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1. Introduction and Model Framework

We consider a regression model which uses two samples with T1 and T2

observations:

1
[ YY2 

= xol xo
L 2 -I L

1 1 131 1 + r ui
02 L u2

(1)

or y = X13 + u. yi is a (Tixl) vector of observations on the dependent

variable, Xi is a (Tixki) full-rank non-stochastic matrix of explanatory

variables, f3i is a (kixl) vector of coefficients and ui is a (Tixl) vector

of disturbance terms, i=1,2. We assume that

u N

[ 
cr
2
1 0
1 T,

0, 1 
cr
2
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1 .
0 2 T

2
2

We also suppose that we are interested in estimating cr
1 

but we are

uncertain of the equality of the error variances and whether the samples

should be pooled or not from an estimation efficiency viewpoint. The usual

procedure is to undertake a preliminary test of

2 2
H0:

1 
= cr

2 
vs HA: <°'2

2

1 

or equivalently

H0. 
1 vs H

A
: tii < 1 (2)• 

where 111 = cr
2
AT
2 

' 
and we have assumed a one-sided alternative hypothesis for

1 2 

simplicity. The usual test statistic for (2) is

2

(3) J —
V1 (Y2-X2b2)i (Y2-X2b2) V 1 U21 M2112 S2 

v2(371-X1b1)1(Y1-X1b1) 
v2u1M1u1 s 

2

1

where vi = T.-k., M. = I -X.(X'.X.)-1X' • bi (X' X )-1X' y.• 
2
S. =

1 1 1 T. 1 1 1 i' i i ii i

(yi-Xibi)1 (yi-Xibi)/vi; i=1,2. It is straightforward to show that f(J)

) where F is a central F variate with v and v degrees ofv2,v1 v2,v1 
2 i

freedom. The testing strategy is to use the so-called "always-pool"

2 2
estimator of Tr sA, if we cannot reject Ho:
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2 2 2
SA = (ViSi + V2S2)/(V1+V2)

but to use the "never-pool" estimator, sN2, if we reject Ho:

2 2

SN S1

So, the estimator actually reported is the pre-test estimator:

2

Sp = 2

2 SN if "c
(6)

sA if .15-c

where c is the critical value of the test associated with an ca. significance

level.

The sampling properties of 
5
N2 

5
A2 and si2, have been examined in the

literature (see, for example, Bancroft (1944), Toyoda and Wallace (1975),

Ohtani and Toyoda (1978), Bancroft and Han (1983), Giles (1992b) and Giles

and Giles (1993) for a survey of this literature) assuming a quadratic loss

function. This is a symmetric loss function which implies that under- and

over-estimation are equally penalised. However, we may believe that

under-estimation of the scale parameter has greater consequences than

over-estimation, as under-estimating the error variance in a regression

model will lead to calculated t-statistics which make the regressors appear

to be more "significant" than is warranted. A conservative researcher may

prefer to err in the opposite direction, which suggests that we should

consider the properties of the estimators using an asymmetric loss function

which penalises under-estimation more heavily than over-estimation. One

such commonly suggested loss function is the LINEX loss function, initally
A

proposed by Varian (1975). When estimating a parameter 0 by 0 this loss

function is given by:
A A A

L(0, 0) = b( exp[a(0 - 0)/0] - a(0 - 0)/0 -1) (7)

where a*O, and b>0. In our investigation we assume (without loss of

generality) that b=1. The sign of the shape parameter 'a' reflects the

direction of the asymmetry - we set a>0 (a<O) if over-estimation is more

3



(less) serious than under-estimation. The magnitude of 'a' reflects the
A A

degree of asymmetry. For small values of I a I, L(0, 0) = ba2(0

0)2/(202) which is proportional to a squared error loss.

Various authors have used this form of loss function in a number of

studies including Zellner (1986), Rojo (1987), Sadooghi-Alvandi and

Nematollahi (1989), Kuo and Dey (1990), Parsian (1990a, b), Sadooghi-Alvandi

(1990), Srivastava and Rao (1992), Basu and Ebrahimi (1991), Giles and Giles

(1991), Parsian and San jari Farsipour (1992), Parsian et al. (1992), and

Sadooghi-Alvandi and Parsian (1992). In particular, Giles and Giles (1991)

consider the estimation of the scale paramater after a pre-test for exact

linear restrictions on the regression model's coefficients. They find that

the known quadratic risk properties of the pre-test estimator need not be

robust to this alternative choice of loss function.

_

2 2 2
In the next section we derive the risks of sN, SA and sp under LINEX

loss. We follow in Section 3 with a discussion of some numerical

evaluations of the risk functions and Section 4 contains some conclusions.

2. Risk Under LINEX Loss

We define the (relative) risk of an estimator s.2 of cr2i as R(s) = E[L(s:,

2 4
ay ]/(ri . Then, using the LINEX loss function in (7) with b=1 we have:

Theorem 1:

R(s2) = e-a(v
1
/(v

1
-2a)) v1/2 - 1 (8)

N

e
-a

lp 
2
v 
/2(V1+V2) 

( v
1
+v
2
)/2

R(s2) -  A

av2( 1-0)

+v2-2a) v1/2 (iii( v 14-v2)-2a) v2/2 %" v1"2)

4

1 (9)



R(s2) = R(s2) + ea[ E _2 
! L'11

.L
2i 

- 
i1 
E

i ! v
i=1 

i
= r(

2

i co (2a/v
1 
)
i 

r( 

v +2i

co 12 )

av2(Q20 '1%2)

çls(v 1+v2)

where

Q0(201

(10)

Qmn = Pr'[ 
F,

+m v +n) (v2(v1+n)cd+1(v2+m)) ' 
m,n=0,1,... ;

2 ' 1

L. is a (lx(i+1)) vector equal to the (i+l)th row of Pascal's Triangle;

L2i is an ((i+1)xl) vector with elements, for j=0,1,...,i:

M = a/(v +v
j 1 2

r( 
v1+2i r( v2+2(i-j)

1 2 j 2  j

v2 
Q(2u-J2

2 
j) •

vJ- r( )

Proof: See the appendix.

Remarks:

(I) As a --> 0, c --> co and Qmn -> 1: we never reject Ho. Then, repeatedly

using the Binomial Theorem, R(s) -> R(sA2). Conversely, as a 4 1, C 4 0 and

Q
mn 

0: we always reject Ho. Then, we can show that R(s) --> R(sN2).

(ii) Using the infinite series expansion of the exponential function, it

can be shown that (8) - (10) collapse to their quadratic loss counterparts

(scaled by a2/2) if 'a' is sufficiently small so that third-order and

higher order terms are negligible. The quadratic loss risk functions are

given by:

R
Q 
(s
2
) = 2/v

1N

RQ(5A2) = 11/(0-1)2 + 2(v1t(J2+v2))/(02(v1+v2)1

RQ(5p2) = 102(2(vi+v2)2-v2(vi+2)(2vi+v2
)Q04+2v1v2(v1+v2)Q021

+ 2v1v2 [v1Q22-(v.+v,..)0
z -20 ÷ v1v2(v2+2)Q40)/

(12)
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(v lih2(v 
1 
+v 2)2)

(13)'e 

We note that these expressions are not identical to those given by, for

example, Toyoda and Wallace (1975). The differences arise because we

consider risk relative to Cr
4 

while Toyoda and Wallace, for example, define1
4

risk to be relative to cr
2. 

We have used the former definition as this

results in R(s) being independent of iii and risk diagrams that have many

characteristics which are similar to those which arise when the pre-test is

of exact linear restrictions on the coefficient vector.

(iii) 1 im(R(s2)) = R(s2) while R(s2) 4 03 as iii 4 0. Intuitively,P N A
04 0

pre-testing leads us to follow the correct strategy of rejecting Ho when it

is in fact very false.

(iv) If Ho is true (0=1) then

(1 R(sA2 II/J=1)/R(sN2 ) = (1 - 2a/v1) v - 
2a/(v1+v2))-(v1+v2)/2

= [(1 - 2a/v
1 
)v1 (1 - 2a/(v

1
+v
2
))
-(v1+v2)]1/2

(14)

Now, using the binomial expansion we have:

(1 - 2a/v
1
)v1 = 1-2a+2a2(v

1
-1)/v

1
-4a3(v

1
-1)(v

1
-2)/(3v2)+ ...

1

= 1-2a+T
1
+T
2
+ ...

and

(1 - 2a/(v +v
2 
)) 

v1-1-v2 
= 1-2a+2a2(v

1 
+v
2 
-1)/(v

1 
+v
2 
)-4a3(v

1 
+v
2 
-1)

1 

x(v1+v2-2)/(v1+v2)2+ ...

= 1-2a+S1+S2+ ...

with Si > Tr i=1,2, ... . So, (1 - 2a/v1) v111 - 2a/(v1+v2))
-(v

1
+v
2
) 

< 1

and likewise expression (14) is less than unity. So, irrespective of the

value of 'a', imposing valid prior information produces a gain in risk over

simply ignoring the second sample. Accordingly, there is a region of the

0-space over which 
5
A2 dominates si2\1 and also a region for which the converse

occurs.

6
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(v) Bancroft (1944) and Toyoda and Wallace (1975) show that under

quadratic loss there always exists a range of t/i values over which

pre-testing is the preferred strategy. They find that there is a family of

pre-test estimators with c E (0,2) which strictly dominate the never-pool

estimator and dominate the always-pool estimator for a wide range of s2A

has smaller risk than this family of pre-test estimators only around the

neighbourhood of the null hypothesis. Ohtani and Toyoda (1978) prove that

the pre-test estimator with c = 1 strictly dominates all other members with

c E [0,2). So, under quadratic loss there exists a 0-range over which it

is preferable to pre-test and to use c = 1.

A question of interest is whether this result carries over in general

to the LINEX family of loss functions. This can be answered by considering

the first and second derivatives of R(s) with respect to c. Theorem 2

derives the values of c for which 3R(s2)/8c = 0.

Theorem 2:

8R(s2)/3c = 0 when c = 0, co, 1 and c* where c* depends on all

arguments of the problem.

Proof: See the appendix.

It is straightforward to show that as c 4 0 or c 4 co, a2R (s12,)/ac2 = o, so

that these two critical values result in points of inflexion of the risk

function. In the case of quadratic loss it can also be shown that

32R(sp2)/ac2 > 0 when c = 1 so that this choice of critical value always

results in a minimum of the risk function. However, this cannot be shown

in general under a LINEX loss function: it is not possible to sign

a
2R(spr,c2
R(s)/3c for all values of 'a'. When the degree of asymmetry is

sufficiently large (depending on the values of the other arguments) this
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second derivative can be negative so that in these cases the choice of c =

1 results in a maximum of the pre-test risk function. We now turn to the

numerical evaluations of R(sA2), R(sN2) and R(s12) which will illustrate this

last result.

3. Numerical Evaluations of the Risk Functions

We have numerically evaluated the risk functions for various values of

a, v1, v2, iii and a (<0). In particular, we considered v1 = 6, 10, 20, 30;

v2 = 6, 10, 20, 30; a = 0, 0.01, 0.05, 0.75, 1 and that value corresponding

to c = 1; a = -0.5, -2.0, -5.0 and ip e (0, 11. The full details of the

results relating to all of these cases are available on request.

We have computed the exact risk functions on a VAXstation 4000 using a

FORTRAN program which incorporates Davies' (1980) algorithm to evaluate the

central F probabilities and various other algorithms from Press et a/.

(1986). The infinite series in (10) converge rapidly with a convergence

tolerance of 10-6. We also obtained the corresponding risks under a

quadratic loss using equations (11) - (13) though for comparability with

the LINEX results we scaled the quadratic results by a2/2.

Unfortunately, we found that our algorithm failed in some cases for

high degrees of asymmetry, and in these cases we undertook a Monte Carlo

experiment with 5,000 replications using SHAZAM (White et at. (1990)) on a

VAXstation 4000. For the Monte Carlo experiment we assumed (3•21 = 1 so that

cr
2 
= 1/1/4 and we generated appropriate x

2 
random variables to obtain s

2 
and

2 1
2
s2 (this was also undertaken in SHAZAM using the normal random number

generator proposed by Brent (1974)). For this particular problem it is not

necessary to assign values to the regressors or to the coefficients. Where

possible we compared the risks generated from the Monte Carlo experiment

8
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with those from the exact evaluations. These comparisons suggested that

5,000 replications was sufficient to replicate the exact results to at

least three decimal places.

Typical LINEX risk results are illustrated in Figures 1, 2 and 3 for

= 16 and v2 = 8 with a = -0.5, -2.0 and -5.0 respectively. The loss

function when a = -0.5 exhibits relatively little asymmetry and so,

qualitatively, Figure 1 is similar to that which would be observed under a

quadratic loss function. The features discussed in the previous section

are clearly evident. In particular, it is preferable to pool the samples

when the null hypothesis is true, and the never-pool estimator is strictly

dominated by a family of pre-test estimators. The estimator which uses a

critical value of unity has the smallest risk of this family.

As discussed in Section 2, ceteris paribus there exists a degree of

asymmetry such that this latter feature does not occur. Figure 3, with

a=-5.0 clearly illustrates such an example. Then we find that the pre-test

estimator which uses c=1 has the highest risk of all of the considered

estimators around the region of the null hypothesis - this estimator no

longer strictly dominates the never-pool estimator.

Our results also show that the range of b over which we prefer the

always-pool estimator increases as the degree of asymmetry increases. This

suggests that when considering an asymmetric loss function with a

reasonable belief that the null hypothesis is true, it is generally

preferable to pool the samples without testing.

Finally, Table 1 compares the risks of the estimators under LINEX loss

and quadratic loss. Here, for comparability, we have scaled the quadratic

risk results by a2/2 and then effectively set these scaled quadratic risk

expressions to unity for each of the estimators. These results show that

it is not possible to generalise about whether the risks are higher under

9



LINEX loss or under quadratic loss.

4. Concluding Remarks

In this paper we have extended some well known risk results,

associated with pre-testing for variance homogeneity in regression prior to

pooling sub-sample information, to the realistic situation where the

underlying loss structure .is asymmetric. In particular, risk under

quadratic loss is generalised to risk under LINEX loss, with

under-estimation of the regression scale being penalised more heavily than

over-estimation.

This generalisation of the loss structure produces at least two

results which differ in an important way from their quadratic loss

counterparts. First, in the latter case, pre-testing with a critical value

of unity is always preferred to ignoring the prior information. This does

not hold if a sufficiently asymmetric LINEX loss is adopted.

Second, the range of cli over which we prefer the always pool estimator

increases as the degree of loss asymmetry increases. This suggests that it

may be preferable to use this estimator, rather than undertake a pre-test,

if we have a sufficiently asymmetric LINEX loss function. This contrasts

with the typical advice under quadratic loss, which is to pre-test using a

critical value of unity.

" Much remains to be done to determine the sensitivity of established

results in the pre-test literature to departures from the usual assumption

of quadratic loss. Our results and those of Giles and Giles (1991) and

Giles (1992a) suggest that there is less robustness to asymmetric

departures than to symmetric ones.

10
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Table 1: LINEX risks relative to quadratic risks

cu

R(S2)
N

=-2 a=-

R(S2)
A

a=-2 a=-5

R(S2)
P

a=0.01

=-

a=0.05 c=1 a=0.01

=-

a=0.05 c=1

0
-
0
0
0
0
0
0
0
0
0
 

.
-
0
0
0
0
0
0
0
0
0
 

0
 1/4.
0 
0
0
 -
I
 0
, 
CA
 
4,
 
4.
) 
N
 
.
-

v = 16 v2 = 8

0.946 1.293 0.213 0.095 0.655 0.883 0.946 0.726 1.150 1.295

0.946 1.293 0.367 0.183 0.593 0.781 0.952 0.528 0.911 1.305

0.946 1.293 0.476 0.262 0.622 0.759 0.973 0.540 0.839 1.331

0.946 1.293 0.558 0.338 0.667 0.777 0.989 0.586 0.857 1.372

0.946 1.293 0.626 0.425 0.716 0.810 1.010 0.648 0.914 1.426

0.946 1.293 0.692 0.536 0.767 0.851 1.034 0.746 0.983 1.489

0.946 1.293 0.761 0.680 0.822 0.897 1.060 0.854 1.076 1.558

0.946 1.293 0.833 0.851 0.880 0.944 1.087 0.978 1.181 1.631

0.946 1.293 0.906 1.037 0.939 0.992 1.113 1.142 1.311 1.704

0.946 1.293 0.972 1.220 0.995 1.037 1.138 1.287 1.432 1.775

v i = v2 = 20

0.971 1.287 0.176 0.076 0.891 0.965 0.971 1.146 1.277 1.287

0.971 1.287 0.328 0.155 0.591 0.841 0.965 0.550 1.035 1.288

0.971 1.287 0.449 0.234 0.587 0.741 0.970 0.474 0.789 1.293

0.971 1.287 0.542 0.309 0.639 0.740 0.979 0.521 0.750 1.316

0.971 1.287 0.613 0.379 0.696 0.777 0.998 0.589 0.801 1.364

0.971 1.287 0.673 0.450 0.750 0.826 1.027 0.670 0.892 1.437

0.971 1.287 0.730 0.540 0.803 0.880 1.061 0.771 1.005 1.533

0.971 1.287 0.799 0.678 0.864 0.940 1.101 0.913 1.153 1.643

0.971 1.287 0.885 0.884 0.936 1.006 1.142 1.081 1.307 1.756

0.971 1.287 0.983 1.138 1.018 1.073 1.180 1.296 1.494 1.864
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Appendix

Proof of Theorem 1:

R(s2) = Eiexp(a(s2
N
-c

1 r2)/ 1 
/cri - 

a(s2N-01 /r2)/c1
r2 - 1

= E(exp(azi/vi-a)) - E(azi/vi-a) - 1 (A.1)

2 2 2
where z1 = ulMiui/cri X. Then, E(azi/vra) = 0, as sN is an unbiased

estimator of a-. Further,

f
a az

1
/v

1
-a

E(exp(azi/vra)) =e f(z
1
)dz

1
0

v /2 -1 v
1 1
/2-1 -z/2

where f(z
1
) = 1 r(v

1
/2)) z

1

So,
v /2 -1

e-a re
-z

1
(-a/v

1
+v
2
) v

1 _,
/2-1

E(exp(azi/vra)) = (2 1 r(v
1
/2)) z1 .

Using the change of variable t = z1(-a/v1 + 1/2) we have

(2v )
v
1
/2

-a
e 

co v1/2-1
1 -t 

Elexp(azi/vi-a)) =   e t atv v/2 ( )v./2
— 0r vi-2a
2

e
-a

v
v1/2

1
v /2

(v
1
-2a)

Substituting these results into (A.1), R(s) follows.

22) icr2 a(s2 .2)/ 2
R(s) = E [exp la(s

A_0‘ 
1 / 1 

A_0 
1 /

0,
 1
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= Ef exp (a(wi+w2/tP)/(vi+v2)-1) -a ((wi+w2/0)/(v1+v2)-1) -11 (A.2)

where wi = e*1 MTe*/(3-22, i = 1,2; e* = MT/ ed N(0,cr22IT) , T = T1+T2 ;

M
1

(Tx T)

M
1 

0 0
; and M* = °

2
0 0 0 M

2( TxT)

. It is straightforward to show

that 
wi 

x
2 

and that w
1 
and w

2 
are independent. So,

v.

and

E(w1+w2/0)/(v1+v2) - 1 = v2(1-0/ (iNvi+v2)) (A.3)

E [exp (a(w1+w2/0)/(v1+v2) - 1)]

-a 
co 
f

c0 a(w
1
+w
2
/tP)/(v

1
+v
2
)

= e e f(w
1
)f (w

2
)dw

1
dw
2

0 0

= 

e03

-a [ f 
1 

dww e
1

0-1 
2
v
1
/2
r11)

vlr -1 -w1/2+aw1/(v +v2)

v2 

0

co 

v
2
/21 

-w
2
/2+aw

2
/(0(v

1
+v
2
))

1 
x w

2 

_1 

e dwd .

2_1 v2 ) 
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Using the change of variables t1 = wi [1/2 - a/(v1+v2)] and t
2 
= w2 [(t/i(vi +

v2)-2a)/(20(vi+v2))] we have

E [exp la(w1+w2/0)/(v1+v2)-1]

vl 
v2

= e
-a[  v

1
+v2 [  1/j(v 1+v2)

v1+v2-2a 1p( v
1
+v
2
) -2a

Substituting (A.3) and (A.4) into (A.2) yields R(sA2).
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and

Now,

2
Finally, for the pre-test estimator, sp, we have

S, SN SA-SN
_2 _2 , 2 2
S 

"[O,CI(j)

= (72 [11j( V1+112)W
1

(V1W2-1PV2W1)I[0,Cli1
2

i(
v
1
(v1+v2))

R(sp2) = Efexp(a(s2-cr21)/cr21) - a(sp2-cr21)/(72p 1 - 1 1

V 2/(v2w1))]

= Etexp (a(s2-ih
cr2) /(dia.2))...a(s2_,,,72)/(iha.2)_11

p 2 / ̀1' 2 p 2 / ̀P 2

cr22)/(t,Gcr22)1 = E[tp(v1+v2)w1 (V1W2 1/1V2W1)

Ilo,clpi(viw2/(v2w1))p(iiivi(vi+va)) - 1 (A.6)

and repeatedly using Lemma 1 of Clarke et a/. (1987) (A.6) is

= tQ tfi
z v2( 

-Q 
20
-b
• -02), (v1+v2)) 

(A.7)

Qmn = Pr[IF(v2+m,vi+n) --s (v2(vi+n)cip)/(vi(v2+m))1

where

m,n = 0,1,... .

Further,

E[exp s 2 -Ocr2)/(Ocr2))1 = e-aElexp [a 10(vii-v2)wip 2 2
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'2'P v2w1)I [ o , (v w2/( v2wi)) (11'n(vi+v2)) 1

= JaEfexp [b0wi+(b2w2-biwi)I[ co] Iviw2/(v2w1))] 1

= JaE(exp(Q)) (A.8)

where 130 = a/vi; b1 = av2/(v1(v1+v2)); b2 = a/(0(vi+v2)) ; and

Q = exp[b w
0 1 (b,2w2-131w1)I[0,cli]ivlw2Pv2w1))]

= exp 
[bOwl 

- b
O
w
l' 

1
[0, (v1w2/(v2w1)) 

bw
2
I[0,c0]

x (viw2/(v2w1)) 
(b0-bl)wli[0,0/]Ivlw2/(v2w1)] •

Now,

E(Q)2 E(Q)3 
E(exp(Q)) = 1 + E(Q) + +

2! 3!

and using Lemma 1 of Clarke (1990) we have

2
r
1 rE(wlhi 

v1+2r1
2

I[0,4](viw2/(v2w1))) —

•••

Elw2r2 2
I
[0,ctp]lvlw2/(v2w1))) 

2r2 ri v2+2r2

r2
Elw

1 
w
2[0,c01(v1w2/(v2w1)))

v2 )

r ( v +2r2
r +r ( v1+2r1
1 2 

r 
1_ 2 j 2 

= 2 2vi
r( - r -2v2 )
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where r1 and r2 are any real values such that r1 > (-v1/2) and r2 >

(-v
2
/2).

Using these expressions repeatedly along with definition (A.9) in (A.10) we

have
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co 
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1! li 2i

i=1

where L. is a (lx(i+1)) vector equal to the (i+l)th row of Pascal's

Triangle;

L2i is an ((i+1)xl) vector with elements

M = -b )i r 
v2+2(i-j)

i v1+2j 
j 2 0 1 2 2

i
= (ai(vi+v2)) V/ 1

(F(
vi

2

11

r(

r(

v2

v2 ))

Q(2(i-DX2j)

v +2(i-j)

2 (2(i-j))(2j)

j = 0,1,...,i.

Finally, if I 2a/v1 I < 1, which is not restrictive in practice, then

(2b )i 
12 r[ 

v +2i
) 

v
.o v1/2

i1-41 1! v1-12a
r( 

2
1 )

So,

co (2a/vi)
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v /2 
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E (exp(Q)) v  2 

1 2 i=i 
i !

ri v 
Q0(2)

_21)
co▪ E i7z L2i
i=1 

L. (A.11)

Substituting (A.11) into (A.8) and then this expression and (A.7) into

(A.5) yields the desired result.
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Proof of Theorem 2:

Using the infinite series expansion of theexponential function we write

„,_2, = yi 2a 
! 
((s2 .2)/ 2)2 4. a ((s2_,:r2)/cr2)3

p 1 1 3! p 1 1

2
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Now 1 v w /(v w )) = I (w2) where x = ciiiv2wilvi, and as w1 and w2[0,W( 1 2 2 1 [0,x] 

are independently distributed quadratic forms it follows that (A.12) can be

written as
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where f(.) is the density function of a X2 variate. Then,
v2

3R(s)
  =E 

fax 
Ew a aa c c1 x a a 0

= E 
w
1 
fRtim

1 
v
2 
)
2
/V

1 
1(C-1)f (ciiiv

2
w
11

)(1)*1

19

(A.13)



where d)* is (1) evaluated at w2 = ci1iv2w1/v1. (A.13) will clearly be zero

when c = 0, a), 1 and c* where c* is that value of c such that (D* = 0. #
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