TESTING AND ESTIMATION WITH SEASONAL AUTOREGRESSIVE MIS-SPECIFICATION

John P. Small

Discussion Paper

No. 9208
TESTING AND ESTIMATION WITH SEASONAL AUTOREGRESSIVE MIS-SPECIFICATION

John P. Small
Abstract

The problem of testing for AR(1) disturbances is considered using a model in which fourth order autocorrelation is also present. The effect of this mis-specification of the model on the power of some popular AR(1) tests is shown. Effects at the unit root boundaries of the parameter space are incorporated into the analysis. The efficiency of OLS estimation in this model is considered using spectral analysis of the disturbances.

Address for Correspondence: Department of Economics, University of Canterbury, Private Bag 4800, Christchurch, New Zealand, 8001.
1. **Introduction**

Several authors have suggested that time series regressions using quarterly data could produce residual autocorrelation which has both first and fourth order components (see Harvey (1990, p.205), for example). This is entirely consistent with the standard rationale for the existence of a random disturbance term in a regression model. The possibility of simple AR(4) disturbances has been considered as a separate issue by Wallis (1972) and Vinod (1973) who proposed a fourth order generalisation of the Durbin-Watson (1950,1951) test, and by King (1984) who constructed the associated point optimal invariant test. In addition, King (1989) presented a test designed to detect a simple AR(4) process when it is already known that AR(1) errors exist.

The aim of this paper is to take a step back from the analysis of King (1989) and seek the answers to two questions. First, how does the joint presence of AR(1) and simple AR(4) error processes affect the probability of detecting the AR(1) component? This will be answered by evaluating the power functions of several popular AR(1) tests under this form of mis-specification. The second question concerns the estimation efficiency of OLS relative to a feasible GLS estimator which might be used for final estimation, depending on the outcome of the AR(1) test. This issue could be addressed as a pre-testing problem by considering the risk, under some loss function, of the pre-test estimator and its components. The approach taken here, however, will focus on the spectral density of the error process.

The paper is organised in the following way. The next section introduces the AR(1) tests and discusses some issues associated with computing their powers. Section 3 presents the results of the numerical
evaluations. This motivates the analysis, in Section 4, of the efficiency of OLS for the model used. Section 5 offers some concluding comments.

2. Test Power

Consider the standard linear regression model

\[y = X\beta + u \]

(1)

where \(y \) is \(T \times 1 \), \(X \) is \(T \times k \), independent of \(u \) and of rank \(k < T \), \(\beta \) is a \(k \times 1 \) parameter vector and \(u \) is a \(T \times 1 \) vector of disturbances. Assuming that the data are observed quarterly, the following model is considered for \(u \):

\[(1-\phi_1 L)(1-\phi_4 L^4)u_t = c_t \]

(2)

where \(c_t \sim N(0, \sigma^2) \) and \(L \) is the usual lag operator, such that

\[u_t (1-\phi_1 L) = u_t - \phi_1 u_{t-1}. \]

Stationarity of (2) requires that \(|\phi_1|, |\phi_4| < 1 \) and these conditions will generally be imposed. This process can be seen as a restricted AR(5) scheme by writing (2) as

\[u_t = \phi_1 u_{t-1} + \phi_4 u_{t-4} - \phi_1 \phi_4 u_{t-5} + c_t. \]

(3)

To study the effect of seasonal autoregressive mis-specification, the power of five tests of \(H_0: \phi_1 = 0 \) vs \(H_a: \phi_1 > 0 \) will be considered, ignoring the possibility that \(\phi_4 \) is non-zero. The tests used are the Durbin-Watson (DW) test, King’s (1981) alternative DW test (ADW), the Berenblut and Webb (1973) test (BW) and two versions of King’s (1985) point optimal test, which will be denoted \(S(0.5) \) and \(S(0.75) \) to indicate the value of \(\phi_1 \) at which each is most powerful invariant. Both the BW and the point optimal test are special cases of a more general test due to Kadiyala (1970). Each of these tests has optimality properties in particular regions of the \(\phi_1 \) space which are well established for correctly specified models.¹
The statistic for each test can be written as a ratio of quadratic forms in \(u \), the general form of which is

\[
 r = \frac{u'Qu}{u'Mu}
\]

where \(M = I_T - X(X'X)^{-1}X' \) and \(Q \) is some non-stochastic \(T \times T \) matrix defining the individual test statistic.

The exact versions of the tests reject \(H_0 \) if \(r < r^* \) where \(r^* \) is the exact critical value for some 100\(\alpha \)% size (\(\alpha = 0.05 \) throughout this study). To compute the exact power of each test the manipulations of Koerts and Abrahamse (1969) are used to write

\[
 \text{pr}(r<r^*|V) = \text{pr}\left\{ \sum_{j=1}^{T} \lambda_j Z_j^2 < 0 \right\}
\]

where \(V \) is the true covariance matrix of \(u \) (up to a scalar multiple), the \(Z_j^2 \) are \(\chi^2_{(1)} \) and independent, and the \(\lambda_j \) are the eigenvalues of \((Q-r^*M)V\). Several algorithms are available for computing the probabilities in (5) such as the procedures of Imhof (1961) and Shively, Ansley and Kohn (1990). In this study the probabilities were evaluated using the FORTRAN version of Davies (1980) algorithm contained in the SHAZAM (White et al. (1990)) computer package running on a Vax 6340 under VMS 5.5.

To implement the procedure outlined above, the form of \(V \) is required. The covariance matrix used by King (1989) does not truly reflect (2) but the correct form can be derived from the Yule-Walker equations for this process. Denoting the autocovariance function by \(\gamma_k = \gamma_{-k} = \text{cov}(u_t u_{t-k}) \) gives

\[
\begin{align*}
 \gamma_0 &= \phi_1 \gamma_1 + \phi_4 \gamma_4 - \phi_1 \phi_4 \gamma_5 + \sigma_e^2 \\
 \gamma_1 &= \phi_1 \gamma_0 + \phi_4 \gamma_3 - \phi_1 \phi_4 \gamma_4 \\
 \gamma_2 &= \phi_1 \gamma_1 + \phi_4 \gamma_2 - \phi_1 \phi_4 \gamma_3 \\
 \gamma_3 &= \phi_1 \gamma_2 + \phi_4 \gamma_1 - \phi_1 \phi_4 \gamma_2 \\
 \gamma_4 &= \phi_1 \gamma_3 + \phi_4 \gamma_0 - \phi_1 \phi_4 \gamma_1 \\
\end{align*}
\]

and

\[
\gamma_k = \phi_1 \gamma_{k-1} + \phi_4 \gamma_{k-4} - \phi_1 \phi_4 \gamma_{k-5} \quad \text{for all } k > 4.
\]
The simultaneous solution of these equations provides the autocovariance function and subsequent division by γ_0 gives the following autocorrelation function, where ρ_k represents the correlation between u_t and u_{t-k}:

\[
\begin{align*}
\rho_0 &= 1 \\
\rho_1 &= \phi_1 (1+\phi_4^2)/(1+\phi_1^4) \\
\rho_2 &= \phi_1^2 (1+\phi_4)/(1+\phi_1^4) \\
\rho_3 &= \phi_1 (\phi_1^2+\phi_4)/(1+\phi_1^4) \\
\rho_4 &= (\phi_1^4+\phi_4)/(1+\phi_1^4) \\
\rho_k &= \phi_1 \rho_{k-1} + \phi_4 \rho_{k-4} - \phi_1^4 \rho_{k-5}, \quad \text{for } k > 4.
\end{align*}
\]

The scale factor was found by this method to be

\[
\gamma_0 = \frac{\sigma_u^2}{\sigma_c^2} = \frac{(1+\phi_1^4)/(1+\phi_1^4)}{(1-\phi_1^2)(1+\phi_1^4-\phi_1^4-\phi_4^2)}.
\]

It is immediately apparent that these expressions collapse to those for the well known AR(1) case when $\phi_4 = 0$.

By routinely testing data for unit roots, econometricians explicitly acknowledge the fact that many economic time series are non-stationary. Also widely accepted, is the virtual inevitability that relevant variables are omitted from many regression models. The clear implication of these two facts is that we may often encounter non-stationary residuals. Consequently, it was considered desirable to explore the power properties of these tests along the unit root boundaries of the stationary parameter space. For this problem these boundaries are the closed curve defined by $\phi_1, \phi_4 = \pm 1$. The power of each test was computed numerically along these line segments using a modification of the techniques suggested by Krämer.
and Zeisel (1989). When $\phi_1 = 1$, for example, $V = LL'$ where $l = (1,1,\ldots,1)'$ and $MV = 0$ for regressions with an intercept. Thus all the λ_j of (5) are zero and the power of the test is undefined. The limiting power as $\phi_1 \to 1$ can, however, be computed by replacing V with a transformation matrix W such that

$$W = \lim_{\phi_1 \to 1} (1-\phi_1)^{-1}(V-ll') .$$

This matrix W can be shown to be a Toeplitz matrix with first column equal to

$$W_1 = \frac{\phi-1}{\phi+1} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 + 2\phi \\ 6 + 4\phi^4 \\ 7 + 6\phi^4 \\ 8 + 8\phi^4 \\ 9 + 10\phi^4 + 2\phi^2 \\ \vdots \end{bmatrix} .$$

It can also be easily seen by inspection of the autocorrelation function that $V(\pm1, -1) = I_T$, where the arguments of V are the values of ϕ_1, ϕ_4. This means that the power of each test at these points is equal to the true size of the test. It can further be shown that at all points on the $\phi_4 = -1$ boundary, except the endpoints, the power of each test is either zero or one. This result draws on the findings of Krämer (1985) and Small (1991) and the proof is omitted here in the interests of brevity.

To conclude this section we consider the seasonal unit root case defined by $\phi_4 = 1$. From the general form of the autocorrelation function it can be seen that setting $\phi_4 = 1$ gives:
\[
\rho_0 = 1 \\
\rho_1 = \frac{\phi_1 (1+\phi_1^2)}{(1+\phi_1^4)} \\
\rho_2 = \frac{2\phi_1^2}{(1+\phi_1^4)} \\
\rho_3 = \rho_1 \\
\rho_4 = 1.
\]

This pattern repeats indefinitely so that, the individual autocorrelations must take one of only three values. The rank of \(V \), and the number of non-zero eigenvalues in \((5)\), is therefore three.

The power of each test was computed under these conditions for the entire range of data outlined in Section 3 below. \(\phi_1 \) took values ranging from zero to 0.9. In every case, each of the three non-zero eigenvalues of \((5)\) were found to be positive so that test power was always zero.

3. Numerical Results

The well known dependence of the powers of these tests on the regressor data was allowed for by examining a range of data conditions. The design matrices used were:

- **X1** The income and price series from Durbin and Watson's (1951) spirits example.
- **X2** The quarterly Australian consumers price index commencing 1959(1) and the same series lagged one period.
- **X3** A linear time trend and observations drawn from the Normal \((30,4)\) distribution.
- **X4** A linear time trend and a Uniform \([0,10]\) series.
- **X5** A linear time trend and a lognormal \((2.23, 19.58)\) series.
- **X6** \((a_2+a_1)/\sqrt{2}\) and \((a_3+a_{T-1})/\sqrt{2}\) where \(a_1,\ldots,a_T\) are the eigenvectors corresponding to the eigenvalues of the DW first differencing matrix, \(A\), arranged in increasing order.
A linear time trend and the logarithm of quarterly registered unemployed in New Zealand, commencing 1952(2).

Each design matrix also included an intercept. The first six data sets have been used in several related studies and are discussed by Evans (1992). X6 is often referred to as Watson's X-matrix, and was shown by Watson (1955) to produce the most inefficient OLS estimates within the class of orthogonal matrices. The X7 matrix was chosen for its strong seasonality, which is an important data characteristic in this study.

Using a sample size of 20, a thorough investigation was conducted across all tests and design matrices along 20 lines in the parameter space. A selection of the resulting power curves is presented in the Figures 1 to 3 to support the general conclusions outlined below, while Table 1 shows the lowest and highest power obtained across the tests for a variety of cases. A further more limited, study used a sample size of 60. This latter work confirmed the findings of previous studies (e.g., King (1985)) that a larger sample increases the power of each test and reduces the power differences between the tests.

The following features were observed with all seven data sets and each test and are stated relative to power against pure AR(1) disturbances. First, the true sizes of the tests are decreased (increased) by the introduction of a positive (negative) fourth order component. The only exceptions to this were for S(0.75) and BW when using X6, where slight size increases were registered as $\phi_4 > 1$. On average, sizes were 29.5% as $\phi_4 < -1$ and 0.87% as $\phi_4 > 1$.

Second, serious losses of power were found when ϕ_4 fell in the interval (0.4,1.0) for all $\phi_1 > 0$. This is not unexpected in view of the size effect noted above when $\phi_4 > 0$. No size corrections were made to the
power functions, since $\phi_4 \neq 0$ is assumed to be a mis-specification. Table 1 provides power values which show that when $\phi_1 = 0.4$, the introduction of a fourth order component with $\phi_4 = 0.4$ reduces power from around 40% to 25%. Increasing ϕ_4 to 0.6 further reduces power to around 15% while when $\phi_4 = 0.8$ power was generally about 7%. It is apparent from Table 1 that some data cause large spreads in power across tests. This feature is well known for X6 (see King (1985), for example).

The third feature of the numerical results is that the power of all tests is reduced when ϕ_4 falls in the interval (-1, -0.4) for all $\phi_1 > 0$. In this region the power reduction is somewhat less serious, being offset by increased size.

4. Estimation Efficiency

The power effects summarised above suggest that an applied researcher has a greatly reduced chance of detecting an AR(1) process in the regression residuals if the true process is given by (2) and ϕ_4 is moderately large. Under these circumstances it would be useful to know something of the likely effect of failing to detect autocorrelation on the efficiency of OLS estimation.

Grenander (1954) and Grenander and Rosenblatt (1957) showed that if the spectral density function of the true disturbances is flat at all frequencies where the exogenous variables have spectral weight, then OLS is asymptotically fully efficient. Combining this with the finding of Granger (1966) that economic variables typically have their spectral weight at low frequencies, we follow Engle (1974) in concluding that OLS will be efficient if the disturbance spectrum is flat at low frequencies.

The spectrum of the covariance stationary process (2) is given by
Using a grid of frequencies in the range $-2\pi \leq \lambda \leq 2\pi$, $f(\lambda)$ was evaluated at 42 settings of $\phi_1, \phi_4 \neq 0$ with σ_c^2 arbitrarily set to 2π. A selection of the resulting spectra is presented in Figure 4. It is immediately apparent from these graphs that the spectra corresponding to the individual components of u reinforce each other at low frequencies. This suggests that, in general, the relative efficiency of OLS to GLS, which is known to decline with ϕ_1 is also decreasing in ϕ_4. We can also see, however, that provided $\phi_4 \neq 0$, values of λ: $0 \leq \lambda \leq \pi$ exist for which the spectrum of u is flat. For design matrices whose spectral weight is concentrated on these frequencies we can conclude that OLS is (asymptotically) fully efficient.

The cause of these flat regions in $f(\lambda)$ can be seen by considering the log spectrum of u which has the same turning points as $f(\lambda)$. Apart from a constant this is given by

$$\ln f(\lambda) = \ln \frac{1}{|1-\phi_1 e^{i\lambda}|^2} + \ln \frac{1}{|1-\phi_4 e^{4i\lambda}|^2} .$$

(6)

The spectrum of u is therefore the sum of the spectra of simple AR(1) and simple AR(4) processes. The first term in (6) has a unique maximum (over the $[0,\pi]$ interval) at $\lambda = 0$ while the second term has maxima at 0, $\pi/2$ and π. Comparing the spectrum of u with that of a simple AR(1) process, $f^1(\lambda)$ we can therefore conclude that $f(\lambda) > f^1(\lambda)$ when $\lambda \in (0, \pi/2 , \pi)$ and the
integration constraint then requires that the inequality be reversed for some other \(\lambda \) between 0 and \(\pi \).

5. Conclusion

This paper has considered the problem of detecting first order serial correlation when a fourth order component is also present. It has been shown that the power of several popular tests for AR(1) errors is considerably reduced by positive fourth order autocorrelation. It is suggested that this also reduces the chances of an applied researcher either adopting a suitable alternative estimator to OLS or investigating the residuals further to discover the true autocorrelation process. The possible consequences of this (lack of) action were revealed by a study of the disturbance spectrum, which showed that the relative efficiency of OLS is likely to be lower when \(u \) follows a joint first and fourth order autoregressive scheme rather than either of these as a simple process.
Footnotes

• Helpful comments from David Giles, Judith Giles, Howard Doran and Philip Franses are gratefully acknowledged. The author is solely responsible for any errors.

(1) For a good discussion of these, and related, issues see King (1987).

(2) A more general algorithm due to Lieberman (1992) uses a saddlepoint expansion to evaluate the p.d.f. of (4).

(3) The following autocorrelation function was also derived independently by Wu (1991).

(4) A is a tri-diagonal (T×T) matrix with (1,1) and (T,T) elements as unity, 2 elsewhere on the leading diagonal and -1 for the leading off-diagonal elements.

(5) An obvious exception is when the columns of X are linear combinations of the eigenvectors of V (Anderson (1948)).

(6) I am grateful to Howard Doran for pointing this out.
References

Granger, C.W., 1966, The typical spectral shape of an economic variable, Econometrica 34, 150.

Imhof, P.J., 1961, Computing the distribution of quadratic forms in normal variables, Biometrika 48, 419-426.

Table 1

Power Range Across Tests

Selected Values

<table>
<thead>
<tr>
<th>Data</th>
<th>ϕ_4</th>
<th>$\phi_1 = 0.4$</th>
<th>$\phi_1 = 0.6$</th>
<th>$\phi_1 = 0.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0</td>
<td>.40 .41 .65 .66</td>
<td>.81 .82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>.25 .27 .50 .52</td>
<td>.72 .75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.6</td>
<td>.15 .18 .37 .41</td>
<td>.62 .66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>.06 .09 .19 .24</td>
<td>.43 .49</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>0</td>
<td>.40 .40 .64 .65</td>
<td>.80 .81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>.23 .23 .46 .47</td>
<td>.67 .69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.6</td>
<td>.14 .14 .33 .34</td>
<td>.56 .58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>.05 .06 .16 .17</td>
<td>.38 .39</td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>0</td>
<td>.40 .40 .65 .66</td>
<td>.81 .83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>.24 .25 .49 .50</td>
<td>.71 .73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.6</td>
<td>.14 .15 .35 .36</td>
<td>.60 .62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>.05 .06 .17 .18</td>
<td>.39 .41</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>0</td>
<td>.40 .40 .64 .66</td>
<td>.81 .83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>.24 .25 .49 .50</td>
<td>.71 .73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.6</td>
<td>.15 .16 .36 .37</td>
<td>.60 .62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>.06 .06 .18 .19</td>
<td>.39 .41</td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>0</td>
<td>.38 .39 .61 .64</td>
<td>.77 .82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>.21 .22 .43 .46</td>
<td>.64 .69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.6</td>
<td>.12 .13 .30 .32</td>
<td>.53 .58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>.04 .05 .14 .16</td>
<td>.33 .37</td>
<td></td>
</tr>
<tr>
<td>X6</td>
<td>0</td>
<td>.30 .34 .42 .60</td>
<td>.44 .83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>.13 .26 .22 .52</td>
<td>.24 .79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.6</td>
<td>.06 .22 .12 .46</td>
<td>.14 .75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>.02 .15 .04 .32</td>
<td>.06 .63</td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td>0</td>
<td>.38 .38 .60 .62</td>
<td>.75 .79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>.21 .24 .42 .46</td>
<td>.62 .68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.6</td>
<td>.13 .17 .29 .35</td>
<td>.50 .58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.8</td>
<td>.05 .12 .15 .23</td>
<td>.32 .42</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1a
Spirits Data; $T = 20$
$\Phi I_4 = -0.8$

Figure 1b
Spirits Data; $T = 20$
$\Phi I_4 = 0.8$

DWO is DW Test When $\Phi I_4 = 0$
Figure 2a
Unemployed Data; T=20
\[\Phi_4 = 0.6 \]

Figure 2b
Unemployed Data; T=20
\[\Phi_4 = 0.8 \]
Figure 3a
Normal Data; T=20
Phi4 = -1

Figure 3b
Spirits Data; T=20
Phi1 = 0.8
Figure 4a
Spectral Density of u
Phi1 = 0.6

Figure 4b
Spectral Density of u
Phi4 = 0.6

Note Logarithmic Density Scale
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>Workers' Compensation Rates and the Demand for Apprentices and Non-Apprentices in Victoria</td>
<td>Pasquale M. Sgro and David E. A. Giles.</td>
</tr>
<tr>
<td>8802</td>
<td>The Adventures of Sherlock Holmes, the 48% Solution</td>
<td>Michael Carter.</td>
</tr>
<tr>
<td>8803</td>
<td>The Exact Distribution of a Simple Pre-Test Estimator</td>
<td>David E. A. Giles.</td>
</tr>
<tr>
<td>8804</td>
<td>Pre-testing for Linear Restrictions in a Regression Model With Student-t Errors</td>
<td>Judith A. Clarke.</td>
</tr>
<tr>
<td>8805</td>
<td>Divisia Monetary Aggregates and the Real User Cost of Money</td>
<td>Ewen McCann and David Giles.</td>
</tr>
<tr>
<td>8806</td>
<td>The Management of New Zealand's Lobster Fishery</td>
<td>Alan Woodfield and Pim Borren.</td>
</tr>
<tr>
<td>8808</td>
<td>A Note on Sen's Normalization Axiom for a Poverty Measure</td>
<td>Prasanta K. Pattanaik and Manimay Sen.</td>
</tr>
<tr>
<td>8809</td>
<td>Budget Deficits and Asset Sales</td>
<td>Ewen McCann.</td>
</tr>
<tr>
<td>8901</td>
<td>Unorganized Money Markets and 'Unproductive' Assets</td>
<td>D. O. Owen and Otton Solis-Fallas.</td>
</tr>
<tr>
<td>8903</td>
<td>Coefficient Sign Changes When Restricting Regression Models</td>
<td>David E. A. Giles.</td>
</tr>
<tr>
<td>8904</td>
<td>Economies of Scale in the New Zealand Electricity Distribution Industry</td>
<td>David E. A. Giles and Nicolas S. Wyatt.</td>
</tr>
<tr>
<td>8905</td>
<td>Some Recent Developments in Econometrics: Lessons for Applied Economists</td>
<td>David E. A. Giles.</td>
</tr>
<tr>
<td>8909</td>
<td>Pre-testing for Linear Restrictions in a Regression Model</td>
<td>Judith A. Giles.</td>
</tr>
<tr>
<td>9001</td>
<td>The Durbin-Watson Test for Autocorrelation</td>
<td>Kenneth J. White.</td>
</tr>
<tr>
<td>9002</td>
<td>Determinants of Aggregate Demand for Cigarettes</td>
<td>Robin Harrison and Jane Chetwyd.</td>
</tr>
<tr>
<td>9003</td>
<td>Unemployment Duration and the Measurement of Unemployment</td>
<td>Manimay Sengupta.</td>
</tr>
<tr>
<td>9004</td>
<td>Estimation of the Error Variance After a Preliminary-Test of Homogeneity in a Regression Model with Spherically Symmetric Disturbances</td>
<td>Judith A. Giles.</td>
</tr>
<tr>
<td>9005</td>
<td>An Expository Note on the Composite Commodity Theorem</td>
<td>Michael Carter.</td>
</tr>
<tr>
<td>9006</td>
<td>The Optimal Size of a Preliminary Test of Linear Restrictions in a Mis-specified Regression Model</td>
<td>David E. A. Giles, Offer Lieberman, and Judith A. Giles.</td>
</tr>
<tr>
<td>9007</td>
<td>Inflation, Unemployment and Macroeconomic Policy in New Zealand: A Public Choice Analysis</td>
<td>David J. Smyth and Alan E. Woodfield.</td>
</tr>
<tr>
<td>9008</td>
<td>Inflation — Unemployment Choices in New Zealand and the Median Voter Theorem</td>
<td>David J. Smyth and Alan E. Woodfield.</td>
</tr>
<tr>
<td>9009</td>
<td>The Power of the Durbin-Watson Test when the Errors are Heteroscedastic</td>
<td>David E. A. Giles and John P. Small.</td>
</tr>
<tr>
<td>9010</td>
<td>The Exact Distribution of a Least Squares Regression Coefficient Estimator After a Preliminary t-Test</td>
<td>David E. A. Giles and Virendra K. Srivastava.</td>
</tr>
<tr>
<td>9011</td>
<td>Testing Linear Restrictions on Coefficients in a Linear Regression Model with Proxy variables and Spherically Symmetric Disturbances</td>
<td>Kazuhiro Ohtani and Judith A. Giles.</td>
</tr>
</tbody>
</table>

(Continued on next page)
Some Consequences of Applying the Goldfeld-Quandt Test to Mis-Specified Regression Models, by David E. A. Giles and Guy N. Saxton.

Pre-testing in a Mis-specified Regression Model, by Judith A. Giles.

Two Results in Balanced-Growth Educational Policy, by Alan E. Woodfield.

Bounds on the Effect of Heteroscedasticity on the Chow Test for Structural Change, by David Giles and Offer Lieberman.

The Optimal Size of a Preliminary Test for Linear Restrictions when Estimating the Regression Scale Parameter, by Judith A. Giles and Offer Lieberman.

Some Properties of the Durbin-Watson Test After a Preliminary t-Test, by David Giles and Offer Lieberman.

Preliminary-Test Estimation of the Regression Scale Parameter when the Loss Function is Asymmetric, by Judith A. Giles and David E. A. Giles.

On an Index of Poverty, by Manimay Sengupta and Prasanta K. Pattanaik.

Cartels May Be Good For You, by Michael Carter and Julian Wright.

Lp-Norm Consistencies of Nonparametric Estimates of Regression, Heteroskedasticity and Variance of Regression Estimate when Distribution of Regression is Known, by Radhey S. Singh.

Optimal Telecommunications Tariffs and the CCITT, by Michael Carter and Julian Wright.

The Exact Power of Some Autocorrelation Tests When the Disturbances are Heteroscedastic, by John P. Small.

Some Consequences of Using the Chow Test in the Context of Autocorrelated Disturbances, by David Giles and Murray Scott.

The Exact Distribution of R^2 when the Disturbances are Autocorrelated, by Mark L. Carrodus and David E. A. Giles.

Optimal Critical Values of a Preliminary Test for Linear Restrictions in a Regression Model with Multivariate Student-t Disturbances, by Jason K. Wong and Judith A. Giles.

Pre-Test Estimation in a Regression Model with a Misspecified Error Covariance Matrix, by K. V. Albertson.

Estimation of the Scale Parameter After a Pre-test for Homogeneity in a Mis-specified Regression Model, by Judith A. Giles.

Testing for Arch-Garch Errors in a Mis-specified Regression, by David E. A. Giles, Judith A. Giles, and Jason K. Wong.

Quasi Rational Consumer Demand — Some Positive and Normative Surprises, by John Fountain.

Pre-test Estimation and Testing in Econometrics: Recent Developments, by Judith A. Giles and David E. A. Giles.

Optimal Capital Requirements for Admission of Business Immigrants in the Long Run, by K-L. Shea and A. E. Woodfield.

The Sampling Performance of Inequality Restricted and Pre-Test Estimators in a Mis-specified Linear Model, by Alan T. K. Wan.

Testing and Estimation with Seasonal Autoregressive Mis-specification, by John P. Small.

* Copies of these Discussion Papers may be obtained for $4 (including postage, price changes occasionally) each by writing to the Secretary, Department of Economics, University of Canterbury, Christchurch, New Zealand. A list of the Discussion Papers prior to 1988 is available on request.