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Abstract
The problem of testing for AR(1) disturbances is considered using a model
in which fourth order autocorrelation is also present. The effect of this
mis-specification of the model on the power of some popular AR(1) tests is
shown. Effects at the unit root boundaries of the parameter space are

incorporated into the analysis. The efficiency of OLS estimation in this

model is considered using spectral analysis of the disturbances.
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1. Introduction

Several authors have suggested that time series regressions using
quarterly data could produce residual autocorrelation which has both first
and fourth order components (see Harvey (1990, p.205), for example). This
is entirely consistent with the standard rat;onale for the existence of a
random disturbance term in a regression model. The ppssibility of simple
AR(4) disturbances has been considered as a separate issue by Wallis (1972)
and Vinod (1973) who prﬂposed a fourth order generalisation of the
Durbin-Watson (1950,1951) test, and by King (1984) who constructed the
associated point optimal invariant test. In addition, King (1989)
presented a test designed to detect a simple AR(4) process when it is
already known that AR(1) errors exist.

The aim of this paper is to take a step back from the analisis of King

(1989) and seek the answers to two questions. First, how does the Joint

presence of AR(1) and simple. AR(4) error processes affect the probability
of detecting the AR(1) component? This will be answered be evaluating the
power functions of several popular AR(1) tests under this form of
mis-specification. The second question concerns the estimation efficiency
of OLS relative to a feasible GLS estimator which might be used for final
estimation, depending on the outcome of the AR(1) test. This issue could
be addressed as a pre-testing problem by considering the risk, under some
loss function, of the pre-test estimator and its components. The approach
taken here, however, will focus on the spectral density of the error
process.

The paper is organised in the following way. The next section
introduces the AR(1) tests and discusses some issues associated with

computing their powers. Section 3 presents the results of the numerical




evaluations. This motivates the analysis, in Section 4, of the efficiency

of OLS for the model used, Section 5 offers some concluding comments.

2. Test Power
Consider the standard linear regression model
=XB +u 1)
where y is Tx1l, X is Txk, independent of u and of rank k < T, B is a kx1
parameter vector and u is a Tx1 vector of disturbances. Assuming that the

data are observed quarterly, the following model is considered for u:

“'¢1““'¢4L4’“: =e, t =1,2,...,T (2)

where € - N(O.az) and L 1is the wusual lag operator, such that
ut(1-¢1L) =u - ¢1ut_l. Stationarity of (2) requires that |¢1|’ |¢4| <1

and these conditions will generally be imposed. This process can be seen

as a restricted AR(5) scheme by wrifing (2) as

= ¢1 et 4 t-4 ¢ ¢4 t-s T St . (3

To study the effect of seasonal autoregressive mis-specification, the
power of five tests of HO: ¢1 = 0 vs Ha: ¢1 > 0 will be cor;sidered.
ignoring the possibility that ¢4 is non-zero. The testé used are the
Durbin-Watson (DW) test, King’s (1981) alternative DW test (ADW), the
Berenblut and Webb (1973) tes£ (BW) and two versions of King’s (1985) point
optimal test, which will be denoted S(0.5) and S(0.75) to indicate the
value of ¢1 at which each is most powerful invariant. Both the BW and the
point optimal test are speclalt cases of a more general test due to
Kadiyala (1970). Each of these tests has optimality properties: in
particular regions of the ¢1 space which are well established for correctly

specified models’




The statistic for each test can be written as a ratio of quadratic

forms in u, the general form of which is

_ u’Qu
u’Mu

(4)
where M = Ir - X(X'X)7'%’ and Q is some non-stochastic TxT matrix defining
the individual test statistic.

The exact versions of the' tests reject I-Io if r < r* where r* is the
exact critical value for some 100a% size (« = 0.05 throughout this study).
To compute the exact power of each test the manipulations of Koerts and

Abrahamse (1969) are used to write

T
pr(r<r*|V) = pr{ 2aZ% < o} (5)
_, 33

J=1
where V 1s the true covariance matrix of u (up to a scalar multiple), the
Zj are xf” and independent, and the Aj are the eigenvalues of A(Q-r’M)V.
Several algorithms are available for computing the probabilities in (5)
such as the procedures of Imhof (1961) ‘and Shively, Ansley and Kohn
(1990).2 In this study the probabilities were evaluated using the FORTRAN

version of Davies (1980) algorithm contained in the SHAZAM (White et.al

(1990)) computer package running on a Vax 6340 under VMS 5.5.

To implement the procedure outlined above, the form of V is required.
The covariance matrix used by King (1989) does not truly reflect (2) but
the correct form can be derived from the Yule-Walker equations for this

process? Denoting the autocovariance function by 7, = Ty = cov(utut_ )

"
gives 2
LA PR PR A A
LA AR A AR X AN
T, =0, Y90, - 997,
T, =07, 90, - 99,7,
B LN A XA
= - > 4.
and LA A SR AR X X A for all k > 4




The simultaneous solution of these equations provides the autocovariance
function and ‘subsequent division by 7, gives the following autocorrelation
function, where pk represents the correlation between u and uc-f
= 1
9, (1+676,)/ (1449 )
$2(1+9,)/(144%8,)
= 6, (8340,)/(14¢0)
(9,+0,)/(1+9]8,)
PPy * PPy T B OP ’

4" k-4 1°4 k-5

The scale factor was found by this method to be

2 4
oc(l+¢1¢‘)

IR R

u

It is immediately apparent that these expressions collapse to those for the
well known AR(1) case when ¢E = 0. 7

‘By routinely testing data for unit roots, econometricians explicitly
acknowledge the fact- that many economic time series are non—stétionary.
Also widely accepted, is the virtual inevitability that relevant varlablés
are omitted from many regression models. The clear implication of these
two facts is that we may often encounter non-stationary residuals.
Consequently, it was considered desirable to explore the power properties
of these tests along the unit root boundaries of the stationary parameter
space.  For this problem these boundaries are the closed curve defined by
¢x'¢4 = * 1. The power of each test was computed numerically along these

line segments using a modification of the techniques suggested by Krédmer




and Zeisel (1989). When ¢1 = 1, for example, V = (i’ where

Lt =1(1,1,...,1)’ and MV = 0 for regressions with an intercept. Thus all

the AJ of (5) are zero and the power of the test is undefined. The

limiting power as ¢1 » 1 can, however, be computated by replacing V with a
transformation matrix W such that

W = lim (1-¢1)“(v-w) .
. ¢!-;1

This matrix W can be shown to be a Toeplitz matrix with first column equal

to

VONONBWN~=O

It can also be easily seen by inspection of the autocorrelation function
that V(*1, -1) = Ir’ where the arguments of V are the values of‘¢l, ¢4.
. This means that the power of each test at these points is equal to the true
size of the test. It can further be shown that at all points on the

.

¢4 = -1 boundary, except the endpoints, the power of each test is either
zero or one. This result draws on the findings of Krimer (1985) and Small
(1991) and the proof is omitted here in the interests of brevity.

To conclude this section we consider the seasonal unit root case

defined by ¢4 = 1. From the general form of the autocorrelation function

it can be seen that setting ¢4 = 1 gives:




8, (1+¢2)/(148)
2¢f/(1+¢:)

This pattern repeats indefinitely so that, the individual autocorrelations
must take one of only three values. The rank of V, and the number of
non-zero elgenvalues in (5), is therefore three.

The power of each test was computed under these conditions for the
entire range of data outlined in Section 3 below. ¢1 took values ranging
from zero to 0.9. 1In every cage, each of the three non-zero eigenvalues of

(5) were found to be positive so that test power was always zero.

3. Numerical Results
The well known dependence of the powers of these tests on the
regressor data was allowed for by examining a range of data conditions.

The design matrices used were:

X1 The Iincome and price series from Durbin and Watson’s (1951) spirits

example.

The quarterly Australian .consumers price index commenclﬁg 1959(1) and
the same series lagged one period.

A linear time trend and observations drawn from the Normal (30,4)
distribution.

A linear time trend and a Uniform [0, 10] series.

A linear time trend and 'a lognormal (2.23, 19.58) series.

(az+aT)/V§ and (aa+ar_l)/V§ where a_,...,a_ are the eigenvectors

1 T
corresponding to the elgenvalues of the DW first differencing matrix,

A, arranged in increasing order?




X7 A linear time trend and the logarithm of quarterly registered

unemployed in New Zealand, commencing 1952(2).

Each design matrix also included an intercept. The first six data
sets have been used in several related studies and are discussed by Evans
(1992). X6 1s often referred to as Watson’s X-matrix, and was shown by
Watson (1955) to produce the _most inefficient OLS estimates within the
class of orthogonal matrices. The X7 matrix was chosen for its strong

seasonality, which is an important data characteristic in this study.

Using a sample size of 20, a thorough investigation was conducted

across all tests and design matrices along 20 lines in the ;Sarameter space.
A selection of the resulting power curves is presented in the Figures 1 to
3 to support the general conclusions outlined below, while Table 1 shows
the lowest and highes}. power obtained across. the tests for a variety of
cases. A further more limited, study used a sample size of 60. This
latter work confirmed the findings of previous studies (e.g., King (1985))
that a larger sample increases the power. of each test and reduces the
power, differences between the tests.

The following features were observed with all seven data sets' and each
test and are stated relative to power against pure AR(1) disturbances.
First, the true sizes of the tests are decreased (increased) by the
introduction of a positive (negative) fourth order component. The only
exceptions to this were for S(0.75) and BW when using X6, where slight size
increases were registered as ¢4 » 1. On average, sizes were 29.5% as
¢, » -1 and 0.87% as ¢, ~ 1.

Segond, serious losses of power were found when ¢4 fell in the
interval (0.4,1.0) for all ¢1 > 0. This is not unexpected in view o-f the

size effect noted above when ¢4 > 0. No size corrections were made to the




power functions, since ¢4 # 0 is assumed to be a mis-specification. Table
1 provides power values which show that when ¢1 = 0.4, thg introduction of
a fourth order component with ¢4 = 0.4 reduges power from around 40% to
25%. Increasing ¢‘ to 0.6 further reduces power to around 15% while when
= 0.8 power was generally about 7%. It is apparent from Table 1 that
some data cause large spreads in power across tests. This feature is well
known for X6 (see King (1985), for example).

The third feature of the numerical results is that the power of all
tests is reduced when ¢‘ falls in the interval (-1,-0.4) for all ¢1 > 0.

In this region the power reduction is somewhat less serious, being offset

by increased size.

4. Estimation Efficiency

Tﬁe power effects summarised above suggest that an applied researcher
has a greatly reduced chance of deﬁecting an AR(1) process in the
regression residuals if the true process is given by (2) and ¢4 is
moderately large; Under these circumstances it would be useful to know
someghing of the likely effect of failing to detect autocorrelation on the

efficiency of OLS estimation.

Grenander (1954) and Grenander and Rosenblatt (1957) showed that if

the spectral density funcéion of the true disturbances is flat at all
frequencies where the exogenous variables have spectral weight, then OLS is
asympﬁotically fully efficient. Combining tﬁis with the finding of Granger
(1966) that economic variables typically have their spectral weight at low
frequencies, we follow Engle (1974) in coﬁcluding that OLS will be
efficient if the disturbance spectrum is flat at low frequencies.

The spectrum of the covariance stationary process (2) is given by




£(a)

-1
2 siA 4iA i 2
oy {ane + ge + e ¢1¢‘| }

o2 {2«[(1+¢f)(1+¢f) + 2¢ ¢, (cosSA+cosan)

-1
2¢4cos4k(1+¢f) - 2¢1cos>\(1+¢i)]} .

Using a grid of frequencies in the range -2m = A = 2, f(A) was evaluated
at 42 settings of ¢1, ¢‘ = 0 with 02 arbitrarily set to 2m. A selection of
the resulting spectra is presented in Figure 4. It is immediately apparent
from these graphs that the spectfa corresponding to the individual
components of u reinforce each other at low frequencies. This suggests
that, in general, the relative efficliency of OLS to GLS, which is known to
decline with ¢1 is also decreasing in ¢‘.5 We can also see, however, that
provided ¢‘ * 0,,valu?s of A: 0 = A = w exist for which the spectrum of u
is flat. For design matrices whose spectral weight is concentrated on
these frequencies we can conclude that OLS 1is (asymptotically) fully
efficient.

The cause of these flat regions in f(A) can be seen by considering the
log spectrum of u which has the same turning points as f(A). Aparf from a

constant this is given by

f1
Inf(A) = In —m———— + 1
12,2
[1-¢.e|

1
4122
l

n——"- (6)
|1-¢4e

The spectrum of u is therefore the sum of the spectra of simple AR(1) and
simple AR(4) processes.6 The first term in (6) has a unique maximum (over
the [0,n] interval) at A = O while the second term has maxima at 0, m/2 and

n. Comparing the spectrum of u with that of a simple AR(1) process, ')

we can therefore conclude that f(A) > f1(A) when A e (0, n/2 , w) and the




integration constraint then requires that the inequality be reversed for

some other A between O and =.

5. Conclusion

This paper has considered the problem of detecting first order serial
correlation when a fourth order component is also present. It has been
shown that the power of several popular tests for AR(1) errors is
considerably reduced by positive fourth order autocorrelation. It is
suggested that this also reduces the chances of an applied. researcher
either adopting a suitable alternative estimator to OLS or investigating
the residuals further to discover the true autocorrelation process. The
possible consequences of this (lack of) action were revealed by a study of
the disturbance spectrum, which showed that the relative efficiency of
OLS is likely to be lower when u follows a Jjoint first and fourth order

autoregressive scheme rather than either of these as a simple process.
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Footnotes
Helpful comments from David Giles, Judith Giles, Howard Doran and
Philip Franses are gratefully acknowledged. The author 1is solely
responsible for any errors.

For a good discussion of these, and related, issues see King (1987).

A more general algorithm due to Lieberman (1992) uses a saddlepoint

expansion to evaluate the p.d.f. of (4).

The following autocorrelation function was also derived independently

by Wu (1991).
A is a tri-diagonal (TxT) matrix with (1,1) and (T,T) elements as
unity, 2 elswhere on the leading diagonal and ‘-1 for the leading

off-diagonal elements.

An obvious exception is when the columns of X are linear combinations

of the eligenvectors of V (Anderson (1948)).

I am grateful to Howard Doran for pointing this out.
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APPENDIX
Table 1
Power Range Across Tests

Selected Values
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Figure 1a
Spirits Data; T = 20
Phi4 = -0.8

0

-1 0.5

DWO Is DW Test When Phi4 = 0

Figure 1b
Spirits Data; T = 20
Phi4 = 0.8

$(0.5)

$(0.75)

0
-1

DWO Is DW Test When Phi4 = 0




Figure 2a
Unemployed Data ; T=20
Phi4 = 0.6

Figure 2b
Unemployed Data ; T=20
- Phi4 = 0.8




Figure 3a
Normal Data ; T=20
Phi4 = -1

Figure 3b
Spirits Data ; T=20
Phit = 0.8
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Figure 4a
Spectral Density of u
Phi1=0.6
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Figure 4b
Spectral Density of u
Phi4=0.6

0.1

0.01 ,
0 : 0.4

Note Logarithmic Density Scale Frequency
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the facts and accuracy of the data presented. Responsibility for the application of material
to specific cases, however, lies with any user of the paper and no responsibility in such
cases will be attributed to the author or to the University of Canterbury.










