II respectively.

When the model includes a single lagged value of the dependent variable, regions of risk-dominance always arise which *qualitatively* match those which are well-known (e.g., Judge and Bock (1978)) for the fixed-regressor model when testing for exact linear

Figure 1(a)
Risks of OLS, RLS & Pre-Test Estimators
Model I (n=10, Beta2=0.1, 5% critical value)

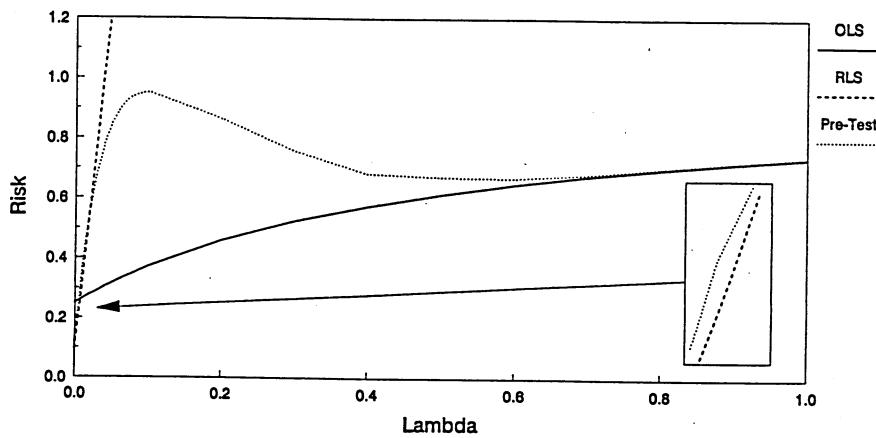


Figure 1(b)
Risks of OLS, RLS & Pre-Test Estimators
Model I (n=10, Beta2=1.0, 5% critical value)

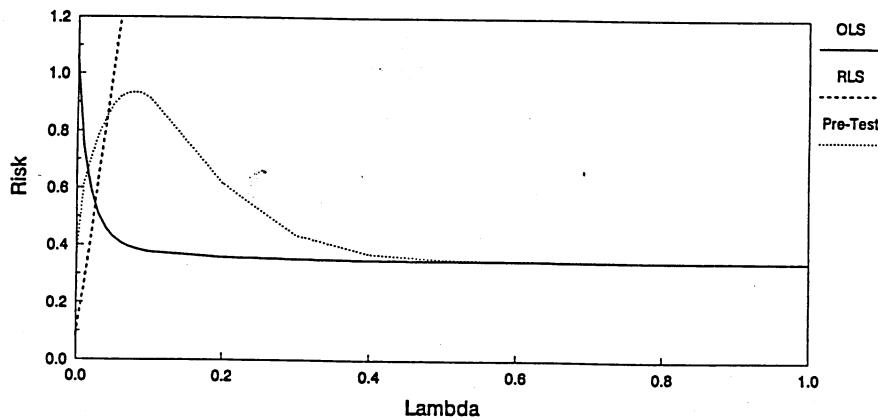


Figure 2(a)
Risks of OLS, RLS & Pre-Test Estimators
Model II ($n=50$, $\text{Beta}2=0.1$, Brook-Fletcher critical value)

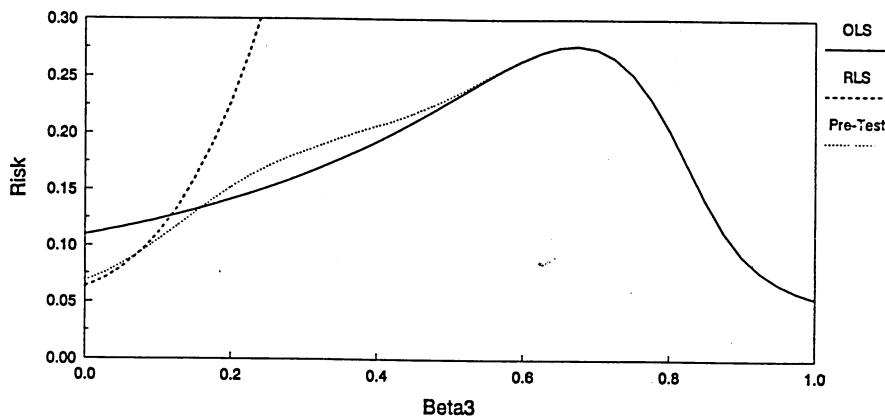
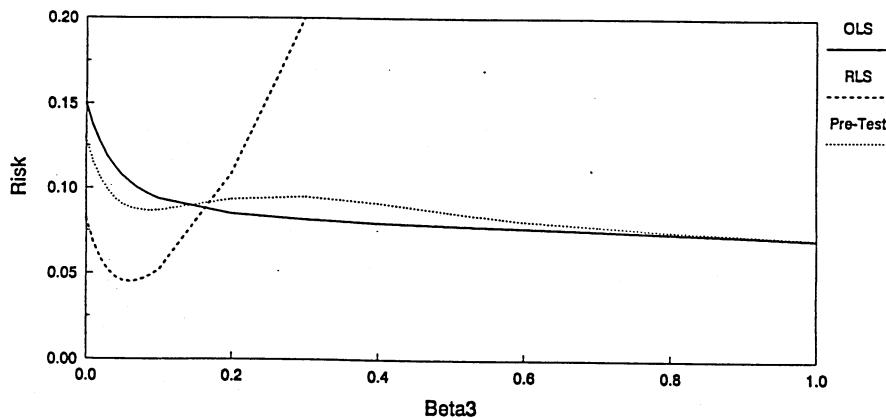


Figure 2(b)
Risks of OLS, RLS & Pre-Test Estimators
Model II ($n=50$, $\text{Beta}2=1.0$, Brook-Fletcher critical value)



restrictions on the coefficients. That is, there is always a region of the parameter space (*i.e.*, a range of λ values) for which the OLS estimator is preferred among the three estimators under consideration; there is always a region where the RLS estimator is preferred; there is always a region where the pre-test estimator is the *worst* of the three; but nowhere is the latter estimator "best", in the sense of having quadratic risk which is simultaneously less than that of the other two estimators. This is illustrated in Figures 1(a) and 1(b).

On the other hand, when the model is second-order autoregressive (with a drift term), it is possible to generate situations where the pre-test estimator simultaneously dominates *both* the OLS and RLS estimators. Regardless of the sample size, this arises for relatively small values of the coefficient (β_2) on the first lagged regressor. This effect is less pronounced when a conventional (nominal) significance level is used for the pre-test itself, than when the relatively large significance levels associated with Brook and Fletcher's "optimal" critical "F-values" are used. In these same cases, there is never a region of the parameter space where pre-testing is the "worst" of the three estimation strategies under consideration. This is illustrated in Figure 2(a). Considering larger values of β_2 in these cases (as in Figure 2(b)), we see that the more familiar dominance regions re-emerge, though the region over which pre-testing is the least desirable strategy is always very small.

5. Conclusions

Recent investigations of a range of preliminary-test estimation problems have illustrated that if the model is mis-specified in various ways, then a number of the standard results in the pre-test literature may be violated. In particular, in such cases it is possible for certain pre-test estimators to risk-dominate *both* of the associated component estimators simultaneously, at least in parts of the parameter space. Examples of these results are discussed, for instance, by Giles and Giles (1993), and they undermine the common view that pre-testing is inherently "bad".

We provide another important illustration of the non-robustness of such pre-test results to model mis-specification, here through the presence of particular stochastic regressors. The results presented here are preliminary, but they suggest that a more detailed analysis of this problem is warranted. Such further work might focus on the effects of the presence of other non-stochastic regressors, and the sensitivity of the results to the choice of loss function.

References

Albertson, K.V., 1993, Pre-test estimation in a regression model with a mis-specified error covariance matrix, unpublished Ph.D. thesis, University of Canterbury.

Brent, R.P., 1974, A Gaussian random number generator, *Communications of the ACM* 17, 1704-1706.

Brook R.J. and R.H. Fletcher, 1981, Optimal significance levels of prior tests in the presence of multicollinearity, *Communications in Statistics: theory and methods A*, 10, 1401-1413.

Evans, G.B.A. and N.E. Savin, 1982, Conflict among testing procedures in a linear model with lagged dependent variables, in W. Hildenbrand (ed.), *Advances in econometrics* (Cambridge University Press, Cambridge), 263-283.

Giles, D.E.A., 1986, Preliminary-test estimation in mis-specified regressions, *Economics Letters* 21, 325-328.

Giles, D.E.A. and M. Beattie, 1987, Autocorrelation pre-test estimation in models with a lagged dependent variable, in M.L. King and D.E.A. Giles (eds.), *Specification analysis in the linear model* (Routledge & Kegan Paul, London), 99-116.

Giles, J.A., 1991a, Pre-testing for linear restrictions in a regression model with spherically symmetric disturbances, *Journal of Econometrics* 50, 377-398.

Giles, J.A., 1991b, Pre-testing in a mis-specified regression model, *Communications in Statistics: Theory and Methods A* 20, 3221-3238.

Giles, J.A. and D.E.A. Giles, 1993, Pre-test estimation and testing in econometrics: recent developments, *Journal of Economic Surveys*, forthcoming.

Judge, G.G. and M.E. Bock, 1978, *The statistical implications of preliminary-test and Stein-rule estimators in econometrics* (North-Holland, Amsterdam).

Ohtani, K., 1983, Preliminary test predictor in the linear regression model including a proxy variable, *Journal of the Japan Statistical Society* 13, 11-19.

White, K.J., S.D. Wong, D. Whistler and S.A. Haun, *SHAZAM user's reference manual: version 6.2* (McGraw-Hill, New York).

Footnotes

* This research was supported by University of Canterbury Research Grants # 1770901, 1787147, and 1894183. We are grateful to Judith Giles for several helpful discussions.

1. However, for some properties of autocorrelation pre-test estimators in a dynamic linear model, see Giles and Beattie (1987).
2. Treating (mf) as asymptotically χ^2 would not effectively alter the following results - it would be merely equivalent to using a different critical value for the tests.
3. The use of one-sided rather than two-sided alternative hypotheses simply affects the implicit significance levels being used.
4. Note that these critical values relate to a nominal "F-test", rather than "t-test" of H_0 in each case.
5. As the model is autoregressive, we cannot control the Monte Carlo results with respect to the non-centrality parameter without some constraint on the data.
6. With Model II it is simpler to use the value of β_3 as a direct measure of the departure from H_0 , rather than re-expressing this measure as a function of the non-centrality parameter of the (nominal) distribution of f .

LIST OF DISCUSSION PAPERS*

No. 8801 Workers' Compensation Rates and the Demand for Apprentices and Non-Apprentices in Victoria, by Pasquale M. Sgro and David E. A. Giles.

No. 8802 The Adventures of Sherlock Holmes, the 48% Solution, by Michael Carter.

No. 8803 The Exact Distribution of a Simple Pre-Test Estimator, by David E. A. Giles.

No. 8804 Pre-testing for Linear Restrictions in a Regression Model With Student-t Errors, by Judith A. Clarke.

No. 8805 Divisia Monetary Aggregates and the Real User Cost of Money, by Ewen McCann and David Giles.

No. 8806 The Management of New Zealand's Lobster Fishery, by Alan Woodfield and Pim Borren.

No. 8807 Poverty Measurement: A Generalization of Sen's Result, by Prasanta K. Pattanaik and Manimay Sen.

No. 8808 A Note on Sen's Normalization Axiom for a Poverty Measure, by Prasanta K. Pattanaik and Manimay Sen.

No. 8809 Budget Deficits and Asset Sales, by Ewen McCann.

No. 8810 Unorganized Money Markets and 'Unproductive' Assets in the New Structuralist Critique of Financial Liberalization, by P. Dorian Owen and Otton Solis-Fallas.

No. 8901 Testing for Financial Buffer Stocks in Sectoral Portfolio Models, by P. Dorian Owen.

No. 8902 Provisional Data and Unbiased Prediction of Economic Time Series by Karen Browning and David Giles.

No. 8903 Coefficient Sign Changes When Restricting Regression Models Under Instrumental Variables Estimation, by David E. A. Giles.

No. 8904 Economies of Scale in the New Zealand Electricity Distribution Industry, by David E. A. Giles and Nicolas S. Wyatt.

No. 8905 Some Recent Developments in Econometrics: Lessons for Applied Economists, by David E. A. Giles.

No. 8906 Asymptotic Properties of the Ordinary Least Squares Estimator in Simultaneous Equations Models, by V. K. Srivastava and D. E. A. Giles.

No. 8907 Unbiased Estimation of the Mean Squared Error of the Feasible Generalised Ridge Regression Estimator, by V. K. Srivastava and D. E. A. Giles.

No. 8908 An Unbiased Estimator of the Covariance Matrix of the Mixed Regression Estimator, by D. E. A. Giles and V. K. Srivastava.

No. 8909 Pre-testing for Linear Restrictions in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.

No. 9001 The Durbin-Watson Test for Autocorrelation in Nonlinear Models, by Kenneth J. White.

No. 9002 Determinants of Aggregate Demand for Cigarettes in New Zealand, by Robin Harrison and Jane Chetwyd.

No. 9003 Unemployment Duration and the Measurement of Unemployment, by Manimay Sengupta.

No. 9004 Estimation of the Error Variance After a Preliminary-Test of Homogeneity in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.

No. 9005 An Expository Note on the Composite Commodity Theorem, by Michael Carter.

No. 9006 The Optimal Size of a Preliminary Test of Linear Restrictions in a Mis-specified Regression Model, by David E. A. Giles, Offer Lieberman, and Judith A. Giles.

No. 9007 Inflation, Unemployment and Macroeconomic Policy in New Zealand: A Public Choice Analysis, by David J. Smyth and Alan E. Woodfield.

No. 9008 Inflation — Unemployment Choices in New Zealand and the Median Voter Theorem, by David J. Smyth and Alan E. Woodfield.

No. 9009 The Power of the Durbin-Watson Test when the Errors are Heteroscedastic, by David E. A. Giles and John P. Small.

No. 9010 The Exact Distribution of a Least Squares Regression Coefficient Estimator After a Preliminary t-Test, by David E. A. Giles and Virendra K. Srivastava.

No. 9011 Testing Linear Restrictions on Coefficients in a Linear Regression Model with Proxy variables and Spherically Symmetric Disturbances, by Kazuhiro Ohtani and Judith A. Giles.

(Continued on next page)

No. 9012 Some Consequences of Applying the Goldfeld-Quandt Test to Mis-Specified Regression Models, by David E. A. Giles and Guy N. Saxton.

No. 9013 Pre-testing in a Mis-specified Regression Model, by Judith A. Giles.

No. 9014 Two Results in Balanced-Growth Educational Policy, by Alan E. Woodfield.

No. 9101 Bounds on the Effect of Heteroscedasticity on the Chow Test for Structural Change, by David Giles and Offer Lieberman.

No. 9102 The Optimal Size of a Preliminary Test for Linear Restrictions when Estimating the Regression Scale Parameter, by Judith A. Giles and Offer Lieberman.

No. 9103 Some Properties of the Durbin-Watson Test After a Preliminary t-Test, by David Giles and Offer Lieberman.

No. 9104 Preliminary-Test Estimation of the Regression Scale Parameter when the Loss Function is Asymmetric, by Judith A. Giles and David E. A. Giles.

No. 9105 On an Index of Poverty, by Manimay Sengupta and Prasanta K. Pattanaik.

No. 9106 Cartels May Be Good For You, by Michael Carter and Julian Wright.

No. 9107 Lp-Norm Consistencies of Nonparametric Estimates of Regression, Heteroskedasticity and Variance of Regression Estimate when Distribution of Regression is Known, by Radhey S. Singh.

No. 9108 Optimal Telecommunications Tariffs and the CCITT, by Michael Carter and Julian Wright.

No. 9109 Price Indices : Systems Estimation and Tests, by David Giles and Ewen McCann.

No. 9110 The Limiting Power of Point Optimal Autocorrelation Tests, by John P. Small.

No. 9111 The Exact Power of Some Autocorrelation Tests When the Disturbances are Heteroscedastic, by John P. Small.

No. 9112 Some Consequences of Using the Chow Test in the Context of Autocorrelated Disturbances, by David Giles and Murray Scott.

No. 9113 The Exact Distribution of R^2 when the Disturbances are Autocorrelated, by Mark L. Carrodus and David E. A. Giles.

No. 9114 Optimal Critical Values of a Preliminary Test for Linear Restrictions in a Regression Model with Multivariate Student-t Disturbances, by Jason K. Wong and Judith A. Giles.

No. 9115 Pre-Test Estimation in a Regression Model with a Misspecified Error Covariance Matrix, by K. V. Albertson.

No. 9116 Estimation of the Scale Parameter After a Pre-test for Homogeneity in a Mis-specified Regression Model, by Judith A. Giles.

No. 9201 Testing for Arch-Garch Errors in a Mis-specified Regression, by David E. A. Giles, Judith A. Giles, and Jason K. Wong.

No. 9202 Quasi Rational Consumer Demand — Some Positive and Normative Surprises, by John Fountain.

No. 9203 Pre-test Estimation and Testing in Econometrics: Recent Developments, by Judith A. Giles and David E. A. Giles.

No. 9204 Optimal Immigration in a Model of Education and Growth, by K-L. Shea and A. E. Woodfield.

No. 9205 Optimal Capital Requirements for Admission of Business Immigrants in the Long Run, by K-L. Shea and A. E. Woodfield.

No. 9206 Causality, Unit Roots and Export-Led Growth: The New Zealand Experience, by David E. A. Giles, Judith A. Giles and Ewen McCann.

No. 9207 The Sampling Performance of Inequality Restricted and Pre-Test Estimators in a Mis-specified Linear Model, by Alan T. K. Wan.

No. 9208 Testing and Estimation with Seasonal Autoregressive Mis-specification, by John P. Small.

No. 9209 A Bargaining Experiment, by Michael Carter and Mark Sunderland.

No. 9210 Pre-Test Estimation in Regression Under Absolute Error Loss, by David E. A. Giles.

No. 9211 Estimation of the Regression Scale After a Pre-Test for Homoscedasticity Under Linex Loss, by Judith A. Giles and David E. A. Giles.

No. 9301 Assessing Starmer's Evidence for New Theories of Choice: A Subjectivist's Comment, by John Fountain.

No. 9302 Preliminary-Test Estimation in a Dynamic Linear Model, by David E. A. Giles and Matthew C. Cunneen.

* Copies of these Discussion Papers may be obtained for \$4 (including postage, price changes occasionally) each by writing to the Secretary, Department of Economics, University of Canterbury, Christchurch, New Zealand. A list of the Discussion Papers prior to 1988 is available on request.