

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Department of Economics UNIVERSITY OF CANTERBURY

CHRISTCHURCH, NEW ZEALAND

ESTIMATION OF THE REGRESSION SCALE AFTER A PRETEST FOR HOMOSCEDASTICITY UNDER LINE LOSS

Judith A. Giles and David E. A. Giles

Discussion Paper

This paper is circulated for discussion and comments. It should not be quoted without the prior approval of the author. It reflects the views of the author who is responsible for the facts and accuracy of the data presented. Responsibility for the application of material to specific cases, however, lies with any user of the paper and no responsibility in such cases will be attributed to the author or to the University of Canterbury.

Department of Economics, University of Canterbury Christchurch, New Zealand

Discussion Paper No. 9211

December 1992

ESTIMATION OF THE REGRESSION SCALE AFTER A PRE-TEST FOR HOMOSCEDASTICITY UNDER LINEX LOSS

Judith A. Giles and David E. A. Giles

ESTIMATION OF THE REGRESSION SCALE AFTER
 A PRE-TEST FOR HOMOSCEDASTICITY
 UNDER LINEX LOSS

Judith A. Giles
and

David E.A. Giles

Department of Economics

 University of CanterburyDecember 1992

Abstract: In this paper we consider the risk of an estimator of the error variance after a pre-test for homoscedasticity of the variances in the two-sample heteroscedastic linear regression model. This particular pre-test problem has been well investigated but always under the restrictive assumption of a squared error loss function. We consider an asymmetric loss function - the LINEX loss function - and derive the exact risks of various estimators of the error variance.

AMS Subject Classification: Primary 62J05, 62F11; secondary 62P20.

Key Words: Heteroscedasticity; preliminary test; asymmetric loss function; risk under LINEX loss; risk under squared error loss.

Correspondence: Dr Judith Giles, Department of Economics, University Of Canterbury, Private Bag 4800, Christchurch, NEW ZEALAND.

1. Introduction and Model Framework

We consider a regression model which uses two samples with T_{1} and T_{2} observations:

$$
\left[\begin{array}{l}
\mathrm{y}_{1} \tag{1}\\
\mathrm{y}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{X}_{1} & 0 \\
0 & \mathrm{X}_{2}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right]
$$

or $y=X \beta+u . \quad y_{i}$ is $a\left(T_{i} \times 1\right)$ vector of observations on the dependent variable, X_{i} is a $\left(T_{i} \times k_{i}\right)$ full-rank non-stochastic matrix of explanatory variables, β_{i} is a $\left(k_{i} \times 1\right)$ vector of coefficients and u_{i} is a $\left(T_{i} \times 1\right)$ vector of disturbance terms, $i=1,2$. We assume that

$$
\mathrm{u} \sim \mathrm{~N}\left(0,\left[\begin{array}{ll}
\sigma_{1}^{2} \mathrm{I}_{\mathrm{T}} & 0 \\
0 & \\
\sigma_{2}^{2} \mathrm{I}_{\mathrm{T}_{2}}
\end{array}\right]\right)
$$

We also suppose that we are interested in estimating σ_{1}^{2} but we are uncertain of the equality of the error variances and whether the samples should be pooled or not from an estimation efficiency viewpoint. The usual procedure is to undertake a preliminary test of

$$
\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad \text { vs } \quad \mathrm{H}_{\mathrm{A}}: \sigma_{1}^{2}<\sigma_{2}^{2}
$$

or equivalently

$$
\begin{equation*}
\mathrm{H}_{0}: \psi=1 \quad \text { vs } \quad \mathrm{H}_{\mathrm{A}}: \psi<1 \tag{2}
\end{equation*}
$$

where $\psi=\sigma_{1}^{2} / \sigma_{2}^{2}$, and we have assumed a one-sided alternative hypothesis for simplicity. The usual test statistic for (2) is

$$
\begin{equation*}
J=\frac{v_{1}\left(y_{2}-X_{2} b_{2}\right)^{\prime}\left(y_{2}-X_{2} b_{2}\right)}{v_{2}\left(y_{1}-X_{1} b_{1}\right)^{\prime}\left(y_{1}-x_{1} b_{1}\right)}=\frac{v_{1} u_{2}^{\prime} M_{2} u_{2}}{v_{2} u_{1}^{\prime} M_{1} u_{1}}=\frac{s_{2}^{2}}{s_{1}^{2}} \tag{3}
\end{equation*}
$$

where $v_{i}=T_{i}-k_{i} ; M_{i}=I_{T_{i}}-X_{i}\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime} ; b_{i}=\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime} y_{i} ; s_{i}^{2}=$ $\left(y_{i}-X_{i} b_{i}\right)^{\prime}\left(y_{i}-X_{i} b_{i}\right) / v_{i} ; \quad i=1,2$. It is straightforward to show that $f(J)=$ $\psi^{-1} \mathrm{f}\left(\mathrm{F}_{\mathrm{v}_{2}, \mathrm{v}_{1}}\right)$ where $\mathrm{F}_{\mathrm{v}_{2}, \mathrm{v}_{1}}$ is a central F variate with v_{2} and v_{1} degrees of freedom. The testing strategy is to use the so-called "always-pool" estimator of $\sigma_{1}^{2}, s_{A}^{2}$, if we cannot reject H_{0} :

$$
\begin{equation*}
s_{A}^{2}=\left(v_{1} s_{1}^{2}+v_{2} s_{2}^{2}\right) /\left(v_{1}+v_{2}\right) \quad ; \tag{4}
\end{equation*}
$$

but to use the "never-pool" estimator, $\mathrm{s}_{\mathrm{N}}^{2}$, if we reject H_{O} :

$$
\begin{equation*}
s_{\mathrm{N}}^{2}=\mathrm{s}_{1}^{2} \tag{5}
\end{equation*}
$$

So, the estimator actually reported is the pre-test estimator:

$$
s_{P}^{2}=\left\{\begin{array}{l}
s_{N}^{2} \text { if } J>c \tag{6}\\
s_{A}^{2} \text { if } J \leq c
\end{array}\right.
$$

where c is the critical value of the test associated with an $\alpha \%$ significance level.

The sampling properties of s_{N}^{2}, s_{A}^{2} and s_{P}^{2} have been examined in the literature (see, for example, Bancroft (1944), Toyoda and Wallace (1975), Ohtani and Toyoda (1978), Bancroft and Han (1983), Giles (1992b) and Giles and Giles (1993) for a survey of this literature) assuming a quadratic loss function. This is a symmetric loss function which implies that under- and over-estimation are equally penalised. However, we may believe that under-estimation of the scale parameter has greater consequences than over-estimation, as under-estimating the error variance in a regression model will lead to calculated t-statistics which make the regressors appear to be more "significant" than is warranted. A conservative researcher may prefer to err in the opposite direction, which suggests that we should consider the properties of the estimators using an asymmetric loss function which penalises under-estimation more heavily than over-estimation. One such commonly suggested loss function is the LINEX loss function, initally proposed by Varian (1975). When estimating a parameter θ by $\hat{\theta}$ this loss function is given by:

$$
\begin{equation*}
\hat{\mathrm{L}(\theta, \theta)}=\mathrm{b}(\exp [\mathrm{a}(\hat{\theta}-\theta) / \theta]-\mathrm{a}(\hat{\theta}-\theta) / \theta-1) \tag{7}
\end{equation*}
$$

where $a \neq 0$, and $b>0$. In our investigation we assume (without loss of generality) that $b=1$. The sign of the shape parameter ' a ' reflects the direction of the asymmetry - we set $a>0(a<0)$ if over-estimation is more
(less) serious than under-estimation. The magnitude of ' a ' reflects the degree of asymmetry. For small values of $|a|, \hat{L(\hat{\theta}}, \boldsymbol{\theta}) \simeq \mathrm{ba}^{2}(\hat{\theta}-$ $\theta)^{2} /\left(2 \theta^{2}\right)$ which is proportional to a squared error loss.

Various authors have used this form of loss function in a number of studies including Zellner (1986), Rojo (1987), Sadooghi-Alvandi and Nematollahi (1989), Kuo and Dey (1990), Parsian (1990a, b), Sadooghi-Alvandi (1990), Srivastava and Rao (1992), Basu and Ebrahimi (1991), Giles and Giles (1991), Parsian and Sanjari Farsipour (1992), Parsian et al. (1992), and Sadooghi-Alvandi and Parsian (1992). In particular, Giles and Giles (1991) consider the estimation of the scale paramater after a pre-test for exact linear restrictions on the regression model's coefficients. They find that the known quadratic risk properties of the pre-test estimator need not be robust to this alternative choice of loss function.

In the next section we derive the risks of s_{N}^{2}, s_{A}^{2} and s_{P}^{2} under LINEX loss. We follow in Section 3 with a discussion of some numerical evaluations of the risk functions and Section 4 contains some conclusions.

2. Risk Under LINEX Loss

We define the (relative) risk of an estimator s_{*}^{2} of σ_{1}^{2} as $R\left(s_{*}^{2}\right)=E\left[L\left(s_{*}^{2}\right.\right.$, $\left.\left.\sigma_{1}^{2}\right)\right] / \sigma_{1}^{4}$. Then, using the LINEX loss function in (7) with $b=1$ we have:

Theorem 1:

$$
\begin{align*}
& \left.R\left(s_{N}^{2}\right)=e^{-a\left(v_{1} /\left(v_{1}-2 a\right)\right.}\right)^{v_{1} / 2}-1 \tag{8}\\
& R\left(s_{A}^{2}\right)=\frac{e^{-a} \psi^{v_{2} / 2}\left(v_{1}+v_{2}\right)^{\left(v_{1}+v_{2}\right) / 2}}{\left(v_{1}+v_{2}-2 a\right) v_{1} / 2\left(\psi\left(v_{1}+v_{2}\right)-2 a\right) v_{2} / 2}-\frac{a v_{2}(1-\psi)}{\psi\left(v_{1}+v_{2}\right)}-1 \tag{9}
\end{align*}
$$

$$
\begin{align*}
R\left(s_{P}^{2}\right)=R\left(s_{N}^{2}\right) & +e^{-a}\left\{\sum_{i=1}^{\infty} \frac{2^{i}}{i!} L_{1 i}^{\prime} L_{2 i}-\sum_{i=1}^{\infty} \frac{\left(2 a / v_{1}\right)^{i}}{i!} \frac{\Gamma\left(\frac{v_{1}+2 i}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right)} Q_{0(2 i)}\right\} \\
& -\frac{\mathrm{av}_{2}\left(Q_{20}-\psi Q_{02}\right)}{\psi\left(v_{1}+v_{2}\right)} \tag{10}
\end{align*}
$$

where
$Q_{m n}=\operatorname{Pr} \cdot\left[F_{\left(v_{2}+m, v_{1}+n\right)} \leq\left(v_{2}\left(v_{1}+n\right) c \psi\right) /\left(v_{1}\left(v_{2}+m\right)\right)\right], m, n=0,1, \ldots ;$
$L_{1 i}^{\prime}$ is a $(1 \times(i+1))$ vector equal to the $(i+1)$ th row of Pascal's Triangle;
$L_{2 i}$ is an $((i+1) \times 1)$ vector with elements, for $j=0,1, \ldots, i$:

$$
M_{j}=\left(a /\left(v_{1}+v_{2}\right)\right)^{i} \psi^{j-i} \frac{\Gamma\left(\frac{v_{1}+2 j}{2}\right) \Gamma\left(\frac{v_{2}+2(i-j)}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)} Q_{(2(i-j))(2 j)}
$$

Proof: See the appendix.
Remarks:
(i) As $\alpha \rightarrow 0, c \rightarrow \infty$ and $Q_{m n} \rightarrow 1$: we never reject H_{0}. Then, repeatedly using the Binomial Theorem, $R\left(s_{P}^{2}\right) \rightarrow R\left(s_{A}^{2}\right)$. Conversely, as $\alpha \rightarrow 1, c \rightarrow 0$ and $Q_{m n} \rightarrow 0$: we always reject H_{0}. Then, we can show that $R\left(s_{P}^{2}\right) \rightarrow R\left(s_{N}^{2}\right)$.
(ii) Using the infinite series expansion of the exponential function, it can be shown that (8) - (10) collapse to their quadratic loss counterparts (scaled by $a^{2} / 2$) if ' a ' is sufficiently small so that third-order and higher order terms are negligible. The quadratic loss risk functions are given by:

$$
\begin{align*}
\mathrm{R}_{\mathrm{Q}}\left(\mathrm{~s}_{\mathrm{N}}^{2}\right)= & 2 / \mathrm{v}_{1} \tag{11}\\
\mathrm{R}_{\mathrm{Q}}\left(\mathrm{~s}_{\mathrm{A}}^{2}\right)= & \left(\mathrm{v}_{2}^{2}(\psi-1)^{2}+2\left(\mathrm{v}_{1} \psi^{2}+\mathrm{v}_{2}\right)\right) /\left(\psi^{2}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)^{2}\right) \tag{12}\\
\mathrm{R}_{\mathrm{Q}}\left(\mathrm{~s}_{\mathrm{P}}^{2}\right)= & \left(\psi^{2}\left[2\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)^{2}-\mathrm{v}_{2}\left(\mathrm{v}_{1}+2\right)\left(2 \mathrm{v}_{1}+\mathrm{v}_{2}\right) \mathrm{Q}_{04}+2 \mathrm{v}_{1} \mathrm{v}_{2}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \mathrm{Q}_{02}\right]\right. \\
& \left.+2 \mathrm{v}_{1} \mathrm{v}_{2} \psi\left[\mathrm{v}_{1} \mathrm{Q}_{22}-\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \mathrm{Q}_{20}\right]+\mathrm{v}_{1} \mathrm{v}_{2}\left(\mathrm{v}_{2}+2\right) \mathrm{Q}_{40}\right)
\end{align*}
$$

$$
\begin{equation*}
\left(v_{1} \psi^{2}\left(v_{1}+v_{2}\right)^{2}\right) \tag{13}
\end{equation*}
$$

We note that these expressions are not identical to those given by, for example, Toyoda and Wallace (1975). The differences arise because we consider risk relative to σ_{1}^{4} while Toyoda and Wallace, for example, define risk to be relative to σ_{2}^{4}. We have used the former definition as this results in $R\left(s_{N}^{2}\right)$ being independent of ψ and risk diagrams that have many characteristics which are similar to those which arise when the pre-test is of exact linear restrictions on the coefficient vector.
(iii) $\lim _{\psi \rightarrow 0}\left(R\left(s_{P}^{2}\right)\right)=R\left(s_{N}^{2}\right)$ while $R\left(s_{A}^{2}\right) \rightarrow \infty$ as $\psi \rightarrow 0$. Intuitively, pre-testing leads us to follow the correct strategy of rejecting H_{0} when it is in fact very false.
(iv) If H_{0} is true $(\psi=1)$ then

$$
\begin{gather*}
R\left(s_{A}^{2} \mid \psi=1\right) / R\left(s_{N}^{2}\right)=\left(1-2 a / v_{1}\right)^{v_{1} / 2}\left(1-2 a /\left(v_{1}+v_{2}\right)\right)^{-\left(v_{1}+v_{2}\right) / 2} \\
=\left[\left(1-2 a / v_{1}\right) v_{1}\left(1-2 a /\left(v_{1}+v_{2}\right)\right)^{-\left(v_{1}+v_{2}\right)}\right]^{1 / 2} \tag{14}
\end{gather*}
$$

Now, using the binomial expansion we have:

$$
\begin{aligned}
\left(1-2 a / v_{1}\right) v_{1} & =1-2 a+2 a^{2}\left(v_{1}-1\right) / v_{1}-4 a^{3}\left(v_{1}-1\right)\left(v_{1}-2\right) /\left(3 v_{1}^{2}\right)+\ldots \\
& =1-2 a+T_{1}+T_{2}+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(1-2 a /\left(v_{1}+v_{2}\right)\right) v_{1}+v_{2}=1-2 a+2 a^{2}\left(v_{1}+v_{2}-1\right) /\left(v_{1}+v_{2}\right)-4 a^{3}\left(v_{1}+v_{2}-1\right) \\
& \times\left(v_{1}+v_{2}-2\right) /\left(v_{1}+v_{2}\right)^{2}+\ldots \\
&=1-2 a+S_{1}+S_{2}+\ldots
\end{aligned}
$$

with $S_{i}>T_{i}, i=1,2, \ldots$. So, $\left(1-2 a / v_{1}\right)^{v_{1}}\left(1-2 a /\left(v_{1}+v_{2}\right)\right)^{-\left(v_{1}+v_{2}\right)}<1$ and likewise expression (14) is less than unity. So, irrespective of the value of ' a ', imposing valid prior information produces a gain in risk over simply ignoring the second sample. Accordingly, there is a region of the ψ-space over which s_{A}^{2} dominates s_{N}^{2} and also a region for which the converse occurs.
(v) Bancroft (1944) and Toyoda and Wallace (1975) show that under quadratic loss there always exists a range of ψ values over which pre-testing is the preferred strategy. They find that there is a family of pre-test estimators with $c \in(0,2)$ which strictly dominate the never-pool estimator and dominate the always-pool estimator for a wide range of $\psi: s_{A}^{2}$ has smaller risk than this family of pre-test estimators only around the neighbourhood of the null hypothesis. Ohtani and Toyoda (1978) prove that the pre-test estimator with $c=1$ strictly dominates all other members with $c \in[0,2) . \quad$ So, under quadratic loss there exists a ψ-range over which it is preferable to pre-test and to use $c=1$.

A question of interest is whether this result carries over in general to the LINEX family of loss functions. This can be answered by considering the first and second derivatives of $R\left(s_{P}^{2}\right)$ with respect to c. Theorem 2 derives the values of c for which $\partial R\left(s_{P}^{2}\right) / \partial c=0$.

Theorem 2:

$$
\partial R\left(s_{P}^{2}\right) / \partial c=0 \text { when } c=0, \infty, 1 \text { and } c^{*} \text { where } c^{*} \text { depends on all }
$$ arguments of the problem.

Proof: See the appendix.

It is straightforward to show that as $c \rightarrow 0$ or $c \rightarrow \infty, \partial^{2} R\left(s_{P}^{2}\right) / \partial c^{2}=0$, so that these two critical values result in points of inflexion of the risk function. In the case of quadratic loss it can also be shown that $\partial^{2} R\left(s_{P}^{2}\right) / \partial c^{2}>0$ when $c=1$ so that this choice of critical value always results in a minimum of the risk function. However, this cannot be shown in general under a LINEX loss function: it is not possible to sign $\partial^{2} R\left(s_{P}^{2}\right) / \partial c^{2}$ for all values of ' a '. When the degree of asymmetry is sufficiently large (depending on the values of the other arguments) this
second derivative can be negative so that in these cases the choice of $c=$ 1 results in a maximum of the pre-test risk function. We now turn to the numerical evaluations of $R\left(s_{A}^{2}\right), R\left(s_{N}^{2}\right)$ and $R\left(s_{P}^{2}\right)$ which will illustrate this last result.

3. Numerical Evaluations of the Risk Functions

We have numerically evaluated the risk functions for various values of $\alpha, v_{1}, v_{2}, \psi$ and a (<0). In particular, we considered $v_{1}=6,10,20,30$; $v_{2}=6,10,20,30 ; \alpha=0,0.01,0.05,0.75,1$ and that value corresponding to $c=1 ; a=-0.5,-2.0,-5.0$ and $\psi \in(0,1]$. The full details of the results relating to all of these cases are available on request.

We have computed the exact risk functions on a VAXstation 4000 using a FORTRAN program which incorporates Davies' (1980) algorithm to evaluate the central F probabilities and various other algorithms from Press et al. (1986). The infinite series in (10) converge rapidly with a convergence tolerance of 10^{-6}. We also obtained the corresponding risks under a quadratic loss using equations (11) - (13) though for comparability with the LINEX results we scaled the quadratic results by $\mathrm{a}^{2} / 2$.

Unfortunately, we found that our algorithm failed in some cases for high degrees of asymmetry, and in these cases we undertook a Monte Carlo experiment with 5,000 replications using SHAZAM (White et al. (1990)) on a VAXstation 4000. For the Monte Carlo experiment we assumed $\sigma_{1}^{2}=1$ so that $\sigma_{2}^{2}=1 / \psi$, and we generated appropriate χ^{2} random variables to obtain s_{1}^{2} and s_{2}^{2} (this was also undertaken in SHAZAM using the normal random number generator proposed by Brent (1974)). For this particular problem it is not necessary to assign values to the regressors or to the coefficients. Where possible we compared the risks generated from the Monte Carlo experiment
with those from the exact evaluations. These comparisons suggested that 5,000 replications was sufficient to replicate the exact results to at least three decimal places.

Typical LINEX risk results are illustrated in Figures 1,2 and 3 for $v_{1}=16$ and $v_{2}=8$ with $a=-0.5,-2.0$ and -5.0 respectively. The loss function when $a=-0.5$ exhibits relatively little asymmetry and so, qualitatively, Figure 1 is similar to that which would be observed under a quadratic loss function. The features discussed in the previous section are clearly evident. In particular, it is preferable to pool the samples when the null hypothesis is true, and the never-pool estimator is strictly dominated by a family of pre-test estimators. The estimator which uses a critical value of unity has the smallest risk of this family.

As discussed in Section 2, ceteris paribus there exists a degree of asymmetry such that this latter feature does not occur. Figure 3, with $a=-5.0$ clearly illustrates such an example. Then we find that the pre-test estimator which uses $c=1$ has the highest risk of all of the considered estimators around the region of the null hypothesis - this estimator no longer strictly dominates the never-pool estimator.

Our results also show that the range of ψ over which we prefer the always-pool estimator increases as the degree of asymmetry increases. This suggests that when considering an asymmetric loss function with a reasonable belief that the null hypothesis is true, it is generally preferable to pool the samples without testing.

Finally, Table 1 compares the risks of the estimators under LINEX loss and quadratic loss. Here, for comparability, we have scaled the quadratic risk results by $a^{2} / 2$ and then effectively set these scaled quadratic risk expressions to unity for each of the estimators. These results show that it is not possible to generalise about whether the risks are higher under

LINEX loss or under quadratic loss.

4. Concluding Remarks

In this paper we have extended some well known risk results, associated with pre-testing for variance homogeneity in regression prior to pooling sub-sample information, to the realistic situation where the underlying loss structure is asymmetric. In particular, risk under quadratic loss is generalised to risk under LINEX loss, with under-estimation of the regression scale being penalised more heavily than over-estimation.

This generalisation of the loss structure produces at least two results which differ in an important way from their quadratic loss counterparts. First, in the latter case, pre-testing with a critical value of unity is always preferred to ignoring the prior information. This does not hold if a sufficiently asymmetric LINEX loss is adopted.

Second, the range of ψ over which we prefer the always pool estimator increases as the degree of loss asymmetry increases. This suggests that it may be preferable to use this estimator, rather than undertake a pre-test, if we have a sufficiently asymmetric LINEX loss function. This contrasts with the typical advice under quadratic loss, which is to pre-test using a critical value of unity.

Much remains to be done to determine the sensitivity of established results in the pre-test literature to departures from the usual assumption of quadratic loss. Our results and those of Giles and Giles (1991) and Giles (1992a) suggest that there is less robustness to asymmetric departures than to symmetric ones.

Figure 1. Relative risk functions $a=-0.5, v_{1}=16, v_{2}=8$.

Figure 2. Relative risk functions $a=-2.0, v_{1}=16, v_{2}=8$.

Figure 3. Relative risk functions $a=-5.0, v_{1}=16, v_{2}=8$.

Table 1: LINEX risks relative to quadratic risks

ψ	$\mathrm{R}\left(\mathrm{~S}_{\mathrm{N}}^{2}\right)$		$R\left(S_{A}^{2}\right)$		$\mathrm{R}\left(\mathrm{S}_{\mathrm{P}}^{2}\right)$							
			$\mathrm{a}=-2$	$=-5$								
	$a=-2$	$a=-5$			$a=-2$	$a=-5$	$\alpha=0.01$	$\alpha=0.05$	$\mathrm{c}=1$	$\alpha=0.01$	$\alpha=0.05$	$\mathrm{c}=1$
			$\mathrm{v}_{1}=16 \quad \mathrm{v}_{2}=8$									
0.1	0.946	1.293	0.213	0.095	0.655	0.883	0.946	0.726	1.150	1.295		
0.2	0.946	1.293	0.367	0.183	0.593	0.781	0.952	0.528	0.911	1.305		
0.3	0.946	1.293	0.476	0.262	0.622	0.759	0.973	0.540	0.839	1.331		
0.4	0.946	1.293	0.558	0.338	0.667	0.777	0.989	0.586	0.857	1.372		
0.5	0.946	1.293	0.626	0.425	0.716	0.810	1.010	0.648	0.914	1.426		
0.6	0.946	1.293	0.692	0.536	0.767	0.851	1.034	0.746	0.983	1.489		
0.7	0.946	1.293	0.761	0.680	0.822	0.897	1.060	0.854	1.076	1.558		
0.8	0.946	1.293	0.833	0.851	0.880	0.944	1.087	0.978	1.181	1.631		
0.9	0.946	1.293	0.906	1.037	0.939	0.992	1.113	1.142	1.311	1.704		
1.0	0.946	1.293	0.972	1.220	0.995	1.037	1.138	1.287	1.432	1.775		
					$\mathrm{v}_{1}=$	20						
0.1	0.971	1.287	0.176	0.076	0.891	0.965	0.971	1.146	1.277	1.287		
0.2	0.971	1.287	0.328	0.155	0.591	0.841	0.965	0.550	1.035	1.288		
0.3	0.971	1.287	0.449	0.234	0.587	0.741	0.970	0.474	0.789	1.293		
0.4	0.971	1.287	0.542	0.309	0.639	0.740	0.979	0.521	0.750	1.316		
0.5	0.971	1.287	0.613	0.379	0.696	0.777	0.998	0.589	0.801	1.364		
0.6	0.971	1.287	0.673	0.450	0.750	0.826	1.027	0.670	0.892	1.437		
0.7	0.971	1.287	0.730	0.540	0.803	0.880	1.061	0.771	1.005	1.533		
0.8	0.971	1.287	0.799	0.678	0.864	0.940	1.101	0.913	1.153	1.643		
0.9	0.971	1.287	0.885	0.884	0.936	1.006	1.142	1.081	1.307	1.756		
1.0	0.971	1.287	0.983	1.138	1.018	1.073	1.180	1.296	1.494	1.864		

Appendix

Proof of Theorem 1:

$$
\begin{align*}
R\left(s_{N}^{2}\right) & =E\left(\exp \left(a\left(s_{N}^{2}-\sigma_{1}^{2}\right) / \sigma_{1}^{2}\right)-a\left(s_{N}^{2}-\sigma_{1}^{2}\right) / \sigma_{1}^{2}-1\right. \\
& =E\left(\exp \left(a z_{1} / v_{1}-a\right)\right)-E\left(a z_{1} / v_{1}-a\right)-1 \tag{A.1}
\end{align*}
$$

where $z_{1}=u_{1}^{\prime} M_{1} u_{1} / \sigma_{1}^{2} \sim \chi_{v_{1}}^{2}$ Then, $E\left(a z_{1} / v_{1}-a\right)=0$, as s_{N}^{2} is an unbiased estimator of σ_{1}^{2}. Further,

$$
E\left(\exp \left(a z_{1} / v_{1}-a\right)\right)=\int_{0}^{\infty a z_{1} / v_{1}-a} f\left(z_{1}\right) d z_{1}
$$

where $f\left(z_{1}\right)=\left(2^{v_{1} / 2} \Gamma\left(v_{1} / 2\right)\right)^{-1} z_{1} v_{1} / 2-1 e^{-z_{1} / 2}$.
So,

$$
E\left(\exp \left(a z_{1} / v_{1}-a\right)\right)=\left(2^{v_{1} / 2} \Gamma\left(v_{1} / 2\right)\right)^{-1} e^{-a} \int_{0}^{\infty-z_{1}\left(-a / v_{1}+v_{2}\right)} e^{v_{1} / 2-1} d z_{1}
$$

Using the change of variable $t=z_{1}\left(-a / v_{1}+1 / 2\right)$ we have

$$
\begin{aligned}
E\left(\exp \left(a z_{1} / v_{1}-a\right)\right. & =\frac{e^{-a}}{\Gamma\left(\frac{v_{1}}{2}\right) 2^{v_{1} / 2}} \frac{\left(2 v_{1}\right)^{v_{1} / 2}}{\left(v_{1}-2 a\right)^{v_{1} / 2}} \int_{0}^{\infty} e^{-t} t^{v_{1} / 2-1} d t \\
& =\frac{e^{-a v_{1}}}{\left(v_{1}-2 a\right)^{v_{1} / 2}}
\end{aligned}
$$

Substituting these results into (A.1), $R\left(s_{N}^{2}\right)$ follows.

$$
R\left(s_{A}^{2}\right)=E\left[\exp \left(a\left(s_{A}^{2}-\sigma_{1}^{2}\right) / \sigma_{1}^{2}-a\left(s_{A}^{2}-\sigma_{1}^{2}\right) / \sigma_{1}^{2}-1\right]\right.
$$

$$
\begin{equation*}
=\mathrm{E}\left\{\exp \left(\mathrm{a}\left(\mathrm{w}_{1}+\mathrm{w}_{2} / \psi\right) /\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)-1\right)-\mathrm{a}\left(\left(\mathrm{w}_{1}+\mathrm{w}_{2} / \psi\right) /\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)-1\right)-1\right\} \tag{A.2}
\end{equation*}
$$

where $\mathrm{w}_{\mathrm{i}}=\mathrm{e}^{* \prime} \mathrm{M}_{\mathrm{i}}^{*} \mathrm{e}^{*} / \sigma_{2}^{2}, \quad \mathrm{i}=1,2 ; \quad \mathrm{e}^{*}=\left[\mathrm{e}_{1}^{\prime} / \sqrt{\psi} \mathrm{e}_{2}^{\prime}\right]^{\prime} \sim \mathrm{N}\left(0, \sigma_{2}^{2} \mathrm{I}_{\mathrm{T}}\right), \quad \mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$; $\underset{(T \times T)}{M_{1}^{*}}=\left[\begin{array}{ll}M_{1} & 0 \\ 0 & 0\end{array}\right] ; \underset{(T \times T)}{\text { and } M_{2}^{*}}=\left[\begin{array}{ll}0 & 0 \\ 0 & M_{2}\end{array}\right]$. It is straightforward to show that $\mathrm{w}_{\mathrm{i}} \sim \chi_{\mathrm{v}_{\mathrm{i}}}^{2}$ and that w_{1} and w_{2} are independent. So,

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{w}_{1}+\mathrm{w}_{2} / \psi\right) /\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)-1=\mathrm{v}_{2}(1-\psi) /\left(\psi\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)\right) \tag{A.3}
\end{equation*}
$$

and

$$
\begin{aligned}
& E\left[\exp \left(a\left(w_{1}+w_{2} / \psi\right) /\left(v_{1}+v_{2}\right)-1\right)\right] \\
& =e^{-a} \int_{0}^{\infty} \int_{0}^{\infty a\left(w_{1}+w_{2} / \psi\right) /\left(v_{1}+v_{2}\right)} f\left(w_{1}\right) f\left(w_{2}\right) d w_{1} d w_{2} \\
& =e^{-a}\left[\int_{0}^{\infty} \frac{1}{{ }_{2}^{v_{1} / 2} \Gamma\left(\frac{v_{1}}{2}\right)} w_{1}^{\frac{v_{1}}{2}-1} e^{-w_{1} / 2+a w_{1} /\left(v_{1}+v_{2}\right)} d\right] \\
& \times\left[\int_{0}^{\infty} \frac{1}{v_{2} / 2} \Gamma\left(\frac{v_{2}}{2}\right) w_{2}^{\frac{v_{2}}{2}-1} e^{-w_{2} / 2+a w_{2} /\left(\psi\left(v_{1}+v_{2}\right)\right)} e^{-1 w_{2}}\right]
\end{aligned}
$$

Using the change of variables $t_{1}=w_{1}\left[1 / 2-a /\left(v_{1}+v_{2}\right)\right]$ and $t_{2}=w_{2}\left[\left(\psi\left(v_{1}+\right.\right.\right.$ $\left.\left.\left.v_{2}\right)-2 \mathrm{a}\right) /\left(2 \psi\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)\right)\right]$ we have

$$
\begin{align*}
& E\left[\exp \left(a\left(w_{1}+w_{2} / \psi\right) /\left(v_{1}+v_{2}\right)-1\right]\right. \\
& =e^{-a}\left[\frac{v_{1}+v_{2}}{v_{1}+v_{2}-2 a}\right]^{\frac{v_{1}}{2}}\left[\frac{\psi\left(v_{1}+v_{2}\right)}{\psi\left(v_{1}+v_{2}\right)-2 a}\right]^{\frac{v_{2}}{2}} \tag{A.4}
\end{align*}
$$

Substituting (A.3) and (A.4) into (A.2) yields $R\left(s_{A}^{2}\right)$.

Finally, for the pre-test estimator, s_{P}^{2}, we have

$$
\begin{aligned}
s_{P}^{2} & =s_{N}^{2}+\left(s_{A}^{2}-s_{N}^{2}\right) I_{[0, c]}(J) \\
& =\sigma_{2}^{2}\left[\psi\left(v_{1}+v_{2}\right) w_{1}+\left(v_{1} w_{2}-\psi v_{2} w_{1}\right) I_{t 0, c \psi]}\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right)\right] \\
& /\left(v_{1}\left(v_{1}+v_{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{align*}
R\left(s_{P}^{2}\right) & =E\left\{\exp \left(a\left(s_{p}^{2}-\sigma_{1}^{2}\right) / \sigma_{1}^{2}\right)-a\left(s_{p}^{2}-\sigma_{1}^{2}\right) / \sigma_{1}^{2}-1\right\} \\
& =E\left\{\exp \left(a\left(s_{p}^{2}-\psi \sigma_{2}^{2}\right) /\left(\psi \sigma_{2}^{2}\right)\right)-a\left(s_{p}^{2}-\psi \sigma_{2}^{2}\right) /\left(\psi \sigma_{2}^{2}\right)-1\right\} . \tag{A.5}
\end{align*}
$$

Now,

$$
\begin{align*}
& E\left[\left(\mathrm{~s}_{\mathrm{P}}^{2}-\psi \sigma_{2}^{2}\right) /\left(\psi \sigma_{2}^{2}\right)\right]=E\left[\psi\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \mathrm{w}_{1}+\left(\mathrm{v}_{1} \mathrm{w}_{2}-\psi \mathrm{v}_{2} \mathrm{w}_{1}\right)\right. \\
& \left.\quad \times \mathrm{I}_{[0, \mathrm{c} \psi]}\left(\mathrm{v}_{1} \mathrm{w}_{2} /\left(\mathrm{v}_{2} \mathrm{w}_{1}\right)\right)\right] /\left(\psi \mathrm{v}_{1}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)\right)-1 \tag{A.6}
\end{align*}
$$

and repeatedly using Lemma 1 of Clarke et al. (1987) (A.6) is

$$
\begin{equation*}
\mathrm{E}\left(\left(\mathrm{~s}_{\mathrm{P}}^{2}-\psi \sigma_{2}^{2}\right) /\left(\psi \sigma_{2}^{2}\right)\right)=\mathrm{v}_{2}\left(\mathrm{Q}_{20}-\psi \mathrm{Q}_{02}\right) /\left(\psi\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)\right) \tag{A.7}
\end{equation*}
$$

where

$$
Q_{m n}=\operatorname{Pr}\left[\left(F_{\left(v_{2}+m, v_{1}+n\right)} \leq\left(v_{2}\left(v_{1}+n\right) c \psi\right) /\left(v_{1}\left(v_{2}+m\right)\right)\right]\right.
$$

$m, n=0,1, \ldots$.
Further,

$$
E\left[\exp \left(a\left(s_{P}^{2}-\psi \sigma_{2}^{2}\right) /\left(\psi \sigma_{2}^{2}\right)\right)\right]=e^{-a} E\left\{\operatorname { e x p } \left[a \left(\psi\left(v_{1}+v_{2}\right) w_{1}\right.\right.\right.
$$

$$
\begin{align*}
& \left.\left.\left.+\left(\mathrm{v}_{1} \mathrm{w}_{2}-\psi \mathrm{v}_{2} \mathrm{w}_{1}\right) \mathrm{I}_{[0, c \psi]}\left(\mathrm{v}_{1} \mathrm{w}_{2} /\left(\mathrm{v}_{2} \mathrm{w}_{1}\right)\right)\right] /\left(\psi \mathrm{v}_{1}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)\right)\right]\right\} \\
& =\mathrm{e}^{-\mathrm{a}} \mathrm{E}\left\{\exp \left[\mathrm{~b}_{0} \mathrm{w}_{1}+\left(\mathrm{b}_{2} \mathrm{w}_{2}-\mathrm{b}_{1} \mathrm{w}_{1}\right) \mathrm{I}_{[0, c \psi]}\left(\mathrm{v}_{1} \mathrm{w}_{2} /\left(\mathrm{v}_{2} \mathrm{w}_{1}\right)\right)\right]\right\} \\
& =\mathrm{e}^{-\mathrm{a}} \mathrm{E}(\exp (Q)) \tag{A.8}
\end{align*}
$$

where $\quad b_{0}=a / v_{1} ; b_{1}=a v_{2} /\left(v_{1}\left(v_{1}+v_{2}\right)\right) ; b_{2}=a /\left(\psi\left(v_{1}+v_{2}\right)\right) ;$ and

$$
\begin{align*}
Q= & \exp \left[b_{0} w_{1}+\left(b_{2} w_{2}-b_{1} w_{1}\right) I_{[0, c \psi]}\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right)\right] \\
= & \exp \left[b_{0} w_{1}-b_{0} w_{1}, I_{[0, c \psi]}\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right)+b_{2} w_{2} I_{[0, c \psi]}\right. \\
& \times\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right)+\left(b_{0}-b_{1}\right) w_{1} I_{[0, C \psi]}\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right] \tag{A.9}
\end{align*}
$$

Now,

$$
\begin{equation*}
E(\exp (Q))=1+E(Q)+\frac{E(Q)^{2}}{2!}+\frac{E(Q)^{3}}{3!}+\ldots \tag{A.10}
\end{equation*}
$$

and using Lemma 1 of Clarke (1990) we have

$$
\begin{aligned}
& E\left(w_{1}^{r_{1}} I_{[0, c \psi]}\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right)\right)=\frac{2^{r_{1}} \Gamma\left(\frac{v_{1}+2 r_{1}}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right)} Q_{v_{2}, v_{1}+2 r_{1}} \\
& E\left(w_{2}^{r_{2}} I_{[0, c \psi]}\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right)\right)=\frac{2^{r_{2}} \Gamma\left(\frac{v_{2}+2 r_{2}}{2}\right)}{\Gamma\left(\frac{v_{2}}{2}\right)} Q_{v_{2}+2 r_{2}, v_{1}} \\
& E\left(w_{1}^{r_{1}}{ }^{w_{2}}{ }_{2} I_{[0, c \psi]}\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right)\right) \\
& =2^{r_{1}+r_{2}} \frac{\Gamma\left(\frac{v_{1}+2 r_{1}}{2}\right) \Gamma\left(\frac{v_{2}+2 r_{2}}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)} Q_{v_{2}+2 r_{2}, v_{1}+2 r_{1}}
\end{aligned}
$$

where r_{1} and r_{2} are any real values such that $r_{1}>\left(-v_{1} / 2\right)$ and $r_{2}>$ $\left(-v_{2} / 2\right)$.

Using these expressions repeatedly along with definition (A.9) in (A.10) we have

$$
\left.\begin{array}{l}
E(\exp (Q))=1+2\left\{b_{0} \Gamma\left(\frac{v_{1}+2}{2}\right)\left(1-Q_{02}\right) / \Gamma\left(\frac{v_{1}}{2}\right)\right. \\
\left.+b_{2} \Gamma\left(\frac{v_{2}+2}{2}\right) Q_{20} / \Gamma\left(\frac{v_{2}}{2}\right)+\left(b_{0}-b_{1}\right) \Gamma\left(\frac{v_{1}+2}{2}\right) Q_{02} / \Gamma\left(\frac{v_{1}}{2}\right)\right\} \\
+\left(2^{2} / 2!\right)\left\{b_{0}^{2} \Gamma\left(\frac{v_{1}+4}{2}\right)\left(1-Q_{04}\right) / \Gamma\left(\frac{v_{1}}{2}\right)+b_{2}^{2} \Gamma\left(\frac{v_{2}+4}{2}\right) Q_{40} / \Gamma\left(\frac{v_{2}}{2}\right)\right. \\
+2 b_{2}\left(b_{0}-b_{1}\right) \Gamma\left(\frac{v_{1}+2}{2}\right) \Gamma\left(\frac{v_{2}+2}{2}\right) Q_{22} /\left(\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)\right) \\
\left.+\left(b_{0}-b_{1}\right)^{2} \Gamma\left(\frac{v_{1}+4}{2}\right) Q_{04} / \Gamma\left(\frac{v_{1}}{2}\right)\right\} \\
+\left(2^{3} / 3!\right)\left\{b_{0}^{3} \Gamma\left(\frac{v_{1}+6}{2}\right)\left(1-Q_{06}\right) / \Gamma\left(\frac{v_{1}}{2}\right)+b_{2}^{3} \Gamma\left(\frac{v_{2}+6}{2}\right) Q_{60} / \Gamma\left(\frac{v_{2}}{2}\right)\right. \\
\left.+3 b_{2}^{2}\left(b_{0}-b_{1}\right) \Gamma\left(\frac{v_{1}+2}{2}\right) \Gamma\left(\frac{v_{2}+4}{2}\right) Q_{42} / \Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)\right) \\
+3 b_{2}\left(b_{0}-b_{1}\right)^{2} \Gamma\left(\frac{v_{1}+4}{2}\right) \Gamma\left(\frac{v_{2}+2}{2}\right) Q_{24} /\left(\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)\right) \\
\left.+\left(b_{0}-b_{1}\right)^{3} \Gamma \Gamma\left(\frac{v_{1}+6}{2}\right) Q_{06} / \Gamma\left(\frac{v_{1}}{2}\right)\right\}+\ldots \\
=\sum_{i=0}^{\infty} \frac{\left(2 b_{0}\right)^{i}}{i!} \frac{\Gamma\left(\frac{v_{1}+2 i}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right)} \sum_{i=1}^{\infty} \frac{\left(2 b_{0}\right)^{i}}{i!} \frac{\Gamma\left(\frac{v_{1}+2 i}{2}\right)}{Q_{0}} Q_{0(2 i)}^{v_{1}} \\
2
\end{array}\right)
$$

$$
+\sum_{i=1}^{\infty} \frac{2^{i}}{i!} L_{1 i}^{\prime} L_{2 i}
$$

where $\quad L_{1 i}^{\prime}$ is a $(1 \times(i+1))$ vector equal to the $(i+1)$ th row of Pascal's Triangle;
$L_{2 i}$ is an $((i+1) \times 1)$ vector with elements

$$
\begin{aligned}
M_{j}= & b_{2}^{i-j}\left(b_{0}-b_{1}\right)^{j} \Gamma\left(\frac{v_{1}+2 j}{2}\right) \Gamma\left(\frac{v_{2}+2(i-j)}{2}\right) Q_{(2(i-j))(2 j)} \\
& /\left(\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)\right) \\
= & \left(a /\left(v_{1}+v_{2}\right)\right)^{i} \psi^{j-i} \Gamma\left(\frac{v_{1}+2 j}{2}\right) \Gamma\left(\frac{v_{2}+2(i-j)}{2}\right) Q_{(2(i-j))(2 j)} \\
& /\left(\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)\right) \quad, \quad j=0,1, \ldots, i .
\end{aligned}
$$

Finally, if $\left|2 a / v_{1}\right|<1$, which is not restrictive in practice, then

$$
\sum_{i=1}^{\infty} \frac{\left(2 b_{0}\right)^{i}}{i!} \frac{\Gamma\left(\frac{v_{1}+2 i}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right)}=\left(\frac{v_{1}}{v_{1}-2 a}\right)^{v_{1} / 2}
$$

So,

$$
\begin{align*}
E(\exp (Q)) & =\left(\frac{v_{1}}{v_{1}-2 a}\right)^{v_{1} / 2}-\sum_{i=1}^{\infty} \frac{\left(2 a / v_{1}\right)}{i!} \frac{\Gamma\left(\frac{v_{1}+2 i}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right)} Q_{0(2 i)} \\
& +\sum_{i=1}^{\infty} \frac{2^{i}}{i!} L_{1 i}^{\prime} L_{2 i} \tag{A.11}
\end{align*}
$$

Substituting (A.11) into (A.8) and then this expression and (A.7) into (A.5) yields the desired result.

Proof of Theorem 2:
Using the infinite series expansion of the exponential function we write

$$
\left.\begin{array}{rl}
R\left(s_{P}^{2}\right)= & E\left[\frac{a^{2}}{2!}\left(\left(s_{p}^{2}-\sigma_{1}^{2}\right) / \sigma_{1}^{2}\right)^{2}+\frac{a^{3}}{3!}\left(\left(s_{p}^{2}-\sigma_{1}^{2}\right) / \sigma_{1}^{2}\right)^{3}+\ldots\right] \\
= & E\left[\frac { a ^ { 2 } } { 2 ! } \left([\psi (v _ { 1 } + v _ { 2 }) w _ { 1 } - \psi v _ { 1 } (v _ { 1 } + v _ { 2 })] (v _ { 1 } w _ { 2 } - \psi v _ { 2 } w _ { 1 }) I _ { [0 , c \psi] } \left(v_{1} w_{2}\right.\right.\right.
\end{array}\right] \quad \begin{aligned}
&\left.\left./\left(v_{2} w_{1}\right)\right)\right)^{2} /\left(\psi v_{1}\left(v_{1}+v_{2}\right)\right)^{2}+\frac{a^{3}}{3!}\left(\left[\psi\left(v_{1}+v_{2}\right) w_{1}-\psi v_{1}\left(v_{1}+v_{2}\right)\right]\right. \\
&=E[\left.\Delta^{*}+\left(v_{1} w_{2}-\psi v_{2} w_{1}\right) \Phi I_{[0, c \psi]}\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right)\right] \\
&\left.\left.\times\left(v_{1} w_{2}-\psi v_{2} w_{1}\right) I_{[0, c \psi]}\left(v_{1} w_{2} /\left(v_{2} w_{1}\right)\right)\right)^{3} /\left(\psi v_{1}\left(v_{1}+v_{2}\right)\right)^{3}+\ldots\right] \\
& \text { where }= \frac{a^{2}}{2!} \Delta^{2}+\frac{a^{3}}{3!} \Delta^{3}+\ldots ; \tag{A.12}\\
&= \psi\left(v_{1}+v_{2}\right)\left(w_{1}-v_{1}\right) ; \\
& \quad= \frac{a^{2}}{2!}\left(2 \Delta+\left(v_{1} w_{2}-\psi v_{2} w_{1}\right)\right)+\frac{a^{3}}{3!}\left(\left(v_{1} w_{2}-\psi v_{2} w_{1}\right)^{2}+3 \Delta^{2}+3 \Delta\left(v_{1} w_{2}-\psi v_{2} w_{1}\right)\right)
\end{aligned}
$$

Now $I_{[0, c \psi]}\left(\mathrm{v}_{1} \mathrm{w}_{2} /\left(\mathrm{v}_{2} \mathrm{w}_{1}\right)\right)=\mathrm{I}_{[0, \mathrm{x}]}\left(\mathrm{w}_{2}\right)$ where $\mathrm{x}=\mathrm{c} \psi \mathrm{v}_{2} \mathrm{w}_{1} / \mathrm{v}_{1}$, and as w_{1} and w_{2} are independently distributed quadratic forms it follows that (A.12) can be written as

$$
\begin{aligned}
R\left(\mathrm{~s}_{\mathrm{P}}^{2}\right) & =\mathrm{E}_{\mathrm{w}_{1}}\left\{\Delta^{*}+\mathrm{E}_{\mathrm{w}_{2}}\left[\left(\mathrm{v}_{1} \mathrm{w}_{2}-\psi \mathrm{v}_{2} \mathrm{w}_{1}\right) \Phi \mathrm{I}[0, \mathrm{x}]^{\left.\left.\left(\mathrm{w}_{2}\right)\right]\right\}}\right.\right. \\
& =\mathrm{E}_{\mathrm{w}_{1}}\left\{\Delta^{*}+\int_{0}^{\mathrm{x}}\left(\mathrm{v}_{1} \mathrm{w}_{2}-\psi \mathrm{v}_{2} \mathrm{w}_{1}\right) \Phi \mathrm{f}\left(\mathrm{w}_{2}\right) \mathrm{d} \mathrm{w}_{2}\right\}
\end{aligned}
$$

where $f($.$) is the density function of a \chi_{v_{2}}^{2}$ variate. Then,

$$
\begin{align*}
\frac{\partial R\left(s_{P}^{2}\right)}{\partial c} & =E_{w_{1}}\left\{\frac{\partial x}{\partial c} \times \frac{\partial}{\partial c} \int_{0}^{x}\left(v_{1} w_{2}-\psi v_{2} w_{1}\right) \Phi f\left(w_{2}\right) d w_{2}\right\} \\
& =E_{w_{1}}\left\{\left[\left(\psi w_{1} v_{2}\right)^{2} / v_{1}\right](c-1) f\left(c \psi v_{2} w_{1} / v_{1}\right) \Phi^{*}\right\} \tag{A.13}
\end{align*}
$$

where Φ^{*} is Φ evaluated at $\mathrm{w}_{2}=\mathrm{c} \psi \mathrm{v}_{2} \mathrm{w}_{1} / \mathrm{v}_{1}$. (A.13) will clearly be zero when $c=0, \infty, 1$ and c^{*} where c^{*} is that value of c such that $\Phi^{*}=0$. \#

Acknowledgements

The authors acknowledge the financial support provided by University of Canterbury Research Grant \#1770901. We are also grateful to Matthew Cunneen and Jason Wong for providing research assistance with some of the numerical evaluations, and to Kazuhiro Ohtani for many useful discussions on non-quadratic loss functions.

References

Bancroft, T.A. (1944). On biases in estimation due to the use of preliminary test of significance. Annals of Mathematical Statistics 15, 190-204.

Bancroft, T.A. and C-P. Han (1983). A note on pooling variances. Journal of the American Statistical Association 78, 981-983.

Brent, R.P. (1974). A Gaussian pseudo-random number generator. Communications of the ACM 17, 1704-1706.

Clarke, J.A. (1990). Preliminary-test estimation of the standard error of estimate in linear regression. Economics Letters 34, 27-32.

Clarke, J.A., D.E.A. Giles and T.D. Wallace (1987). Estimating the error variance in regression after a preliminary test of restrictions on the coefficients. Journal of Econometrics 34, 293-304.

Davies, R.B. (1980). The distribution of a linear combination of χ^{2} random variables (Algoritm AS 155). Applied Statistics 29, 323-333.

Giles, D.E.A: (1992a). Pre-test estimation in regression under absolute error loss. Discussion Paper \#9210. Department of Economics, University of Canterbury, Christchurch, New Zealand.

Giles, J.A. (1992b). Estimation of the error variance after a preliminary-test of homogeneity in a regression model with spherically symmetric disturbances. Journal of Econometrics 53, 345-361.

Giles, J.A. and D.E.A. Giles (1991). Preliminary-test estimation of the regression scale parameter when the loss function is asymmetric. Discussion Paper \#9104. Department of Economics, University of Canterbury, Christchurch, New Zealand.

Giles, J.A. and D.E.A. Giles (1993). Pre-test estimation and testing in econometrics: Recent developments. Journal of Economic Surveys, forthcoming.

Kuo, L. and D.K. Dey (1990). On the admissibility of the linear estimators of the Poisson mean using LINEX loss functions. Statistics and Decisions 8, 201-210.

Ohtani, K. and T. Toyoda (1978). Minimax regret critical values for a preliminary test in pooling variance. Journal of the Japan Statistical Society 17, 15-20.

Parsian, A. (1990a). On the admissibility of an estimator of a normal mean vector under a LINEX loss function. Annals of the Institute of Mathematical Statistics 42, 657-669.

Parsian, A. (1990b). Bayes estimation using a LINEX loss function. Journal of Science IROI 1, 305-307.

Parsian, A., N. Sanjari Farsipour and N. Nematollahi (1992). On the minimaxity of Pitman type estimator under a LINEX loss function. Mimeograph. Department of Statistics, Shiraz University, Shiraz, Iran.

Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling (1986). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York.

Rojo, J. (1987). On the admissibility of $c \bar{X}+d$ with respect to the LINEX loss function. Communications in Statistics: Theory and Methods A16, 3745-3748.

Sadooghi-Alvandi, S.M. (1990). Estimation of the parameter of a Poisson distribution using a LINEX loss function. Australian Journal of Statistics 32, 393-398.

Sadooghi-Alvandi, S.M. and N. Nematollahi (1989). A note on the admissibility of $c \bar{X}+d$ relative to the LINEX loss function. Communications in Statistics: Theory and Methods A18, 1871-1873.

Sadooghi-Alvandi, S.M. and A. Parsian (1992). Estimation of the Binomial parameter n using a LINEX loss function. Communications in Statistics: Theory and Methods A18, forthcoming.

Srivastava, V.K. and B.B. Rao (1992). Estimation of disturbance variance in linear regression models under asymmetric criterion. Journal of Quantitative Economics 8, 341-345.

Toyoda, T. and T.D. Wallace (1975). Estimation of variance after a preliminary test of homogeneity and optimal levels of significance for the pre-test. Journal of Econometrics 3, 395-404.

Varian, H.R. (1975). A Bayesian approach to real estate assessment. In: S.E. Fienberg and A. Zellner, Eds., Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage. North-Holland, Amsterdam, 195-208.

White, K.J., S.D. Wong, D. Whistler and S.A. Haun (1990). SHAZAM Econometrics Program - User's Reference Manual, Version 6.2. McGraw-Hill, New York.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association 81, 446-451.

LIST OF DISCUSSION PAPERS*

No. 8801 Workers' Compensation Rates and the Demand for Apprentices and Non-Apprentices in Victoria, by Pasquale M. Sgro and David E. A. Giles.
No. 8802
No. 8803
No. 8804
No. 8805

No. 8806
No. 8807

No. 8808

No. 8809
No. 8810

No. 8901
No. 8902

No. 8903

No. 8904

No. 8905

No. 8906

No. 8907

No. 8908

No. 8909

No. 9001
No. 9002

No. 9003
No. 9004

No. 9005
No. 9006
No. 9007

No. 9008

No. 9009

No. 9010

No. 9011

The Adventures of Sherlock Holmes, the 48\% Solution, by Michael Carter.
The Exact Distribution of a Simple Pre-Test Estimator, by David E. A. Giles.
Pre-testing for Linear Restrictions in a Regression Model With Student-t Errors, by Judith A. Clarke.
Divisia Monetary Aggregates and the Real User Cost of Money, by Ewen McCann and David Giles.
The Management of New Zealand's Lobster Fishery, by Alan Woodfield and Pim Borren.
Poverty Measurement: A Generalization of Sen's Result, by Prasanta K. Pattanaik and Manimay Sen.
A Note on Sen's Normalization Axiom for a Poverty Measure, by Prasanta K. Pattanaik and Manimay Sen.
Budget Deficits and Asset Sales, by Ewen McCann.
Unorganized Money Markets and 'Unproductive' Assets in the New Structuralist Critique of Financial Liberalization, by P. Dorian Owen and Otton Solis-Fallas.
Testing for Financial Buffer Stocks in Sectoral Portfolio Models, by P. Dorian Owen.
Provisional Data and Unbiased Prediction of Economic Time Series by Karen Browning and David Giles.
Coefficient Sign Changes When Restricting Regression Models Under Instrumental Variables Estimation, by David E. A. Giles.
Economies of Scale in the New Zealand Electricity Distribution Industry, by David E. A. Giles and Nicolas S. Wyatt.
Some Recent Developments in Econometrics: Lessons for Applied Economists, by David E. A. Giles.

Asymptotic Properties of the Ordinary Least Squares Estimator in Simultaneous Equations Models, by V. K. Srivastava and D. E. A. Giles.
Unbiased Estimation of the Mean Squared Error of the Feasible Generalised Ridge Regression Estimator, by V. K. Srivasatva and D. E. A. Giles.
An Unbiased Estimator of the Covariance Matrix of the Mixed Regression Estimator, by D. E. A. Giles and V. K. Srivastava.

Pre-testing for Linear Restrictions in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.
The Durbin-Watson Test for Autocorrelation in Nonlinear Models, by Kenneth J. White.
Determinants of Aggregate Demand for Cigarettes in New Zealand, by Robin Harrison and Jane Chetwyd.
Unemployment Duration and the Measurement of Unemployment, by Manimay Sengupta. Estimation of the Error Variance After a Preliminary-Test of Homogeneity in a Regression Model with Spherically Symmetric Disturbances, by Judith A. Giles.
An Expository Note on the Composite Commodity Theorem, by Michael Carter.
The Optimal Size of a Preliminary Test of Linear Restrictions in a Mis-specified Regression Model, by David E. A. Giles, Offer Lieberman, and Judith A. Giles.
Inflation, Unemployment and Macroeconomic Policy in New Zealand: A Public Choice Analysis, by David J. Smyth and Alan E. Woodfield.
Inflation - Unemployment Choices in New Zealand and the Median Voter Theorem, by David J. Smyth and Alan E. Woodfield.

The Power of the Durbin-Watson Test when the Errors are Heteroscedastic, by David E. A. Giles and John P. Small.
The Exact Distribution of a Least Squares Regression Coefficient Estimator After a Preliminary t-Test, by David E. A. Giles and Virendra K. Srivastava.
Testing Linear Restrictions on Coefficients in a Linear Regression Model with Proxy variables and Spherically Symmetric Disturbances, by Kazuhiro Ohtani and Judith A. Giles.
(Continued on next page)

No. 9012 Some Consequences of Applying the Goldfeld-Quandt Test to Mis-Specified Regression Models, by David E. A. Giles and Guy N. Saxton.
No. 9013 Pre-testing in a Mis-specified Regression Model, by Judith A. Giles.
No. 9014 Two Results in Balanced-Growth Educational Policy, by Alan E. Woodfield.
No. 9101 Bounds on the Effect of Heteroscedasticity on the Chow Test for Structural Change, by David Giles and Offer Lieberman.
No. 9102 The Optimal Size of a Preliminary Test for Linear Restrictions when Estimating the Regression Scale Parameter, by Judith A. Giles and Offer Lieberman.
No. 9103 Some Properties of the Durbin-Watson Test After a Preliminary t-Test, by David Giles and Offer Lieberman.

No. 9104 Preliminary-Test Estimation of the Regression Scale Parameter when the Loss Function is Asymmetric, by Judith A. Giles and David E. A. Giles.
No. 9105 On an Index of Poverty, by Manimay Sengupta and Prasanta K. Pattanaik.
No. 9106 Cartels May Be Good For You, by Michael Carter and Julian Wright.
No. 9107 Lp-Norm Consistencies of Nonparametric Estimates of Regression, Heteroskedasticity and Variance of Regression Estimate when Distribution of Regression is Known, by Radhey S. Singh.
No. 9108 Optimal Telecommunications Tariffs and the CCITT, by Michael Carter and Julian Wright.
No. $9109 \quad$ Price Indices : Systems Estimation and Tests, by David Giles and Ewen McCann.
No. 9110 The Limiting Power of Point Optimal Autocorrelation Tests, by John P. Small.
No. 9111 The Exact Power of Some Autocorrelation Tests When the Disturbances are Heteroscedastic, by John P. Small.
No. 9112 Some Consequences of Using the Chow Test in the Context of Autocorrelated Disturbances, by David Giles and Murray Scott.
No. 9113 The Exact Distribution of R^{2} when the Disturbances are Autocorrelated, by Mark L. Carrodus and David E. A. Giles.
No. 9114 Optimal Critical Values of a Preliminary Test for Linear Restrictions in a Regression Model with Multivariate Student-t Disturbances, by Jason K. Wong and Judith A. Giles.
No. 9115 Pre-Test Estimation in a Regression Model with a Misspecified Error Covariance Matrix, by K. V. Albertson.

No. 9116 Estimation of the Scale Parameter After a Pre-test for Homogeneity in a Mis-specified Regression Model, by Judith A. Giles.
No. 9201 Testing for Arch-Garch Errors in a Mis-specified Regression, by David E. A. Giles, Judith A. Giles, and Jason K. Wong.
No. 9202 Quasi Rational Consumer Demand - Some Positive and Normative Surprises, by John Fountain.
No. 9203 Pre-test Estimation and Testing in Econometrics: Recent Developments, by Judith A. Giles and David E. A. Giles.
No. 9204 Optimal Immigration in a Model of Education and Growth, by K-L. Shea and A. E. Woodfield.
No. 9205 Optimal Capital Requirements for Admission of Business Immigrants in the Long Run, by K-L. Shea and A. E. Woodfield.
No. 9206 Causality, Unit Roots and Export-Led Growth: The New Zealand Experience, by David E. A. Giles, Judith A. Giles and Ewen McCann.
No. 9207 The Sampling Performance of Inequality Restricted and Pre-Test Estimators in a Mis-specified Linear Model, by Alan T. K. Wan.
No. 9208 Testing and Estimation with Seasonal Autoregressive Mis-specification, by John P. Small. No. 9209 A Bargaining Experiment, by Michael Carter and Mark Sunderland.
No. 9210 Pre-Test Estimation in Regression Under Absolute Error Loss, by David E. A. Giles.
No. 9211 Estimation of the Regression Scale After a Pre-Test for Homoscedasticity Under Linex Loss, by Judith A. Giles and David E. A. Giles.

[^0]
[^0]: * Copies of these Discussion Papers may be obtained for $\$ 4$ (including postage, price changes occasionally) each by writing to the Secretary, Department of Economics, University of Canterbury, Christchurch, New Zealand. A list of the Discussion Papers prior to 1988 is available on request.

