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Abstract

The problem of testing for AR(1) disturbances is considered using a model

in which fourth order autocorrelation is also present. The effect of this

mis-specification of the model on the power of some popular AR(1) tests is

shown. Effects at the unit root boundaries of the parameter space are

incorporated into the analysis. The efficiency of OLS estimation in this

model is considered using spectral analysis of the disturbances.

Address for .Correspondence: Department of Economics, University of

Canterbury, Private Bag 4800, Christchurch, New Zealand, 8001.



1. Introduction

Several authors have suggested that time series regressions using

quarterly data could produce residual autocorrelation which has both first

and fourth order components (see Harvey (1990, p.205), for example). This

is entirely consistent with the standard rationale for the existence of a

random disturbance term in a regression model. The possibility of simple

AR(4) disturbances has been considered as a separate issue by Wallis (1972)

and Vinod (1973) who proposed a fourth order generalisation of the

Durbin-Watson (1950,1951) test, and by King (1984) who constructed the

associated point optimal invariant test. In addition, King (1989)

presented a test designed to detect a simple AR(4) process when it is

already known that AR(1) errors exist.

The aim of this paper is to take a step back from the analysis of King

(1989) and seek the answers to two questions. First, how does the joint

presence of AR(1) and simple AR(4) error processes affect the probability

of detecting the AR(1) component? This will be answered be evaluating the

power functions of several popular AR(1) tests under this form of

mis-specification. The second question concerns the estimation efficiency

of OLS relative to a feasible GLS estimator which might be used for final

estimation, depending on the outcome of the AR(1) test. This issue could

be addressed as a pre-testing problem by considering the risk, under some

loss function, of the pre-test estimator and its components. The approach

taken here, however, will focus on the spectral density of the error

process.

The paper is organised in the following way. The next section

introduces the AR(1) tests and discusses some issues associated with

computing their powers. Section 3 presents the results of the numerical
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evaluations. This motivates the analysis, in Section 4, of the efficiency

of OLS for the model used, Section 5 offers some concluding comments.

2. Test Power

Consider the standard linear regression model

y = xg + u (1)

where y is Txl, X is Txk, independent of u and of rank k < T, g is a kxl

parameter vector and u is a Txl vector of disturbances. Assuming that the

data are observed quarterly, the following model is considered for u:

461L 1- 004 ut = et t = 1,2,...,T (2)

where e
t 

N(0,m
2
) and L is the usual lag operator, such that

u(1-01L) = ut - Stationarity of (2) requires that 1011, 1041 < 1

and these conditions will generally be imposed. This process can be seen

as a restricted AR(5) scheme by writing (2) as

u=Ou +Ou -u 0
1
0
4t-5 

+ e
t 

(3)
t it-1 4t-4

To study the effect of seasonal autoregressive mis-specification, the

power of five tests of Ho: 01 = 0 vs H.: 01 > 0 will be considered,

ignoring the possibility that 04 is non-zero. The tests used are the

Durbin-Watson (DW) test, King's (1981) alternative DW test (ADW), the

Berenblut and Webb (1973) test (BW) and two versions of King's (1985) point

optimal test, which will be denoted S(0.5) and S(0.75) to indicate the

value of 01 at which each is most powerful invariant. Both the BW and the

point optimal test are special cases of a more general test due to

Kadiyala (1970). Each of these tests has optimality properties. In

particular regions of the 01 space which are well established for correctly

specified models!
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The statistic for each test can be written as a ratio of quadratic

forms in u, the general form of which is

u'Qu
r = (4)u' Mu

where M = I - X(X'X)-1X1 and Q is some non-stochastic TxT matrix defining

the individual test statistic.

The exact versions of the tests reject Ho if r < r* where r* is the

exact critical value for some 100a% size (a = 0.05 throughout this study).

To compute the exact power of each test the manipulations of Koerts and

Abrahamse (1969) are used to write

pr(r<r*IV) = prf E AZ
2
 < 0 (5)

J=1 j

where V is the true covariance matrix of u (up to a scalar multiple), the

Z
2 

are
2 

1) 
and independent, and the A are the eigenvalues of (Q-r*M)V.(

Several algorithms are available for computing the probabilities in (5)

such as the procedures• of Imhof (1961) and Shively, Ansley and Kohn

(1990).2 In this study the probabilities were evaluated using the FORTRAN

version of Davies (1980) algorithm contained in the SHAZAM (White et.al 

(1990)) computer package running on a Vox 6340 under VMS 5.5.

To implement the procedure outlined above, the form of V is required.

The covariance matrix used by King (1989) does not truly reflect (2) but

the correct form can be derived from the Yule-Walker equations for this

process? Denoting the autocovariance function by 71, = 7_k = cov(utut_k)

gives

and

2r = 0 7 T
- 4'195475 

+ 

Vi = 01r0 + (A473 4YA414

r
2 
= 15

1
r + (P472 — (A14)413

13 = 95172 + 15471. ibi°412

14 = 4'113 4. 4)410 (P1(1)411

= 95
1
7
k-1 

+ 
954rk-4 

- 45
1
0
4
7k-5
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The simultaneous solution of these equations provides the autocovariance

function and "subsequent division by 70 gives the following autocorrelation

function, where pk represents the correlation between ut and ut_k:

= 1

= 1 (1+ 4
020 )/(1+ 4

0495 )
1 1 

2 4
p
2 

= 0 (1+
4
0 )/(1+0 

4
0 )

1 1 

= C51 (‘4+C64 1+C641C154

P4 = ((4-1164)/(1414°4)

P
k = 1P - 4P P 14Pk-54) k1 4k-4

The scale factor was found by this method to be

T2(1+040 )

2  C 14= T =
u (1_,2)(14.0403_040 _02)

1 4 1 4 4

for k > 4 .

It is immediately apparent that these expressions collapse to those for the

well known AR(1) case when 04 = 0.

'By routinely testing data for unit roots, econometricians explicitly

acknowledge the fact- that many economic time series are non-stationary.

Also widely accepted, is the virtual inevitability that relevant variables

are omitted from many regression models. The clear implication of these

two facts is that we may often encounter non-stationary residuals.

Consequently, it was considered desirable to explore the power properties

of these tests along the unit root boundaries of the stationary parameter

space. For this problem these boundaries are the closed curve defined by

01,04 = ± 1. The power of each test was computed numerically along these

line segments using a modification of the techniques suggested by Kramer
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and Zeisel (1989). When 01 = 1, for example, V = LL' where

L = (1,1,...,1)' and MV = 0 for regressions with an intercept. Thus all

the X of (5) are zero and the power of the test is undefined. The

limiting power as 01 . 1 can, however, be computated by replacing V with a

transformation matrix W such that

W = lim (1-01)-1(V-LC) .
01.1

This matrix W can be shown to be a Toeplitz matrix with first column equal

to

0 -1
4

W =
1 0

'4
+1

0
1

2
3
4
5 + 20
6 + 404
7 + 60!
8 +
44

9 + 100 + 202
4 4

It can also be easily seen by inspection of the autocorrelation function

that V(±1, -1) = IT, where the arguments of V are the values of 01, 04.

This means that the power of each test at these points is equal to the true

size of the test. It can further be shown that at all points on the

04 = -I boundary, except the endpoints, the power of each test is either

zero or one. This result draws on the findings of Kramer (1985) and Small

(1991) and the proof is omitted here in the interests of brevity.

To conclude this section we consider the seasonal unit root case

defined by 04 = 1. From the general form of the autocorrelation function

it can be seen that setting 04 = 1 gives:
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p
o 
= 1

'1 
= 0 (1+0201+04)

p
2 

2024/(1+04)
1 1

p
3 
= p

1

p
4 
= 1.

This pattern repeats indefinitely so that, the individual autocorrelations

must take one of only three values. The rank of V, and the number of

non-zero eigenvalues in (5), is therefore three.

The power of each test was computed under these conditions for the

entire range of data outlined in Section 3 below. 01 took values ranging

from zero to 0.9. In every case, each of the three non-zero eigenvalues of

(5) were found to be positive so that test power was always zero.

3. Numerical Results

The well known dependence of the powers of these tests on the

regressor data was allowed for by examining a range of data conditions.

The design matrices used were:

X1 The income and price series from Durbin and Watson's (1951) spirits

example.

X2 The quarterly Australian consumers price index commencing 1959(1) and

the same series lagged one period.

X3 A linear time trend and observations drawn from the Normal (30,4)

distribution.

X4 A linear time trend and a Uniform [0,10] series.

X5 A linear time trend and a lognormal (2.23, 19.58) series.

X6 (a +a )/V2 and (a +a )/1/2. where a , ..,a are the eigenvectors
2 T 3 T-1 1 T

corresponding to the eigenvalues of the DW first differencing matrix,

A, arranged in increasing order!

6



A linear time trend and the logarithm of quarterly registered

unemployed in New Zealand, commencing 1952(2).

Each design matrix also included an intercept. The first six data

sets have been used in several related studies and are discussed by Evans

(1992). X6 is often referred to as Watson's X-matrix, and was shown by

Watson (1955) to produce the most inefficient OLS estimates within the

class of orthogonal matrices. The X7 matrix was chosen for its strong

seasonality, which is an important data characteristic in this study.

Using a sample size of 20, a thorough investigation was conducted

across all tests and design matrices along 20 lines in the parameter space.

A selection of the resulting power curves is presented in the Figures 1 to

3 to support the general conclusions outlined below, while Table 1 shows

the lowest and highest power obtained across the tests for a variety of

cases. A further more limited, study used a sample size of 60. This

latter work confirmed the findings of previous studies (e.g., King (1985))

that a larger sample increases the power. of each test and reduces the

power, differences between the tests.

The following features were observed with all seven data sets and each

test and are stated relative, to power against pure AR(1) disturbances.

First, the true sizes of the tests are decreased (increased) by the

introduction of a positive (negative) fourth order component. The only

exceptions to this were for S(0.75) and BW when using X6, where slight size

increases were registered as 04 . 1. On average, sizes were 29.5% as

04 . -1 and 0.87% as 04 . 1.

Second, serious losses of power were found when 04 fell in the

interval (0.4,1.0) for all 01 > O. This is not unexpected in view of the

size effect noted above when 04 > 0. No size corrections were made to the
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power functions, since 04 * 0 is assumed to be a mis-specification. Table

1 provides power values which show that when 01 = 0.4, the introduction of

a fourth order component with 04 = 0.4 reduces power from around 40% to

25%. Increasing 04 to 0.6 further reduces power to around 15% while when

04 = 0.8 power was generally about 7%. It is apparent from Table 1 that

some data cause large spreads in power across tests. This feature is well

known for X6 (see King (1985), for example).

The third feature of the numerical results is that the power of all

tests is reduced when 04 falls in the interval (-1,-0.4) for all 01 > 0.

In this region the power reduction is somewhat less serious, being offset

by increased size.

4. Estimation Efficiency

The power effects summarised above suggest that an applied researcher

has a greatly reduced chance of detecting an AR(1) process in the

regression residuals if the true process is given by (2) and 04 is

moderately large. Under these circumstances it would be useful to know

something of the likely effect of failing to detect autocorrelation on the

efficiency of OLS estimation.

Grenander (1954) and Grenander and Rosenblatt (1957) showed that if

the spectral density function of the true disturbances is flat at all

frequencies where the exogenous variables have spectral weight, then OLS is

asymptotically fully efficient. Combining this with the finding of Granger

(1966) that economic variables typically have their spectral weight at low

frequencies, we follow Engle (1974) in concluding that OLS will be

efficient if the disturbance spectrum is flat at low frequencies.

The spectrum of the covariance stationary process (2) is given by
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}ff (A) = cr
2 f

2Tr I e
siX 

+ e
ciX 

+ e
iX 

- 0 1
2

1 4 1 4

= T2 {24(1+02)(1+
2
0
4
) + 20 0 (cos5A+cos3A)

c 1 4

-1
- 204cos4A ( 1+02) - 201cosA ( 1+024 )11 •

Using a grid of frequencies in the range -2n s A s 2n, f(A) was evaluated

at 42 settings of 01, 04 k 0 with T: arbitrarily set to 2n. A selection of

the resulting spectra is presented in Figure 4. It is immediately apparent

from these graphs that the spectra corresponding to the individual

components of u reinforce each other at low frequencies. This suggests

that, in general, the relative efficiency of OLS to GLS, which is known to

decline with 01 is also decreasing in 04.5 We can also see, however, that

provided 04 * 0, values of A: OsAsnexist for which the spectrum of u

is flat. For design matrices whose spectral weight is concentrated on

these frequencies we can conclude that OLS is (asymptotically) fully

efficient.

The cause of these flat regions in f(A) can be seen by considering the

log spectrum of u which has the same turning points as f(A). Apart from a

constant this is given by

1 -1 
lnf(A) = ln , + ln

in
11-01e 

2 4t A l2
(6)

The spectrum of u is therefore the sum of the spectra of simple AR(1) and

simple AR(4) processes.6 The first term in (6) has a unique maximum (over

the [0,n] interval) at X = 0 while the second term has maxima at 0, n/2 and

it. Comparing the spectrum of u with that of a simple AR(1) process, fl(A)

we can therefore conclude that f(A) > fl(A) when A e (0, n/2 , n) and the
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integration constraint then requires that the inequality be reversed for

some other A between 0 and n.

5. Conclusion

This paper has considered the problem of detecting first order serial

correlation when a fourth order component is also present. It has been

shown that the power of several popular tests for AR(1) errors is

considerably reduced by positive fourth order autocorrelation. It is

suggested that this also reduces the chances of an applied researcher

either adopting a suitable alternative estimator to OLS or investigating

the residuals further to discover the true autocorrelation process. The

possible consequences of this (lack of) action were revealed by a study of

the disturbance spectrum, which showed that the relative efficiency of

OLS is likely to be lower when u follows a joint first and fourth order

autoregressive scheme rather than either of these as a simple process.
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Footnotes

• Helpful comments from David Giles, Judith Giles, Howard Doran and

Philip Franses are gratefully acknowledged. The author is solely

responsible for any errors.

(1) For a good discussion of these, and related, issues see King (1987).

(2) A more general algorithm due to Lieberman (1992) uses a saddlepoint

expansion to evaluate the p.d.f. of (4).

(3) The following autocorrelation function was also derived independently

by Wu (1991).

(4) A is a tri-diagonal (TxT) matrix with (1,1) and (T,T). elements as

unity, 2 elswhere on the leading diagonal and -1 for the leading

off-diagonal elements.

(5) An obvious exception is when the columns of X are linear combinations

of the eigenvectors of V (Anderson (1948)).

(6) I an grateful to Howard Doran for pointing this out.
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APPENDIX

Table 1

Power Range Across Tests

Selected Values

Data
4)4

01 = 0.4 01 = 0.6 01 = 0.8

X1 0 .40 .41 .65 .66 .81 .82
.4 .25 .27 .50 .52 .72 .75
.6 .15 .18 .37 .41 .62 .66
.8 .06 .09 .19 .24 .43 .49

X2 0 .40 .40 .64 .65 .80 .81
.4 .23 .23 .46 .47 .67 .69
.6 .14 .14 .33 .34 .56 .58
.8 .05 .06 .16 .17 .38 .39

X3 0 .40 .40 .65 .66 .81 .83
.4 .24 .25 .49 .50 .71 .73
.6 . .14 .15 .35 .36 .60 .62
.8 .05 .06 .17 .18 .39 .41

X4 0 .40 .40 .64 .66 .81 .83
.4 .24 .25 .49 .50 .71 .73
.6 .15 .16 .36 .37 .60 .62
.8 .06 .06 .18 .19 .40 .42

X5 0 .38 .39 .61 .64 .77 .82
.4 .21 .22 .43 .46 .64 .69
.6 .12 .13 .30 .32 .53 .58
.8 .04 .05 .14 .16 .33 .37

X6 0 .30 ,.34 .42 .60 .44 .83
.4 .13 .26 .22 .52 .24 .79
.6 .06 .22 .12 .46 .14 .75
.8 .02 .15 .04 .32 .06 .63

X7 0 .38 .38 .60 .62 .75 .79
.4 .21 .24 .42 .46 .62 .68
.6 .13 .17 .29 .35 .50 .58
.8 .05 .12 .15 .23 . .32 .42
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Figure la
Spirits Data; T = 20

Ph14 = -0.8
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Figure 2a
Unemployed Data; T=20

PhI4 = 0.6

Figure 2b
Unemployed Data; 1=20

Ph14 = 0.8
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Figure 3b
Spirits Data; 1=20
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Figure 4a
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This paper is circulated for discussion and comments. It should not be quoted without
the prior approval of the author. It reflects the views of the author who is responsible for
the facts and accuracy of the data presented. Responsibility for the application of material
to specific cases, however, lies with any user of the paper and no responsibility in such
cases will be attributed to the author or to the University of Canterbury.
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