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Abstract

We evaluate the sampling performance of the inequality restricted and pre-test
estimators for the prediction vector and the scale parameter when the
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hold as a strict equality.

*This work forms part of the author’s Ph.D research. The author would like to
thank Professor David Giles and Dr. Judith Giles for their guidance and many
useful suggestions. Helpful comments from Kevin Albertson and John Small are
also gratefully acknowledged. An earlier version of this paper was presented
at the Australasian Meeting of the Econometric Society in Melbourne, July 6-8,
1992.

Contact address : Department of Economics, University of Canterbury, Private
Bag, Christchurch, NEW ZEALAND.

FAX : +64-3-3642635 ; Phone : +64-3-3642033
Internet : a.wan@csc.canterbury.ac.nz




1. INTRODUCTION

In applied econometric analysis, inequality restrictions are often imposed
on the regression parameters as a result of the incompleteness of prior
knowledge on the parameters of interest. Within the context of the linear
regression model, the properties of the resulting inequality ‘restricted
estimator have received considerable attention in the literature in recent
years. It has been shown, for example, in the case of simple regression, that
the inequality restricted estimator has a truncated normal distribution
(Zellner (1961)). In terms of the sampling performance of this estimator, it
has been demonstrated, in a variety of circumstances, that the inequality
restricted estimator can be bétter than the unrestricted estimator, if there is
only one inequality constraint, the random disturbances in thé model are

normally distributed, and the prior information is either true or close enough

to being true ((Lovell and Prescott (1970), Judge et al. (1980), Judge and

Yancey (1981, 1986) and Thomson and Schmidt (1982)). When the a priori
information involves more thaq one inequality constraint, Thomson (1982) shows
that the performance of the inequality restricted estimator depends not only on
the accuracy of tﬁe constraint_s involved, - but also on the degree of correlation
between the constrained estimates!

Recen@ly. attention has also been paid to the sampling properties of the
pre-test estimator that chooses between the unrestricted and the inequality
restricted estimators, based on the outcome of a test for the validity of the
inequality restrictions. Assuming a known disturbance \;ariance and a single
linear inequality constraint,_.{udge and Yancey (1986) show that this inequality
pre-test estimator is biased, and that, in terms of sampling performance, there
is no region in the parameter space in which it is the best, being ranked

_ between the inequality restricted and unrestricted estimators when the prior




information is valid or nearly so. A related problem of estimating a normal
mean subject to an inequality restriction is. considered by Hasegawa  (1989).
Finally, Yancey et al. (1989) examine the risk characteristics of two
multivariate  inequality pre-test estimators that result - from different
inequality test structures, one with an equality null and the other with an
inequality null. They find that although neither inequality pre-test estimator
is uniformly superior, the one which corresponds to the equality null is
superior only near the region of the parameter space in which the restrictions
hold .as strict equalities.

The results given in the literature show that the relative performance of
varjous estimators do rely, to a large extent and among other things, upon the
accuracy of the inequality constraints involved: = Then the question naturally
arises as to whether these comparisons are still valid if the underlying model
is already mis-specified in some ways. This is of interest because

econometricians in practice invariably work with mis-specified models due ‘to

ignorance, lack of data or the inability of economic theory to define the

correct specification. However, it is interesting to note that with the
exception of Ohtani (1991b), who considers inequality. restricted estimation in
a proxy variable model, the discussion on inequality restricted and pre-test
estimation to date is based on the premise that the underlying data generating
process is properly specif fed?

-Moreover, the literature on inequality restricted and pre-test estimation
concentrates overwhelmingly . on the estimation of the regression coefficient
vector. . Although the application of the linear regression model typically also
involves . the estimation of the disturbance variance, o7, the literature is

2

totally silent on the properties of the estimators for -¢° that take into

account the a . priori inequality restrictions: imposed on the regression




coefficients.>

As for other pre-test problems that have been investigated in the

literature, the significance level of the pre-test also has an important

bearing on the properties of the inequality pre-test estimator. The question
of determining the optimum pre-test size for inequality restrictions  is
unresolved. A number of studies, however, consider the question of choosing
optimal levels of significance for preliminary tests in other pre-test
contexts, and various optimality criteria have been proposed. For instance, in
the case of pre-testing of linear restrictions, Sawa and Hiromatsu (1973),
Brook (1976), Toyoda and Wallace (1976) and Brook and Fletcher (1981) have
obtained optimal critical values according to the criteria of mini-max regret
and minimizing average relative risk. These criteria are; also used to
determine the optimal significance level for a pre-test in pooling variance
(Toyoda and Wallace (1975) and Ohtani and Toyoda (1978)). The particular size
chosen depends, as we would expect, on the pre-test problem being investigated
and also on the adopted optimality criterion.

In this paper we add to the literature on the properties of inequality
restricted and pre-test estimators by considering the problem of applying these
estimators in a model which is mis-specified through the exclusion of relevant
regressors. To keep our results tractable, we assume that the prior
information is in the form of a single linear inequality constraint imposed on
the regression coefficients. In the context of this analysis, which nests a
properly specified model as a special case, we derive and evaluate the risk
functions of the estimators for both the prediction vector and the error
variance. Using the two commonly adopted criteria of mini-max regret and
minimum average relative risk, we also address the issue of optimal critical

values of pre-test for an inequality restriction.




The remainder of this paper is organised as follows: Section 2 presents
the assumptions underlying the - analysis and . introduces the inequality
restricted and pre-test estimators. In section 3, we derive and numerically
evaluate the risks of various estimators for the prediction vector. The
question of choosing an optimal critical value for the pre-test when estimating

the prediction vector is addressed in section 4. vIn -section S5, we derive,

evaluate and compare the risk functions .of several estimators for the scale

parameter. . Section 6 concludes the paper.

2. MODEL FRAMEWORK AND THE ESTIMATORS

~ Consider the data generating process :
y=X8+Zn+e ; e ~NOI w

where y and € are n x I vectors; X and Z are non-stochastic matrices of full
column rank and are n x k and n x p respectively; B and 7» are unknown
coefficient vectors and are k x 1 and p x I respectively.

Assume, however, that the model is incorrectly specified as:
y=XB8+u . 2)

So, p=Zn + ¢, and p ~ N(Zn.o‘zl), but it is assumed by the researcher that pu ~
N(O,a‘zl). In addition to the sample information, there exists uncertain prior
information about the coefficient vector B, in the form of a single Iinear
inequality hypothesis:
C’'Bzr,

where C’ is a 1 x k known vector and r is a known scalar.

It is well known that the unrestricted estimators of B and o”, which
utilize only sample information, are_§ = S'lx'y, where S = X‘X, and o =

(y-XB)’ (y-XB)/(n+3) respectively. The equality restricted estimator of B8,




-
which uses both the sample information and the exact restriction C'B=r is B

=B - S'IC(C’S'lc)-l(C’g-r), and the corresponding estimator for o is o2

(y-XB')’(y-XB')/(m-a'). The least squares (LS) estimator for o corresponds to
8 = -k and y = -k+], the maximum likelihood (ML) estimator corresponds to § = y
= 0, and the minimum mean square error (MM) estimator corresponds to & = -k+2
and ¥ = -k+3. Throughout this paper, the subscripts LS, ML and MM are used to
characterize the estimators corresponding to these three components. If the
researcher combines sample information with the inequality restriction (3) in
estimating model (1), then either the unrestricted estimator does not violate
the inequality constraint (3) and is chosen as the estimator for the model, or
the unrestricted estimator violates (3) and the exact restriction C'B =r is
imposed on the parameters. The equality restricted estimator is used in this

case.

Following Judge and Yancey (1986), (1), (2) and (3) can be reparameterized

y= HO + Br + g, (4)

y= HO + p, (5)
and el zr, (6)

~1/2 ~-1/2,

respectively, where H = XS7/°Q"; B = ZTV%v’; 8 = QsY8 ; = = vI'%; T =
Zz'z; r, = r/hl; hx is the first element of h’ = C’S_VZQ’ and is assumed to be
positive without loss of generality; 91 is the first element of 6; V'V = Ip,
and Q is an orthogonal matrix such that

=172

Qs

cic's™ ey ler sV = [ 1 0]
0 0

Now, the unrestricted and equality restricted estimators for @ are :

r
6 = H'y and o' = . ° respectively,

9 (k-1)




where e(k—l) = [o'l(k-l)]e' Slmllarly, -the unrestricted ' and - equality
restricted  estimators: for o may be expressed as o = (y-H8)’ (y-H8)/(n+3)  and
L .
PaC (y-He )’ (y-HO )/(n+y) respectively.
According to the two-step procedure described earlier, the inequality

restricted (IR) estimator for 8 is

{ 6 ifBzr, _
=1 (e )9 +1 (CRLR
e ir 6<r, (Foo,rg) o™ !

and the corresponding estimator for o is

{ o* if b=, .
=1 (e )l a1 (8 ). ' 9)
a_"z if é1< ro (-w r ) v ll‘o.m) )

where l( )(u) is an indicator function which takes the ‘value unity if u falls
in the subscripted interval and O otherwise. If we let T = r, - 6l be the

-l/ 2

-slack' variable associated with (6) and B” Q‘e ** be the IR estimator for

the coefficient vector, B, then (8) and (9) can be transformed to

I -1 (u)(Ou -T)
B“ =B - S-X/ZQ,[ (-0, TC ) 1 1 ]
o(k-l)

PRaC LI l( U 1)(u )[[(a‘ul-r)z-g'z(v—a)] /(n+7)] (11)

x;espec.t‘ively, where u = (61-61)/0' is a normal x"andom variable with méan. &§/c
and variance>l, where € = (H’B’n)l is the first element in tbe vector H’B’mn.
Typically the reseacher is uncertain of the validity of the inequality
constraint and so may test for “ the vineq'ual'ity. restriétion (6). The test
structure is given by
H:6 =zr vs H: 8 <

o 1 o 1 1 o

and the usual test statistic is




=y (51 - ro)E:'l/Vm»s .

t" has a doubly non-central t distribution with v degrees of freedom and
non-centrality parameters Af = (1:‘-&)2/2172 and 7\2 = n'B’(I-HH' Bn/20>. We write

t" o~ t(wh ) However, without realising the specification error in the
i

model, the applied researcher believes t' to have ba central t distribution when
6=r and applies a t-test to test the null hypothesis. Hence, the decision rule
is to reject the null if t < ¢, where c is the size - a critical value for the
central t variate with v degrees of freedom. If the null is rejected, then the
unrestricted estimator is chosen, otherwise the IR estimator is used in the
estimation process. Accordingly, the inequality pre-test (IPT) estimators for
0 and ¢ are :

6 ift<c . I
e tze Hw )00 + I (200

o if t < c

L) ~z " "2

= . =1 (t)” +1 (t )o (13)
{ a_-'z ift =c (~®,C) (c,o)

respectively. Again, if we define t = r")-el and let B = S'VzQ’e be the IPT

estimator for the coefficient vector, B, then (12) and (13) can be transformed
to
-1 (ul)(O‘ul-T)

. -1/2 I(-W.(c' o+Te )

B=B +5s57%Q
o]
22 _ 2 2 ~2
o =0 I(_mc, &tw'l)(“x)[[("'“x") - (7 5)]/(:1*7)] (15)

respectivelyf where ¢’ = c/(n+8)/v. The risk functions corresponding to these

estimators are derived and analysed in the following sections.




3. THE RISK FUNCTIONS OF THE ESTIMATORS OF THE PREDICTION VECTOR
If b is any estimator of B in model (1), then the risk function of the
prediction vector under squared error loss is defined as:
p(Xb,E(y)) = E[(X‘b - E(y))’ (X0 - E(y))])o-z,
From Mittelhammer (1984),
CPXBE) =k + 22, : : ' (16)
PXB'E() =k + 20, + 227 - 1, , ooan
Now, from (10) and (14), the risk functions of XB" and Xé may be expressed as:

p(X8"" E(y)) = p(XB,E(y) + s[

I(—«n,‘!:

0—1)(ui)(o‘u;‘t)(2§-‘r-o‘ul)] /0% (18)

p(XB,E(y)) = p(XB,E(y)) - E[[I

o) - I(_c'(c,;“w-l)(ul)]

(-0, T
(o'zuf - - 2&,’(0‘\1]-1:))]/0‘z : (19)
In order to evaluate these risk functions, we need supporting Lemmas 1 and 2
which are given and proved in Appehdix A. Using these Lemmas, we establish the
following Theorem:
THEOREM 1
If Al < 0, then
Lid
pXB LE(y)) =k + 2 - P_/2 + A%P,
2 3 11
a 2
p(XB,E(y)) = k + th + (Ea,v - Pa) /72 - AI(EM - Px)
If ?«l > 0, then
(X8™"E(y) = k + 20.-1 + P./2 + 22% - A%
p(XB L,E(y)) =k + 2 o N Ry
- _ 2 2 ;
p(XB,E(y)) = k + 27\2 1+ 27\x + (E:!.v + Pa)/z Al(El'v + Pl)
2
-G, * Gy,
where

. : 2. L 20
P = Plx= 20,




t
A
e'AzZ 2 P(x

t=0 t!ZV/z’tI‘('-z'ot)

2
v/2+t-1 -q /2
2 )

2 2 2
Lz (ch/ﬁﬂ’EAl) )qJ e qu.

w2/l
t 1
2

v/2+t

2 2 2v/20t—l -qj/Z 2
P(x| < (cqj/ﬁﬂ’i)\l) )q e dqj,

rée J . )

© A
e_hz
1,)

)
t=0 t!2

i=1 3 and qf is a non-central chi-square random variable with j degrees of

freedom and non-centrality parameter 7\2, i.e. qj ~ x’f] Ay
"2

Proof: see Appendix A.
When there is no mis-specification in the model, Az = 0 and (20) - (23)
collapse to the expressions given by Hasegawa (1989)?

These expressions are difficult to evaluate analytically. Accordingly,
numerical evaluations of the risks have been carried out for n = 10, 30, 50; k
=2, 5 « =0, 001, 0.05, 0.10, 0.25, 0.40; 7\1= [-10,10] and various ‘values of
A,- The NAG (1991) subroutine DOIAJF and subroutines from Press et al. (1986)
are used to evaluate the integrals El.J and Gl.j' Some representative risk
diagrams are given in Appendix B. Notice from the definition of 7«1 that for a
given level of the constraint specification error, T, Al changes with the
magnitude of &, the model specification error. The case of £ = 0 is
represented in Figure 1, which illustrates the results given by Judge and
Yancey (1981, 1986)°. Figure 2 illustrates a typical case for £ # 0 (and,
hence 7\2 # 0). If the horizontal axis of these diagrams measures T, then the
risk functions depicted in Figure 2 will shift either to the right or to the
left of its correctly specified counterparts (Figure 1), depending on the sign
of &. This implies that in an underfitted model, the use of valid prior
information does not necessarily lead to a reduction in risk. Equally,
pre-testing is not necessarily risk superior to ignoring prior information,

even if it is perfectly correct. This is consistent with Mittelhammer’s (1984)




results for the case in which the prior information exists.in an exact form.

From the diagrams aﬂd the analytical res‘ults,‘>we observé’ that given 7\2,
p(XB”,E(y)) is bounded and approaches p(XB,E(y)) as Al + -, but it is
unbounded and approaches p(XB‘:.E(y)) as _Al a p(Xé,E(y))- is bounded and
approacheﬁ p(XB,E(y)) as |7«l[ > @ Given 2, p(XB".lé(&)) is unbounded as A, =

o ; for any fixed 7«]. p(XB,E(y)) -is unbounded and approaches p(XB“,E(y)) as J\z

-~ [p(xé,x-:(y))-p(xé‘.z(y))] and [p(xs”.z(y))-p(x&',l-:(y))] are both bounded by

-P/2 + AP, (given A s 0), or by P/2+ 227 -1 - afpl (given A>0) as A_ -
m‘. It is apparent from these results ;hat if 7&1 and Az are both large, Xé
could have significantly greater risk _than the unrestricted prgdictor XE This
result is significant as it implies that pre-testing. could. be potentially
dangerous when the errors associated with  the constraint and model
specification are unknown in practice. This obviously cannot occur if there is
no mis-specification m the model, in which case Az vanishes and p(Xé,E(y))
approaches p(vX§,E(y)) as 7\! * w. When ¢ » 0. or ¢ » -w, p(Xé,E(y)) approaches
p(Xﬁ,E(y)) and p(XB.‘.E(y)) x;espeqtiyely. Regardless of the size of the
pre-test (and hence the level ’of c), there exists no region in the Al space
such that the risk of the pre-test predictor is smaller than the risks of the
unrestrictéd and inequality restricted predictor ,simultan_eously. However,
there is always a region such» that Xé has higher risk than both XE and XB“.
This suggests that if we want  to. pre-test, then we need to choose an
appropriate critical value which brings the pre-test risk function as close as

possible to the smallest risk that ca.ﬁ be achieved.




4. THE CHOICE OF OPTIMAL CRITICAL VALUES FOR THE PRE-TEST WHEN
ESTIMATING E(y)

Various criteria have been proposed for choosing an optimal critical value
of a pre-test. One such criterion is that of mini-max regret, which aims to
find a level of ¢ such that the maximum i'egret of not being on the minimum risk
boundary is minimized. Along the lines of Sawa and Hiromatsu (1973) and Brook
(1976), the regret function of Xé is defined as

REG(Al,c) = p(XB, E(y)) - irclf p(XB, E(y)), (24)
where il;lf p(Xt;, E(y)) is the infimum of p(Xé, E(y)) over all values of 7«1.

It is observed that
p(XB, Ely)|c=-w) = p(X8" ,E(y)) if A < A

inf p(XB, E(y)) = {

P(XB, E(y)|c=0) = p(XR,E(y) it A=A
where 7\: is that value of Al > 0 for which p(XB“.E(y)) = p(XB,E(y)).

If we let dL and du denote the legst favourable values of the regret
function for 7\‘ < A: and Al = 7«: respectively, then, analogous to the case in
which the linear restriction is held as a strict equality, the mini-max regrét
procedure is to seek a critical value which makes both dL and dU as -small as
possible.  However, it is found empirically that increasing |e] decreases dL
but increases du' Therefore, to minimize the mini-max regret function over all
values of ¢ and 7«1. the procedure is to seek ¢’ such that

Sup, REG(,c’) = Sup , REG ,c").
7\1<J\l )\127\1

c' is then the mini-max regret critical value.

As it seems impossible to derive the mini-max regret critical values
analytically, we rely on numerical computations? Table 1 in Appendix B reports
the mini-max regret critical values and the corresponding level of « for )«2 =

0, 2, 10, 25, 50 and various values of v. From these results, the following




conclusions are drawn :

(i) When the model is properly specified (i.e. A2=O). the optimal critical

values do not vary‘much from -1.12 regardless of the degrees of freedom. This
is qualitatively ;onsist‘.enti with the results of Sawa and Hiromatsu (1973) and
Brook (1976) for the case in which the linear restriction is held as a strict
equalit_y. However, t’his does not imply a constant «, which varies from 19.1 7
to 13.1 7 asA v varieé t‘ron;n 2 to 80. The risk function of Xl} with the mini-max
regret critical value is depicted in Figure 1.

(ii) Once we allow for the onﬁssion of relevant régressors in the model
(Le. A, > 0), the optimal critical values vary with;thé degrees of fréedom of
- the model and can differ considerably from -1.12. This is illustrated in
Figure 2. The rate at which ¢ changes with thé degrees vof freedom in the
model increases as 7\2 increases. Furthermore, for given degrees of freedom,
Ic'| decreases as A, increases. Again, these results are qualitatively
consistent with those reported in the literature for the case in which the
linear restriction is held as a strict equality (see, Giles et al. (1992)).

. Alternatively, one may consider choosing an optimal - critical value
according to the criterion suggested by Toyoda and Wallace (1976) of minimizing
the average relative ‘fisk over the range of Al_(which in the present context is
the area between p(XB,E(y) and min [p(XBE(y)), p(x8'"E(yN]).  However,
since the latter is independent of ¢, this criterion effectlively amounts to
choosing an optimal c¢ such that the area under the pre-test risk- function is
minimized. If the area is expressed as a function of the critical value, it
can be shown that regardless of the magnitude“ of vAz, this fuﬁction reachés 5
minimum at c=0". 'Hence this criterion alwa&s rleads to the éhoice of the

unréstricted estimator. This conclusion is consistent with Toyoda and




Wallace’s (1976) result for the case in which the prior restriction on B exists
in the form of a single linear equality. Given their results it is unclear

whether our findings would extend to more than one inequality restriction’®

S. » THE RISK FUNCTIONS OF THE ESTIMATORS OF THE SCALE PARAMETER
If 5‘2 is an estimator of crz, then the risk function of 5‘2 under squared
error loss is defined as:
ple?, ¢ = E[(E-z - 0_2)2]/0_4.
From Giles (1990, 1991b),
P62 0% = [2(v+47\2) . (v+2)‘2-(n+6))z]/(n+6)z‘ ' (27
p(o"?, o:z) = [2[1 + v+ 4(7\:4'» Az)] +[1 -k + Z(Af + Az) -

- 112]/(n+7)2. (28)
(27) and (28) collapse to the expressions given in Giles and Clarke (1989)-
when y=8=0 and to those in Clarke et al. .(1987'b)' when 7\2=O.

From  (11) and (15), it‘is straight forward to show that the risk fu‘nctions
of the inequality restricted and pre-test estimators may be written as:
2 2

c?) = pa%ed) + E{I( -1 (u)[[(o‘ul-r)z-g-z(w-a)]/(n+7)]

p(d‘ -0,TC" ) 1

.x[2(52—¢2) + [(vu.l—r)z-;z(‘y-a)]/(n+a')]}/o-4

-1(u) [[(o-ul-t)z-;z(y—a)] /(n+7)]

(-e,(c’ G+T)O ) 1

p(;z,o‘z) = p(a‘"z,crz) - E{I

X [2(;2-0'2) + [(¢ul_1)2_{,'-2(7_5)] /(r_1+7)] }/cr4 (30)

Now, using Lemmas 1 and 2 in Appendix A and the Lemmas given in Judge and
Bock (1978) or Clarke et al. (1987a), we ‘establish the following theorem which

- -
defines the risk functions for ¢ 2 and ¢




THEOREM 2

If )‘1 =< 0, then

ple""%0%) = p(@%e®) » [xf(ms)’u.fw;zaz-(ma)1/2 + v(y-8)[2(n+3)

(n+7)-(.n+8)(v+2)-(v+2)(n+6)]/2 + 27\2(7-8)[(n+6)(n+7)+(8-1)

(§+z)-az(zn+a+7)-z(n+7)(v+z)1]Plx((n+$)(n+7))2 . [8Al7tz+

4v7\l+8>‘?-47tl(n+6 )] P 2/I' (%)(nﬂr)2 + [v+27tz+67\f-(n+7)] Ps/ (n+r)z

+ sxlp/ﬁg)(w)z + 3P /(2(n+)) | _ @31 -
pehe = plehed - 31-?;5.v/2(n+1)2_ - 87\1E4’v/l'(%)(n+1)2 + (n+y-627)

p::'.‘,/(.rmf)2 + (47\l(n+7)-8A::)Ez.v/r‘(§)(n+7)2 + (Zkf(n;w)-ZA:)

~

2 2 1 2
‘El'v/(nn) vEs’v’Z/(ma)(m-y) - 4v7\lE z",‘z/l'(;)(n*f',;r) -

2 2 2
v(ZA‘+(7-8))El’w2/(n+1) - ZAZES’V“/(M';) - SAIAZEZ.V“

/I'(%)(n-t"ar)2 + {[(7-6)v(v+2)(2n+7+8) - 47«2(1-6)(n+6)(n+7) -

+ 47\;(1-6)

2
sxfz (n+3) ]El' + 20y-3)2vean (y+3+420)E,

v+4
(2n+7+3)E, ;‘8} /(2(n+8)*(n+7)?) @32)

If 7«1 > 0, then

ple""%6%) = plcled) + {xf(ma)’nfwmz-(ms)l + viz-8)2(n+8)(n+y) -
(e3)(v+2) - (vs2)(asS)] + AA (g-SMn+d)ney) + (5-x)lvs2) -
A (20v84y) - 20e)ve2] - [afms)zufwmz - a2 v

(r-8)[2(n+3)(n+7) - (ned)(v+2) - (v+2)(n+8)l/2 + 22 (7-3)(n+8)




(n+y) + (3-7)(v+2) - A2(2n+6+7) - 2(nﬂr)(v+2)]]Pl}/((nw‘s)(nﬂr))2

3 1 2 2
+ [8Al7t2+4vhl+8Al-4kl(n+8)]Pz/r(-z-)(nnr) + 2{[v+2)«z4-6kl (n+7)] -

[v+27\z#67\f-(nf7)]Ps}/(nw)z + 87\1P4/1"(%)(n+7)2 + (6-3P)

72+ v , : (33)
p(eed) = ple"%6Y) - 3E. /2m+9)? - SAE. /TAm+n)? + (ney-612)
5,v 1 4,v 2 1
2 .3 1 2 2 4
Ea.v/(nw) + (4Al(n+1)-87“)Ez'vll'(a)@w) + (Zhl(m»ar) 27‘1)
E /n+y)® - vE_ _/(n+8)n+y)? - 4AE, /TN n+y)?
1,v 3,v+2 1 2,v+2 2

2 2 2
V(ZA1+(7-6))F1.\'»2/("+7) - ZAzEa.vw/(nw) - thkzsz.wa/-

l‘(%)(mw)2 + {[(7-6)v(v+2)(2n+7+6) - 4A2(7-6)(n+6)(n+1) -

2. 2 ) 2
87 (n+d) ]r:mM L R

+6

(2n+7+3)E }/(ztmsf(nmz) - 3G_ /(n+p)® + 2(n+y-6a?)
1,v+8 S,v 1

2 2 4 2 2
Ga'v/(my) + 4(Al(n+7)-7\1)Gl.v/(n+3) - ZVGS’V.Z/(nﬂS)(m-;)

2 i 2 2
-2v (27\l + (7-8))01.‘»»2/(“*7) - 4A203‘v“/(n+7) + {[(7-6)
2 2
v(v+2)(2n+y+8) - 4Az(7-6)(n+6)(n+1) - SAIAZ(nﬁS) ]Gl'v“

+ 2(7-6)(2“4)7\2(”6"2")01,»'06

2 -
+ 4)2(1-6)(2n+7*6)01’w8}
/((n+8)*(n+7)?)
Proof: see Appendix A.

Given the difficulty in analyzing these expressions, we numerically

evaluate them for n = 10, 30, 50, k = 2, 5, Al= [-10,10] and various choices of




Az and « in the same way as for the prediction vector. From the analytical and
nuﬁerical results, wé observe the following. At least' for the cases that we
have considered, when the direction of the constraint is correct (i.e. t=0),
and there is no specification error in the model, (i.e. £€=0 such that Al=1:/1/2—
and A2=0), the inequality p(o‘”z, ) = p(&z, ) = p(;z, ) always holds.
However, this is not ngcessarily true when € # O (and hence A2==0), This
result is analogous to the corresponding result when estimating E(y).

For a given value of Az' both [b(o'”z. %) - p(gz. o-z)] and [p(c;-z, o) -
p(;'z, o-z)] _are bounded and approach zero as )‘1 + -wo; when Al 4 o, p(a'”z, o)

is unbounded and approaches p(a~.2, o-z), while p(&z,‘ o%) is bounded and

approaches p(gz, 02). For any fixed Al, p(r}z, ) » p(o‘”z, o'z) as 7\2 + o, but

[p(cr”z, a'z) - p(;z,u‘z)] and [p(c;-z, ) - p(:;-z. o'z)] are both unbounded as Azb

+ o, This result contrasts with what we have observed when estimating the
prediction vectdr. in which case the corresponding differences are both bounded
as 'Az + o, for given Al. Other things being equal, the difference between
p(&z, ¢%) and p(;z. ¢%) can be significant when 7«1 is relatively large and 7\2
increases without limit. v

Furthermore, with a' relatively large Az, o2 can be \iniformiy risk

ML
superior to the other estimators corresponding to the ML qomponent that we have
considered, while this situation does not emerge if the component estimator is
the LS or MM estimator instead. By constrast, with the LS or MM estimators,
there always exists a family of inequality pre-test estimators which strictly
dominates thé unrestricted estimator, regardless of the value of Az’ Over
certain regions in the 7\1 space, this family of pre-test estimators also
dominate the inequality restricted estimator. These results concur

qualitatively with those of Giles (1990, 1991b) for the case in which the

restriction holds as a strict equality and the disturbances are spherically




symmetric.

From our  numerical evaluations, it"is also apparent that for sufficiently
large )‘2’ the inequality pre-test estimator with ¢ = -1° for "the' LS component
and ¢ = -Vv/(v+2) for the MM component may strictly dominate their respective
-unrestricted and inequality restricted estimators. -This constrasts with what
we observed when estimating the prediction vector. At least for the cases that
we have examined, out of: the three component estimators, in terms of minimizing
esﬁmator risk, it is. always preferable to use the estimators based on the
minimum mean square error principle, other things being equal. * Figures 3 to 6
in Appendix B illustrate some of these results.

The choice of ~optimal " levels  of significance when estimating o is
.currently being investigated. However, it~ is irrelevant to consider optimal
pre-test size when 7«2 is large, as the inequality pre-test estimators with ¢ =
-1 (for LS), ¢ = ~Vv/(v+2) (for MM) and ¢ = O (for ML) strictly dominate the
family of IPT estimators. Our preliminary results show that' when Az is small,
¢ = -1 (for LS) and ¢ = - Vv/(v+2) (for MM) are. the optimal critical values
under both the criteria- of mini-max regret and minimum average re.lative risk
for the cases -that we have considered!! When the maximum likelihood method is
applied, then the optimal critical value varies not only with the model’s
degrees of freedom, but also with the number of observations in the sample.

Further analysis of this case is currently being undertaken by the author.

6. CONCLUSIONS

In- this paper we have considered the sampling performance of the

inequality restricted and inequality pre-test estimators for both the
prediction vector and the scale parameter in an omitted variable model. This

was also- the first analysis of the estimation of the scale parameter that takes




into account the inequality nature of non-sample information imposed on the
regression coefficients. The risk functions of these estimators were derived
and numerically evaluated.

Common to both the problems of estimating the prediction vector and scale
parameter, we found that the use of perfectly correct valid information does
not ensure a reduction in risk in an underfitted model. Both the inequality
restricted and pre-test estimators for the prediction vector were found to be
risk inferior to the unrestricted estimator over a large portion of the (7\1,7\2)
space. In particular, the degree of inferiority increases with )«2. If the
method of maximum likelihood is applied to estimating the scale parameter, it
was found that the unrestricted estimator can uniformly dominate all other
estimators under consideration when the degree of model mis-specification is
serious. Thus, when estimating E(y) or ot using the principle of maximum
likelihood in an underfitted model, the application of the unrestricted
estimator may be preferable to pre-testing or imposing restrictions naively in
terms of minimizing estimator risk.

If the least square or minimum mean square error estimator is chosen as
the component estimator for the scale parameter, then our results show that,

for any finite 7\2, there exists a family of pre-test estimators which are

uniformly superior to the estimator that ignores the prior information. When

12 is sufficently large, the inequality pre-test estimator, with an appropriate
choice of critical value, may strictly dominate both its components. These
results clearly indicate that, potentially, there is much to gain from
pre-testing when estimating the scale parameter using the least square or
minimum mean square error principles, and specification error tends to make the
IPT estimator more favourable relative to its components.

However, in practice, researchers rarely estimate the scale parameter and




prediction vector separately. Given our results, it is unclear whether the
ris'k‘gain from pre—teéting in éstimating the scale parameter can compensate the
cc;i*responding potentialv risk - loss  when estimating bthe prediction veqto;. This
suggests that one should i)ex;haps consider a joint riskb function f ox; eétimating
both the scale parameter and the prediction  vector. This remains an
interesting point of departure for future research. 4

We have also shown that, .if the non-sample informétioh is a single lim;.ar
inequality constraint, then a critical value of zero for the pre-test (i.e.
always ignore the restriction) is the best strategy for estimating the.
prediction vector accoi‘ding to.:the criterion of minimizing .the' average relative

risk. If the alternative mini-max regret criterion is used, then we have shown

that, under the maintained assumption of a properly specified model, the

optimal critical values are invariant to the model’s degrees of freeaom.
Héwever, " this property no 'lohger holds -once WE ‘ allow for possible
mis-specification in the regressor mafrix.' Accordingly, any attempt t§ apply a
mini-max critical value obtained under the assumption that A2=0 will not
necessarily lead to an optimal’ pre-test risk when the model . is in fact
underfitted. An investigation on the choice of the optimal critic;al val;.xe for
the pre-test when estimating the scale parameter is currently being undertaken

by the author.
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Footnotes

1. See also Liew (1976) and Judge and Yancey (1986).

2. By constrast, in cases for which the prior information exists as exact
equalities, the sampling properties of the resulting equality restricted and
pre-test estimators have been investigated rather extensively. [See, for
example, Ohtani (1983), Mittelhammer (1984), Giles .(1986), Giles and Clarke
(1989), Giles (1990, 1991b) and Albertson (1991).]

3. Although Ohtani (1991a) has considered pre-testing for the variance in a
normal population after a one sided pre-test of the mean, his pre-test
estimator is a choice between the unrestricted and the equality restricted
estimators. Yancey et al. (1983) discuss the sampling properties of the

inequality restricted and pre-test estimators for o>

when an inequality
constraint exists in the form of o = a:, which is a different problem to the
one that we are investigating here.

4. It must be noted that these expressions are valid only for ¢ < 0 (i.e. a <
0.5). For ¢ = 0, it can be easily shown that the unrestricted estimator is
always used as the estimator for the model regardless of the outcome of the
hypothesis test.

S. As is noted in the introduction section, Hasegawa (1989) considers the
estimation of the mean in a normal population, which is related but not
identical to the problem investigated here.

6. Judge and Yancey (1981, 1986) assume that 0_2 is known in their analysis.
However, the results are qualitatively the same as for the 0'2 unknown case.

=00,

7. For any non-zero c¢ and finite Al' Gij and Eij both approach zero as A

2

Hence the risk of the pre-test estimator approaches that of the inequality

restricted estimator as 12-» . When ?«1-0 ®, Gij -+ 1 whereas Eij + 0, hence

the risk of the pre-test estimator approaches that of the unrestricted




estimator.

8. Brent’s (1974) algorithm is used to search for the value of x;. The Golden
Section Search routine given in Press et al. (1986) is used to compuyte mini-max
regret critical values.

9. Details are available on request.

10. Toyoda and Wallace (1976) find that when the number equality restrictions
is less than 5, c=0 is the optimal critical value regardlessrof the model’s
degrees of freedom. When there are more than 5 restrictions, the optimal
critical value increases with both the degrees of freedom and the number of
restrictions, and is approximately 2 for the central F distribution when the

number of restrictions is more than 60.

. It can also be shown analytically that these pre-test risk functions

achieve stationary points at ¢ = 0 (for ML), c= -1 (for LS) and c = -Vv/(v+2)
(for MM), which coincides with the results: obtained when the a priori
restriction holds as a strict equality, as shown by Giles (1990, 1991a, 1991b).

Details are available on request.




Appendix A

Proof of Theorems-1 and 2
We need the following supporting lemmas in order to derive the risk
. .. ~ *e2 -2

functions of X8 , XB, ¢ and o:-

Lemma 1:

If wis a normal random variable with mean ¢ and variance 1, and d € R , then

o
T [ ](-1)‘9"‘0 PG =1%)/2 if <0 (A.1)
t=o\ t t t+1

J j 2 2 J-t
T [ ][m) -PE, 2t )/z]rzto if £50  (A.2)
t=0' t

where @ = 2’T((t+1)2MTG), f = d-o and ) = O if t is odd, 1
otherwise. This Lemma generalises Theorem 1 of Judge and Yancey (1986, 72-73)
to a normal variable with non-zero mean.

Proof':

Let z = (w - 9) ~ N(0,1), then E[I(_wd)(w)wj] can be written as

i) t )t _ .
E[I(_m'd_m(z)(zw)]. Now E[I(_m'd_m(z)(zo )] , t=0,..j, can be evaluated

using Theorem 1 of Judge and Yancey(1986). Lemma 1 then follows.

Lemma 2:

Let w, d, f and I(t) be defined as in Lemma 1. Let y ~ xf and ¢ € R,

v,A)
then for f = O,

J
E [I(-m’c/'/—”d)(W)W ]

1 ] l-)ol-l -‘g

i ! t )t -A 2 A 2 2) ,2 2
=z -)9 Qe"z ——— P[x =(cvP+f) |y e /2 dy
t=0| t o i!ZV/z"F(-;iol) t

(A.3)

and for f > O,




[ (=0, c{l/—hd)(W)w ]

L Vl

-t Al +1-1 -=

[ ]( -1 Qe lzo m[l [ z(cf+f)]w e 22 dy
0

2

2
/¢

f
'l 1 -y
+I(t)j P[ X< (cVy+f) ]w 24y
0

Proof’:

Since ¢ € R, hence f = 0 =» cvgef = O. Using Lemma I,

J J .
) _ . _ytal-t 2 2
Ew'c Vlodﬁo[l(-m.c\/lﬁod)(W)w] - tzo[ N ]( e Qtp[xulZ(cm#” ]/2
Therefore, E|I ”(w)w". = z ! 0% E |p|x? =(cV+f ?||/2 when
' (-00,cVi+d) t=ol 'y t Y xtol,

f = 0, which leads to (A.3). Now, when f > 0, the sign of o/ + f is
undetermined. When oy + f =< 0, the range of Y is restricted to y = lecz.

: 2,2 J -

while Vi + £ > 0 » 0 < y < f°/c®%.  Hence when f > O, E[l(_m.cﬁ.d)(w)W] =
J

E{I(rz/a2 m)(w)Ew|c\/\54f50[l(-m,c\/4—hd)(W)w] ot (o fz/cz)(w) w| eVigee>o l(-m,c/@

" (w)w"] . The two inner expectations may be evaluated using Lemma 1.

" —
Noting  that I“z/ 2,@)('1‘) 2— ) l(”z/cz)(w (-1) + = 2I(t),
f /c

Ew[l(o‘lecz)(w)l’(w)] - Jr(w)» pdf.(y) dy and 1 - P[xtﬂz(cv’@f)z]

o
P[xfﬂ<(cv/q]]+f)2] for any given y, (A.4) follows directly.

Proof of Theorem 1
The expectations in (18) may be evaluated directly using Lemma 1, for J
1, 2, 3, and by recognising that Af = (t-§)2/202 enables the derivation of
-
p(XB ,E(y)).

To establish p(XB,E(y)), we require Lemma 2 to evaluate the expectation




terms of the form E[I ;= -1 (.)] in  (19). The remainder of the
(-o,(c’ o+T)O )

expectations may be evaluated using Lemma 1. Hence p(Xé,E(y)) follows

directly.

Proof of 'l;heorem 2

The evaluation of p(a-z",crz) involves the straight forward application of
Lemma 1 for j =1, 2,..,5.

Finally, the derivation of p(&z,a‘z) involoves the evaluations of

l3[1 - 4 (ul)t;z] and E[I L (v );‘4]. among others. Now
(~o,(c’ T+T)T ) (=2,(c’ 0+T)0" )

I _ (u)lul may be regarded as a function of ;2. as o is defined

~

(~0,(c’ 0+T)O )
. . ~2 . ~
only on the non-negative horizon and each o“ corresponds to a unique o.

Therefore, using the lemmas given in Clarke et al. (1987a) or Judge and Bock

(1978, pg 319-321),

2
E[I . w)? =Z_IvE |1 ()| +2a
[(—m.(c’mr)a-") 1 ] n+6{ [(—m,c /x;\z,.z,az)"w-l) 1] 2
v
E|I (uw)fd .
[( v R ]}
-0,C x(v-ﬂl,A ) + TO
P
\4

The two inner expectations can be evaluated using Lemma 2. The evaluation

of E|I . _fu )o*| involves the repeated use of (A.5). Using these
(-o,(c’ c+T)0 )

results and the two Lemmas given above yields p(&z.vz) directly.




Appendix B
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Figure 1. The risk functions for XE. XB.. XB',.and XB when n=30, k;s and
A= 0. B
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Figure 2. The risk functions for X8, XB', XB”and X8 when n=30, k=5 and
= 10.
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Figure 3. The risk functions for o, ¢ % o and ¢ (maximum

likelihood component) when n=30, k=5 and 7&2= 0.
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Figure 4. The risk functions for ¢“, ¢ ¢ o and ¢° (maximum

likelihood component) when n=30, k=5 and A= 5.
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Figure 5. The risk functions for ;z'
squares component) when n=30, k=5 and 7\2= 0.
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mean square error component) when n=30, k=5 and 7\2= S.




Table 1: Mini-max regret critical values for the pre-test of an inequality restriction when

estimating E(y)

a(7) al(7)

38.363 44.455
31.834 40.774
26.538 37.049
23.632 34.482
21.765 32.514
20.458 30.926
19.490 29.603
18.705 28.477
18.150 ' 27.504
17.667 26.652
17.267 25.617
16.929 25.227
16.640 24.623
16.390 24.078
16.172 23.582
15.980 23.130
15.810 22.715










