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Abstract

We consider the risks of the Ordinary Least Squares, Restricted Least

Squares and Pre-Test estimators of a regression coefficient under absolute

error loss. These results are compared with their quadratic loss
counterparts, and similar regions of risk dominance are found to hold, at

least qualitatively.

* This note is based on some on-going collaborative research being undertaken
in this general field with Offer Lieberman. I am most grateful to him for
his substantial input, and to Judith Giles and Kazuhiro Ohtani for many
helpful discussions.




1. Introduction

There is a large literature relating to the properties of regression
estimators after some sort of preliminary hypothesis test. Estimation of the
scale of the error term’s distribution, and the coefficient and prediction
vectors have been considered after pre-tests of linear restrictions on the
coefficients or homoscedasticity of the error variance, for example. This
literature is documented by Judge and Bock (1978) and Giles and Giles (1993),
for instance.

Recently, Giles and Giles (1991, 1992) have explored two such estimation
strategies using risk under the asymmetric LINEX loss function (e.g., Varian
(1975)). However, all of the other such studies to date use risk under
quadratic loss as the basis for measuring an estimator’s performance. This
paper considers an alternative departure from quadratic loss. Symmetry of
the loss function is retained, but it is taken to be of an "absolute error"
form. Pre-test estimators (PTE's) have not been evaluated in such terms
previously, and this paper provides some exploratory evidence (partly
analytic, and partly based on Monte Carlo simulations) of the consequences of
adopting such a loss structure.

Ir} the next section we set up our model and notation; and section 3
presents some analytic results. Section 4 describes a small Monte Carlo
study which focuses on the empirical risk function of the PTE itself; and

some concluding comments appear in section 5.

2. The model and notation
For simplicity, and given the exploratory nature of this study, we
consider the following regression model, where all data are measured as

deviations about their sample means:

- . " 2
¥ = leli + Bzxzi + U u IN(0,c0")

7




We test H: B, =0uys H,: B, # 0, and reject Hy if |t2| > clas/2), where t, =
[bz.l/s.e.(bz'l)], l‘Jz.1 is the Ordinary Least Squares (OLS) estimator of BZ
and s.e. denotes "standard error". The chosen significance level for the
test is «, and c(a/2) is the critical value.

The OLS estimator of Bl is b, which is N(Bl,a‘f), where o-i =

L2’

%/ [[foi] (l-pz)] and p2 is the squared sample correlation between X and Xy
i

The Restricted Least Squares (RLS) estimator of 81’ obtained by deleting

. 2 _ 2 2),_2
from the model, is b1 = b1.2 + p(crl/crz)bz‘l, where o, = u‘/[(?xZi](l P )],

. 2 . . 2 _ o2 25 2 2
and b1 N(B1+B,crl ). The squared bias of b1 is B sz [?x?_i/?xu], and
o"i'z = (o-z/ini]. The PTE of B1 is
i

b s Ity < clw2)
B = .
b5 3 |ty] = cla2)

We compare the sampling properties of Bl with those of its "components”, b1 2
and bl' using risk under absolute error loss as the criterion. This is given
by RA(Bl) = E]Bl-Bll, etc. Comparisons are also made with the results based

. . 2 > 2
on quadratic risk, RQ(BI) = E(ﬁl-ﬁl) , etc.

Some analytic results

The risks of b1 2 b1 and él under quadratic loss are well known to be
_ 2 _ 2 2),_2
Rylb ) =o% = o /[[?chu o )]

2.2 _[2 .22 2 2
Ryl = (03487 = [a' +sz7xix2i]/§xu
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RQ(BI) = [azfoi/A] + [ZhA(Z)-hAM)] [BZ?IiXZi/}i:x ]

- ozhA(Z) [Zx X ]2/ [A}:xz]
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where = [fxliiiixz.] [}i:xliXZE] s A [Bzfxm(l p )]/Za‘ is the

non-centrality parameter associated with the distribution of t,; and hk(l) =

2;
2 2 . _ _ . A

Pr'[[x(mw;l)/x(v)] = (c/v)], with v = n 2. The expression for RQ(BI)

follows from the first diagonal element of the risk matrix result in equation

(5.3.15) of Judge and Bock (1978, p.111). RA(bl z) and RA(bl) are readily

derived, as special cases of the following general result.

Proposition

~

Let B be an estimator of the scalar B, where B ~ N(B+B,s2), and let

R,B) = E|B-B|. Then R (B) = 25¢(-B/5) + 5[1-20(—3/2)], where #(q) =
T -z%/2
I #(z)dz, and §(z) = (e % 2y zm.

-

Proof
B

(]
R, = E|f-g| = J' @-BIp(@E)dE + I(E-mpfé)dé
~co B
where p(8) denotes the (normal) p.d.f. of B.

So,

(-] 0
R,® = [ (a-Bp@)ch + 2[G-pIp(Brch
B

-0

«
B+2 I Bp(B)dB - 28[1-¢(-§/§)].
B8

(<]
Bp(B)dB = J' (z5++B)¢(2)dz,
-B/s

where z = (8-8-B)/s. Then,

I Bp(B)dB = S¢(-B/5)+(B+B) [1—¢(—§/E)],




RA(§) = 2s¢(-B/s)+B [1-@(-5/?)],

where we have used the result J‘ z¢(z)dz = ¢(a).

a

The absolute error risks of bl 2 and b1 then follow immediately as

_ / 2, 2
RA(bl.Z) = 20/ Zn(?xli)(l p°)

Ry = 2o/ £x2 )p(-p/22/(1-p)
i

+ pa'\/ZA/((zx:i)(l-pz))[1-2¢(‘p 22/(1-p%) ]
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4.  Simulation results

Unfor_'tunately. RA(l;l) is not obtainable by the same analytic approach,
so we have derived this function by Monte Carlo simulation with 10,000
replications, using the SHAZAM package (White et al. (1990)). The results we
present below are data dependent, as are those for RQ(EI). However, this
involves no loss of generality as it is well known that for this problem it
makes no difference (qualitatively) whether we focus on coefficient
estimation risk or predictive risk, and the latter is independent of the
regressor values.

The simulation results are based on artificial data with the following

characteristics: n = 42, Ix°, = 1496, Tx>, = 1078, IX,.X..
i 1i i 2i . 121

= 1043, so that

pz = 0.675. We set ¢ = 5%, ¢ = Bl = 1. Then assigning values to A, we can
generate values for Bz from the relationship B; = §57.008A. This, together
with normal random disturbances which are produced by Brent’s (1974)

algorithm, provides the information needed to generate ¥; values for the




simulation experiment. Exact results based on these data can be computed for
RA(bl.Z)' RA(bl) and the quadratic risks. Monte Carlo simulation results
were also produced for these cases to check the accuracy of the simulation.
Graphically, these results were indistinguishable from their counterparts in
Figures 1 and 2.

Those figures illustrate that the well known results relating to the
risks of the PTE and its component estimators under quadratic loss for this
problem are unchanged qualitatively under absolute error loss. Specifically,
there is always a region of the parameter space where the OLS risk is
smallest of the three; a region where the RLS risk is smallest; one where the
PTE has largest risk; but no region where the PTE is risk-preferred to both
of its components simultaneously.

The robustness of these results may reflect the symmetry of the absolute
error loss function. For example, using the asymmetric LINEX loss, Giles and

Giles (1991, 1992) describe situations where PTE’s of o

can risk-dominate
both of its component estimators. This remains a topic for further research,

preferably by analytic methods.

S. Conclusions
This paper extends the literature on pre-test estimation of the

regression model’s coefficients by considering, for the first time, a

non-quadratic loss function as the basis for estimator performance. The

results are tentative, being partly analytic, and partly based on Monte Carlo
simulation. However, the results to date suggest that moving from quadratic
to absolute error loss does not affect the known risk-dominance results in

any qualitative way.
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FIGURE 1

RISKS UNDER QUADRATIC LOSS
TWO-REGRESSOR MODEL

FIGURE 2

RISKS UNDER ABSOLUTE ERROR LOSS
TWO-REGRESSOR MODEL










