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1. INTRODUCTION

In applied econometric analysis, inequality restrictions are often imposed

on the regression parameters as a result of the incompleteness of prior

knowledge on the parameters of interest. Within the context of the linear

regression model, the properties of the resulting inequality restricted

estimator have received considerable attention in the literature in recent

years. It has been shown, for example, in the case of simple regression, that

the inequality restricted estimator has a truncated normal distribution

(Zenner (1961)). In terms of the sampling performance of this estimator, it

has been demonstrated, in a variety of circumstances, that the inequality

restricted estimator can be better than the unrestricted estimator, if there is

only one inequality constraint, the random disturbances in the model are

normally distributed, and the prior information is either true or close enough

to being true ((Lovell and Prescott (1970), Judge et al. (1980), Judge and

Yancey (1981, 1986) and Thomson and Schmidt (1982)). When the a priori

information involves more than one inequality constraint, Thomson (1982) shows

that the performance of the inequality restricted estimator depends not only on

the accuracy of the constraints involved, but also on the degree of correlation

between the constrained estimates!

Recently, attention has also been paid to the sampling properties of the

pre-test estimator that chooses between the unrestricted and the inequality

restricted estimators, based on the outcome of a test for the validity of the

inequality restrictions. Assuming a known disturbance variance and a single

linear inequality constraint, Judge and Yancey (1986) show that this inequality

pre-test estimator is biased, and that, in terms of sampling performance, there

is no region in the parameter space in which it is the best, being ranked

between the inequality restricted and unrestricted estimators when the prior

1

•



information is valid or nearly so. A related problem of estimating a normal

mean subject to an inequality restriction is considered by Hasegawa (1989).

Finally, Yancey et al. (1989) examine the risk characteristics of two

multivariate inequality pre-test estimators that result from different

inequality test structures, one with an equality null and the other with an

inequality null. They find that although neither inequality pre-test estimator

is uniformly superior, the one which corresponds to the equality null is

superior only near the region of the parameter space in which the restrictions

hold as strict equalities.

The results given in the literature show that the relative performance of

various estimators do rely, to a large extent and among other things, upon the

accuracy of the inequality constraints involved. Then the question naturally

arises as to whether these comparisons are still valid if the underlying model

is already, mis-specified in some ways. This is of interest because

econometricians in practice invariably work with mis-specified models due to

ignorance, lack of data or the inability of economic theory to define the

correct specification. However, it is interesting to note that with the

exception of Ohtani (1991b), who considers inequality, restricted estimation in

a proxy variable model, the discussion on inequality restricted and pre-test

estimation to date is based on the premise that the underlying data generating

process is properly specified2.

Moreover, the literature on inequality restricted and pre-test estimation

concentrates overwhelmingly on the estimation of the regression coefficient

vector. Although the application of the linear regression model typically also

involves the estimation of the disturbance variance, cr2, the literature is

totally silent on the properties of the estimators for cr2 that take into

account the a priori inequality restrictions imposed on the regression



coefficients.3

As for other pre-test problems that have been investigated in the

literature, the significance level of the pre-test also has an important

bearing on the properties of the inequality pre-test estimator. The question

of determining the optimum pre-test size for inequality restrictions is

unresolved. A number of studies, however, consider the question of choosing

optimal levels of significance for preliminary tests in other pre-test

contexts, and various optimality criteria have been proposed. For instance, in

the case of pre-testing of linear restrictions, Sawa and Hiromatsu (1973),

Brook (1976), Toyoda and Wallace (1976) and Brook and Fletcher (1981) have

obtained optimal critical values according to the criteria of mini-max regret

and minimizing average relative risk. These criteria are also used to

determine the optimal significance level for a pre-test in pooling variance

(Toyoda and Wallace (1975) and Ohtani and Toyoda (1978)). The particular size

chosen depends, as we would expect, on the pre-test problem being investigated

and also on the adopted optimality criterion.

In this paper we add to the literature on the properties of inequality

restricted and pre-test estimators by considering the problem of applying these

estimators in a model which is mis-specified through the exclusion of relevant

regressors. To keep our results tractable, we assume that the prior

information is in the form of a single linear inequality constraint imposed on

the regression coefficients. In the context of this analysis, which nests a

properly specified model as a special case, we derive and evaluate the risk

functions of the estimators for both the prediction vector and the error

variance. Using the two commonly adopted criteria of mini-max regret and

minimum average relative risk, we also address the issue of optimal critical

values of pre-test for an inequality restriction.
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The remainder of this paper is organised as follows: Section 2 presents

the assumptions underlying the analysis and introduces the inequality

restricted and pre-test estimators. In section 3, we derive and numerically

evaluate the risks of various estimators for the prediction vector. The

question of choosing an optimal critical value for the pre-test when estimating

the prediction vector is addressed in section 4. In - section 5, we derive,

evaluate and compare the risk functions of several estimators for the scale

parameter. Section 6 concludes the paper.

2. MODEL FRAMEWORK AND THE ESTIMATORS

Consider the data generating process :

= X/3 + Zi + c C N(0,cr2I) (1)

where y and c are n x 1 vectors; X and Z are non-stochastic matrices of full

column rank and are n x k and n x p respectively; 13 and 7) are unknown

coefficient vectors and are k x 1 and p x 1 respectively.

Assume, however, that the model is incorrectly specified as:

Y = Xg + (2)

So, tr = Zry + c, and tz N(ZThcr2I), but it is assumed by the researcher that µ -

N(0,cr2I). In addition to the sample information, there exists uncertain prior

information about the coefficient vector 13, in the form of a single linear

inequality hypothesis:

C'I3 r, (3)

where C' is a 1 x k known vector and r is a known scalar.

It is well known that the unrestricted estimators of 13 and cr2, which

utilize only sample information, are 13- = y, where S = X' X, and .7.2 =

(y-X[1.)' (y-X13-)/(n+a) respectively. The equality restricted estimator of 13,



which uses both the sample information and the exact restriction C'13 = r, is /3*

= - S-1C(C' S-1C11(C' and the corresponding estimator for cr2 is Cr.2 =

(y-X13 )' (y-Xf3 )/(n+7). The least squares (LS) estimator for cr2 corresponds to

8 = -k and 7 = -k+1, the maximum likelihood (ML) estimator corresponds to 6 =

= 0, and the minimum mean square error (MM) estimator corresponds to 3 = -k+2

and 7 = -k+3. Throughout this paper, the subscripts LS, ML and MM are used to

characterize the estimators corresponding to these three components. If the

researcher combines sample information with the inequality restriction (3) in

estimating model (1), then either the unrestricted estimator does not violate

the inequality constraint (3) and is chosen as the estimator for the model, or

the unrestricted estimator violates (3) and the exact restriction C' f3 = r is

imposed on the parameters. The equality restricted estimator is used in this

case.

Following Judge and Yancey (1986), (1), (2) and (3) can be reparameterized

as :

y= HO + + c, (4)

y= HO + (5)

and 0 ar (6)1 0

_ s1/2g ; = vT1/271; T =respectively, where H = XS-1/2Q' ; B = ZT-1/2V' ; 
= 
Q it 

Z' Z; ro = r/hi; hi is the first element of h' = C' S
-1/2

Q' and is assumed to be

positive without loss of generality; 01 is the first element of 0; V' V

and Q is an orthogonal matrix such that

( 0' )QS-1/2C(C' = 1

0 0

Now, the unrestricted and equality restricted estimators for 0 are :

[
= H' y and 0 = 

ro 
respectively,

( k-1)

5

= I,

(7)



where 
(k1) 

= i(k-1))5. Similarly, - the unrestricted and equality
5 - 

restricted estimators for cr2 may be expressed as ;2 = (y-H5)/(n+.3) and

*2 •0. = (y-H0 )/(n+7) respectively.

According to the two-step procedure described earlier, the inequality

restricted (IR) estimator for 0 is

.1.4. I 5 if 0r
1 o a0 = = I ( )0,
- ("'CO,

.
r
o
)
( )13 + I

Ir co)0 if 0
1
< r

0 
o' 

0

and the corresponding estimator for cr2 is

(8)

••••2 

0.2 

=

CT if 0 r
**2 - 1 1 0

= 

i 
• 0'. (9)*2 _ (-034-)

(5
1
)cr.2 + rom)

0 
1

o• f 0 < r 0 o
1 o

where Im(u) is an indicator function which takes the value unity if u falls

in the subscripted interval and 0 otherwise. If we let T = ro - 01 be the

slack variable associated with (6) and 13" = S-1/2Q 0" be the IR estimator for

the coefficient vector, /3, then (8) and (9) can be transformed to

[13** = ii - S-1/2Q'
-1 (u )(Cru

(-03,T0' ) 1 1

0
(k-i)

0.2 = + 
I(0T0') 

u
1 
[((cru 

1
-T)2-cr-2(7-3)) /(n+31

-3, 

(10)

respectively, where u = (0-O)/0. is a normal random variable with mean /a-

and variance 1, where g = (H' B' n), is the first element in the vector H' B'

Typically the reseacher is uncertain of the validity of the inequality

constraint and so may test for the inequality restriction (6). The test

structure is given by

H:0r vs H
1 0
: 0

1 
<r,

o 1 o

and the usual test statistic is

6



--1t =1/7, (0
1 
- r

0
)cr / n•CT-r- .

t has a doubly non-central t distribution with v degrees of freedom and

non-centrality parameters X21 
= (r ...)2/20,2 

and X = B' (I-HH' )137r/2a2. We write2

t" 
t(v;ATA2) 

However, without realising the specification error in the

model, the applied researcher believes t to have a central t distribution when

0=r and applies a t-test to test the null hypothesis. Hence, the decision rule

is to reject the null if t" < c, where c is the size - a critical value for the

central t variate with v degrees of freedom. If the null is rejected, then the

unrestricted estimator is chosen, otherwise the IR estimator is used in the

estimation process. Accordingly, the inequality pre-test (IPT) estimators for

0 and cr2 are :

and

Fi if t"< c
0 =

to if c ,C
" •11,t e + I (t)0ic,c0)

;2 if t" <c"2I ." • 2Cr = =1 (t )a' +1 (t )a..2 " (-03,C) [C, 03 )a if t ac

(12)

(13)

respectively. Again, if we define r = r0-01 and let 73 = S-1/2Q/8 be the IPT

estimator for the coefficient vector, g, then (12) and (13) can be transformed
to

and

[ 
I - -1 (u )(4Tu -T)-1/2 , (-00,(c

-, 
Cr+T)Cr ) 1 1g = 13 + S Q

0

^2 *.2
Cr = - I(...,(c,(3.-+T)cr-1)(111)[((alli-T)2- 2(7-5))/(11+1)]

(14)

(15)

respectively4, where c' = cli(n+S)/v. The risk functions corresponding to these

estimators are derived and analysed in the following sections.
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3. THE RISK FUNCTIONS OF THE ESTIMATORS OF THE PREDICTION VECTOR

If b is any estimator of 13 in model (1), then the risk function of the

prediction vector under squared error loss is defined as:

p(Xb,E(y)) = E [(Xb - E(y))' (Xb Etypi /cr2,

From Mittelhammer (1984),

- p(Xj3-,E(y)) = k + 2X2. (16)

p(X(3.,E(y)) = k + 2X
2 
+ 2X2 - 1. (17)

1

Now, from (10) and (14), the risk functions of Xf3 and )(13 may be expressed as:

p(X13..,E(y)) = p(Xii,E(y)) + E[I(...,,rcr-1)(111)((ruct)(2g-t-crudi /cr2 (18)

p(X13,E(y)) = ,E(Y)) ER' -1 (U ) -
-1(11),TO' ) 1 (-03,(ci C7*+T)0- )1)

(a'
2 
u
2
- T

2 
- g(cru -T))1/cr2 (19)

In order to evaluate these risk functions, we need supporting Lemmas 1 and 2

which are given and proved in Appendix A. Using these Lemmas, we establish the

following Theorem:

THEOREM 1

If X 0, then

p(X13",E(y)) = k + 2X2 - 1'3/2 +

p(X13,E(y)) k 2X + (E - P) /2 - X
2
(E - P )2 3,v 3
1 1,v

If A > 0, then

••
p(X13 ,E(y)) = k + 2X

2 3
-1 + P/2 + 2X2 X2P

1 1 1'

p(X13,E(y)) = k + 2X -1 + 2X2 + (E + P )/2 - X2(E + P)
2 1 3,v 3 1 1,v 1

- 2X
2
G +G ,

1 1,v 3,v

where

D = 

"

f x2

1  1 1



E =
co

2
e—X2E  

t=o t!2v/2+tr(-+t)
2

co
2

v/2+t-1 —q /2

(x
1 

(cq
j
Ari+ia

22 
))q
1 J 

j 
dq
22

0
2 2

2vA /c
t 1 2, co A
2 

v/2+t-1 —q
j 
/2 

2
G1 

= e
— 

t!2v/2+tr(+t)

A
zE   P(x

2 
< (cq Arcr+ia 

1
)
2
)q
2

e aq ,,j
t=o -": . 

 j

- 2

i = 1, 3 and q2j is a non-central chi-square random variable with j degrees of

2 2freedom and non-centrality parameter A.
2
, Le. q j x

"'Az).

Proof: see Appendix A.

When there is no mis-specification in the model, A2 = 0 and (20) - (23)

collapse to the expressions given by Hasegawa (1989)5.

These expressions are difficult to evaluate analytically. Accordingly,

numerical evaluations of the risks have been carried out for n = 10, 30, 50; k

= 2, 5; a = 0, 0.01, 0.05, 0.10, 0.25, 0.40; Ai= [-10,101 and various values of

2
. The NAG (1991) subroutine DO1AJF and subroutines from Press et at. (1986)

are used to evaluate the integrals E and G1 . Some representative risk,j

diagrams are given in Appendix B. Notice from the definition of A1 that for a

given level of the constraint specification error, T, A.1 changes with the

magnitude of C, the model specification error. The case of = 0 is

represented in Figure 1, which illustrates the results given by Judge and

Yancey (1981, 1986)6. Figure 2 illustrates a typical case for C 0 (and,

hence A
2 

0). If the horizontal axis of these diagrams measures T. then the

risk functions depicted in Figure 2 will shift either to the right or to the

left of its correctly specified counterparts (Figure 1), depending on the sign

of C. This implies that in an underfitted model, the use of valid prior

information does not necessarily lead to a reduction in risk. Equally,

pre-testing is not necessarily risk superior to ignoring prior information,

even if it is perfectly correct. This is consistent with Mittelhammer's (1984)

9



results for the case in which the prior information exists .in an exact form.

From the diagrams and the analytical results, we observe that given A2,

p(X13",E(y)) is bounded and approaches p(Xii,E(y)) as Al 4 -co, but it is

unbounded and approaches p(Xf3.,E(y)) as Ai 4 03; p(Xf3,E(y)) is bounded and

approaches p(Xfi,E(y)) as I Al I 4 03. Given A1, p(X13 ,E(y)) is unbounded as A2 4

**
co ; for any fixed Al, p(Xfi,E(y)) is unbounded and approaches p(X13 ,E(y)) as A2

co.
7 
[P(ME(Y))-P(XE(Y))] and [p(Xf3E(y))-p(4-,E(y))1 are both bounded by

-P 
3 
/2 + X2P

1 
(given A1

 
s 0), or by P

3
/2 + 2A2 - 1 - A2P

1 
(given X 

1 
>0) as A

11 1 2

co. It is apparent from these results that if A1 and A2 are both large, X13

could have significantly greater risk than the unrestricted predictor XII. This

result is significant as it implies that pre-testing could be potentially

dangerous when the errors associated with the constraint and model

specification are unknown in practice. This obviously cannot occur if there is

no mis-specification in the model, in which case A2 vanishes and p(Xf3,E(y))

approaches p(Xii,E(y)) as AI 4 co. When c 4 0 or c 4 -03, p(X13,E(y)) approaches

p(Xii,E(y)) and p(X(3",E(y)) respectively. Regardless of the size of the

pre-test (and hence the level of c), there exists no region in the A1 space

such that the risk of the pre-test predictor is smaller than the risks of the

unrestricted and inequality restricted predictor simultaneously. However,

there is always a region such that xi3 has higher risk than both 4.3. and Xf3".

This suggests that if we want to pre-test, then we need to choose an

appropriate critical value which brings the pre-test risk function as close as

possible to the smallest risk that can be achieved.

10



4. THE CHOICE OF OPTIMAL CRITICAL VALUES FOR THE PRE-TEST WHEN

ESTIMATING E(y)

Various criteria have been proposed for choosing an optimal critical value

of a pre-test. One such criterion is that of mini-max regret, which aims to

find a level of c such that the maximum regret of not being on the minimum risk

boundary is minimized. Along the lines of Sawa and Hiromatsu (1973) and Brook

(1976), the regret function of Xg is defined as

REG(A ,c) = p(Xg, E(y)) - inf p(Xg, E(y)), (24)

where inf p(Xg, E(y)) is the infimum of p(Xg, E(y)) over all values of A .

It is observed that
4,

p(X13, E(y)lc=- = p(Xg**,E(y)) if A < A.

inf p(Xg, E(y)) =

p(X13, E(y)I c=0) = p(Xii,E(y)) if A A.
1 1

(25)

where A* is that value of A1 > 0 for which p(Xg",E(y)) = p(XR,E(y)).

If we let d and d
u 

denote the least favourable values of the regret

function for A < A. and A1 A. respectively, then, analogous to the case in

which the linear restriction is held as a strict equality, the mini-max regret

procedure is to seek a critical value which makes both d and d
u 

as small as

possible. However, it is found empirically that increasing I c I decreases d

but increases d
u
. Therefore, to minimize the mini-max regret function over all

•
values of c and A1, the procedure is to seek c such that

Sup. REG(Ai,c ) = Sup • REG(Xec ). (26)
A <A A z:A
1 1 1 1

• is then the mini-max regret critical value.

As it seems impossible to derive the mini-max regret critical values

analytically, we rely on numerical computations! Table 1 in Appendix B reports

the mini-max regret critical values and the corresponding level of a for A2 =

0, 2, 10, 25, 50 and various values of v. From these results, the following

11



conclusions are drawn :

(i) When the model is properly specified (i.e. X2=0), the optimal critical

values do not vary much from -1.12 regardless of the degrees of freedom. This

is qualitatively consistent with the results of Sawa and Hiromatsu (1973) and

Brook (1976) for the case in which the linear restriction is held as a strict

equality. However, this does not imply a constant a, which varies from 19.1 7.

to 13.1 7. as v varies from 2 to 80. The risk function of Xj3 with the mini-max

regret critical value is depicted in Figure 1.

(ii) Once we allow for the omission of relevant regressors in the model

(i.e. A
z 

> 0), the optimal critical values vary with the degrees of freedom of

the model and can differ considerably from -1.12. This is illustrated in

Figure 2. The rate at which c* changes with the degrees of freedom in the

model increases as A2 increases. Furthermore, for given degrees of freedom,

c.1 decreases. as increases. Again, these results are qualitatively

consistent with those reported in the literature for the case in which the

linear restriction is held as a strict equality (see, Giles et at. (1992)).

Alternatively, one may consider choosing an optimal critical value

according to the criterion suggested by Toyoda and Wallace (1976) of minimizing

the average relative risk over the range of Al (which in the present context is

the area between p(X/3,E(y)) and min [p(X13',E(y)). p(43",E(y))1). However,

since the latter is independent of c, this criterion effectively amounts to

choosing an optimal c such that the area under the pre-test risk function is

minimized. If the area is expressed as a function of the critical value, it

can be shown that regardless of the magnitude of A2, this function reaches a

minimum at c=09. Hence this criterion always leads to the choice of the

unrestricted estimator. This conclusion is consistent with Toyoda and

12



Wallace's (1976) result for the case in which the prior restriction on g exists

in the form of a single linear equality. Given their results it is unclear

whether our findings would extend to more than one inequality restrictiore

5. THE RISK FUNCTIONS OF THE ESTIMATORS OF THE SCALE PARAMETER

If (7'2 is an esiimator of cr2, then the risk function of j'2 under squared

error loss is defined as:

p(r-2, 02) = E[(0.-2 0.2 2]/0.4.

From Giles (1990, 1991b),

,r-
p62 0.2. = 

[2(v+4A 
2 
) + (v+2A 

2 
-(n+3))1/(n+3)2

, 

) = [2[1 + v + 4(A2 + A2)) + [1 -
. 

+ 2(A +
1 2

(27) and .(28) collapse to the expressions given in Giles and Clarke (1989)•

when 7=3=0 and to -\those in Clarke et at. (1987b) when A2=0.

From (11) and (15), it is straight forward to show that the risk functions

of the inequality restricted and pre-test estimators may be written as:

p(0...02,0.2)

p(cr.‘2,0.2

= P( 2072) + E I

. x [2(c72-cr2) +
1

p
**22

) - 0.+110.-1)(u1) [ ( 
2 "'2

(crui--0-c)),a'  

x [2(cr-2-cr2) + ((cru

(7)

(28)

(29)

(30)

Now, using Lemmas 1 and 2 in Appendix A and the Lemmas given in Judge and

Bock (1978) or Clarke et at. (1987a), we establish the following theorem which

defines the risk functions for cr..2 and ;2 :

13



THEOREM 2

If As 0, then

p(cr..2,T2)

. p(cr-2,cr2) =

If X > 0, then

•*2 2.
p(cr ,cr )

= P(2r#2,Cr2) P(n+S) [A22+v+2X -(n+3)]/2 -+
1 2

+

(v+2)-X (211+3+7)-2(11+7)(V+2)]1P 
1
Mr1+5)(I1+1))

2 

2
[8X X +

12

4vX +8X
3
-4X (n+3)1P

2 
/1"(1)(n+7) + [v+2X 

2 
+6A

2
-(n+y)]P 

3
/(n+7)

2 1 

+ 8A P /111)(n+312 +
s
/(2(n+7)2)

14 2

••2 2

(31)

p(cr r ) - 3E /2(n+y)
2
 - 8X E /r(-)(n+7)

2 
+ (n+7-6X

2
)

1

5,v 1 4,v 2 1

E /(n+312 + (4X (n+7)-8X3)E /r(1)(n+r)2 + (2X2(n+,
)-2A4

)
3,v 1 1 2,v 2 1

E /(n+7) -1,v
1 2

v /(n+8)(n+7)
2 
- 4vX E /r (--)(n+7) -

3,v+2 1 2,v+2 2

v(2X
2
+(7-8))E /(n+7)2 - 2A E /(n+y)2 - 8X E
1 1,v+2 2 3,v+4 1 2 2,v+4

+ [(7-3)v(v+2)(2n+7+3) - 4A
2
(7-3)(n+3)(n+7) -

8X
2
A 
2 
(n+8)1 

E1,v+4 
+ 2(7-8)(2v+4)A 

2 
(7+3+2n)E

1 1,v+6

(2n+7+8)E1,",+81 /(2(n+3)2(n+7)2)

+ 4X
2
(7-a)
2

(32)

2 2 2
= .P( 2072) + (n+.3) [X +v+2X -(n+.3)j + v(7-3)[2(n+3)(n+7)

. 2

(n+8)(v+2) - (v+2)(n+3)] + 4X
2 
(7-8)[(n+S)(n+7) + (6-7)(v+2)

X (2n+ 3+7) - 2(n+7)(v+2)] - 6 2[X2(n+)2[X+v+2X - (n+.3))/2 + v
2 1 1 2

(7-8)[2(n+3)(n+7) - (n+8)(v+2) - (v+2)(n+3)1/2 +
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(n+.0 + (3-7)(v+2) A2(2n+8+7) -

+ [8A X 
2 
+4vX 

1 
+8X3-4A 

1 
(n+.3)1P

2 
/r(-1-Hn+712+ 2I[v+2X2+6X21-(n+7)] -

1  2

1v+2X +6X
z
-(n+7)1P

3
1/(11+7)

2 
+ 8A P ,r(1)(n+r)

2 
+ (6-3P )

2 1 14 2 5

(33)

, '2 2 4.1,2 2 2
PLO' •Cr = p(o• ,cr ) - 3E /2(n+7)

z 
- 8A E /1(-

1 
)(n+7)

2 
+ (n+7-6X )

5,v 14,v 2 1

E /(n+7)2 + (4A (n+r)-8X3)E /r(1)(n+7)2 + (2A2(n+7) 
-2A4,

3,v 1 1 2,v 2 1 11

E /(n+7)
2 
- vE/(n+6)(n+7) - 4vX El,v 3,v+2 1 2,v+2 2

- v(2X2+(7-8))E /(n+7)2 2X 
2 
E 
3,v+4 /(n+1)

z 
- 8A 

1 
X 
2 
E 
2 

4/
1 1,v+2 ,v+ 

111)(n+7)2 + [(7-3)v(v+2)(2n+7+3) - 4A
2 
(7-3)(n+3)(n+i) -

2 . 

8A
2
X ( + 2(7-6)(2V+4)X

2
(7++2n)E + 4Xn+.3)21E 4X28 z(7-8)1 2 1,v+4 . 1,v+6

(2n+T+3I
'E1,v+8 

/(2(n+3)2(n+i)2) - 3G
5,v

/(n+7)2 + 2(n+7-6X2)

G Anil')
2 

+ 4(X
2
(n+7)-A

4
)G /(n+ - 2vG

3,v 1 1 1,v 3,v+2

-2v (2A
2 
+ (7-6))G /(11+02 4X G /(n+7)2 + [(7-8)1 1,v+2 2 3,v+4

v(v+2)(2n+i+a) - 4X2(7-3)(n+3)(n+7) - 8A
2
A (n+3)

21
G

12 1,v+4

2(7-3)(2v+4)X (7+6+2n)G1,v+6 + 4X
2
(7-5)(2n+7+3)G 1
2 1,v+8

(34)

Proof: see Appendix A.

Given the difficulty in analyzing these expressions, we numerically

evaluate them for ri = 10, 30, 50, k = 2, 5, Xi= [-10,101 and various choices of
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X
2 
and a in the same way as for the prediction vector. From the analytical and

numerical results, we observe the following. At least for the cases that we

have considered, when the direction of the constraint is correct (i.e. r0),

and there is no specification error in the model, (i.e. EO such that

z) s p(c-rz, 0,2) s 2
and X 

2
=0), the inequality p 

cr c 
) always holds.

However, this is not necessarily true when e * 0 (and hence A2*0), This

result is analogous to the corresponding result when estimating E(y).

2 '2 2
For a given value of A both [p(cr

**2
, 0- 

2 •••2 
) - p(cr , a.)1 and [p(cr , cr ) -

••••2 2
p(a. , )] are bounded and approach zero as Ai 4 -co; when Xi

is unbounded and approaches p(cr.2, cr2), while p(cra2, cr ) is bounded and

approaches p(C;2, a.). For any fixed A 
1 
, p(crA2, cr2) 4 p(cr..2, cr2) as A

2 
co, but

[0720.02, cr2) 072,01 
and ) 
[p(jrz, 0.2) p(c3:2, 0.2]

J  are both unbounded as A2

-0 co. This result contrasts with what we have observed when estimating the

prediction vector, in which case the corresponding differences are both bounded

as A
2 

co, for given A. Other things being equal, the difference between
1

p(crA2, cr2) and p(Cr-2, cr2) can be significant when Xi is relatively large and A2

increases without limit. -"?

Furthermore, with a relatively large A2, ..:;:m2L can be uniformly risk

superior to the other estimators corresponding to the ML component that we have

considered, while this situation does not emerge if the component estimator is

the LS or MM estimator instead. By constrast, with the LS or MM estimators,

there always exists a family of inequality pre-test estimators which strictly

dominates the unrestricted estimator, regardless of the value of A2. Over

certain regions in the Ai space, this family of pre-test estimators also

dominate the inequality restricted estimator. These results concur

qualitatively with those of Giles (1990, 1991b) for the case in which the

restriction holds as a strict equality and the disturbances are spherically

16



symmetric.

From our numerical evaluations, it is also apparent that for sufficiently

large A2, the inequality pre-test estimator with c = -1 for the LS component

and c = -1,71v4-721 for the MM component may strictly dominate their respective

unrestricted and inequality restricted estimators. This constrasts with what

we observed when estimating the prediction vector. At least for the cases that

we have examined, out of the three component estimators, in terms of minimizing

estimator risk, it is always preferable to use the estimators based on the

minimum mean square error principle, other things being equal. Figures 3 to 6

in Appendix B illustrate some of these results.

The choice of optimal levels of' significance when estimating o-
2 

is

currently being investigated. However, it is irrelevant to consider optimal

pre-test size when A2 is large, as the inequality pre-test estimators with c =

-1 (for LS), c = -iiii(‘77-1-2) (for MM) and c = 0 (for ML) strictly dominate the

family of IPT estimators. Our preliminary results show that when A2 is small,

c = -1 (for LS) and c = - Vv/(v+2) (for MM) are the optimal critical values

under both the criteria of mini-max regret and minimum average relative risk

for the cases that we have considered!1 When the maximum likelihood • method is

applied, then the optimal critical value varies not only with the model's

degrees of freedom, but also with the number of observations in the sample.

Further analysis of this case is currently being undertaken by the author.

6. CONCLUSIONS

In this paper we have considered the sampling performance of the

inequality restricted and inequality pre-test estimators for both the

prediction vector and the scale parameter in an omitted variable model. This

was also the first analysis of the estimation of the scale parameter that takes

17



into account the inequality nature of non-sample information imposed on the

regression coefficients. The risk functions of these estimators were derived

and numerically evaluated.

Common to both the problems of estimating the prediction vector and scale

parameter, we found that the use of perfectly correct valid information does

not ensure a reduction in risk in an underfitted model. Both the inequality

restricted and pre-test estimators for the prediction vector were found to be

risk inferior to the unrestricted estimator over a large portion of the (A1,X2)

space. In particular, the degree of inferiority increases with A2. If the

method of maximum likelihood is applied to estimating the scale parameter, it

was found that the unrestricted estimator can uniformly dominate all other

estimators under consideration when the degree of model mis-specification is

serious. Thus, when estimating E(y) or cr2 using the principle of maximum

likelihood in an underfitted model, the application of the unrestricted

estimator may be preferable to pre-testing or imposing restrictions naively in

terms of minimizing estimator risk.

If the least square or minimum mean square error estimator is chosen as

the component estimator for the scale parameter, then our results show that,

for any finite A, there exists a family of pre-test estimators which are2

uniformly superior to the estimator that ignores the prior information. When

is sufficently large, the inequality pre-test estimator, with an appropriate2

choice of critical value, may strictly dominate both its components. These

results clearly indicate that, potentially, there is much to gain from

pre-testing when estimating the scale parameter using the least square or

minimum mean square error principles, and specification error tends to make the

IPT estimator more favourable relative to its components.

However, in practice, researchers rarely estimate the scale parameter and

18



prediction vector separately. Given our results, it is unclear whether the

risk gain from pre-testing in estimating the scale parameter can compensate the

corresponding potential risk loss when estimating the ediction vector. This

suggests that one should perhaps consider a joint risk function for estimating

both the scale parameter and the prediction vector. This remains an

interesting point of departure for future research.

We have also shown that, if the non-sample information is a single linear

inequality constraint, then a critical value of zero for the pre-test (i.e.

always ignore the restriction) is the best strategy for estimating the

prediction vector according to the criterion of minimizing the average relative

risk. If the alternative mini-max regret criterion is used, then we have shown

that, under the maintained assumption of a properly specified model, the

optimal critical values are invariant to the model's degrees of freedom.

However, this property no longer holds once we allow for possible

mis-specification in the regressor matrix. Accordingly, any attempt to apply a

mini-max critical value obtained under the assumption that A2=0 will not

necessarily lead to an optimal pre-test risk when the model is in fact

underfitted. An investigation on the choice of the optimal critical value for

the pre-test when estimating the scale parameter is currently being undertaken

by the author.
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Footnotes

1. See also Liew (1976) and Judge and Yancey (1986).

2. By constrast, in cases for which the prior information exists as exact

equalities, the sampling properties of the resulting equality restricted and

pre-test estimators have been investigated rather extensively. [See, for

example, Ohtani (1983), Mittelhammer (1984), Giles (1986), Giles and Clarke

(1989), Giles (1990, 1991b) and Albertson (1991).)

3. Although Ohtani (1991a) has considered pre-testing for the variance in a

normal population after a one sided pre-test of the mean, his pre-test

estimator is a choice between the unrestricted and the equality restricted

estimators. Yancey et at. (1983) discuss the sampling properties of the

inequality restricted and pre-test estimators for cr2 when an inequality

constraint exists in the form of cr2 a cr2, which is a different problem to the

one that we are investigating here.

4. It must be noted that these expressions are valid only for c < 0 (i.e. a <

0.5). For c a 0, it can be easily shown that the unrestricted estimator is

always used as the estimator for the model regardless of the outcome of the

hypothesis test.

5. As is noted in the introduction section, Hasegawa (1989) considers the

estimation of the mean in a normal population, which is related but not

identical to the problem investigated here.

6. Judge and Yancey (1981, 1986) assume that o.2 is known in their analysis.

However, the results are qualitatively the same as for the a.2 unknown case.

7. For any non-zero c and finite A1, G. and E. j both approach zero as A2403.

Hence the risk of the pre-test estimator approaches that of the inequality

restricted estimator as A24 co. When A14 co, Gi j 1 whereas Eii 4 0, hence

the risk of the pre-test estimator approaches that of the unrestricted

24



estimator.

8. Brent's (1974) algorithm is used to search for the value of X. The Golden

Section Search routine given in Press et (1986) is used to compute mini-max

regret critical values

9. Details are available on request.

10. Toyoda and Wallace (1976) find that when the number equality restrictions

is less than 5, c=0 is the optimal critical value regardless of the model's

degrees of freedom. When there are more than 5 restrictions, the optimal

critical value increases with both the degrees of freedom and the number of

restrictions, and is approximately 2 for the central F distribution when the

number of restrictions is more than 60.

11. It can also be shown analytically that these pre-test risk functions

achieve stationary points at c = 0 (for ML), c= -1 (for LS) and c = - Ni7/(v-7—I-2)

(for MM), which coincides with the results• obtained when the a priori

restriction holds as a strict equali-ty, as shown by Giles (1990, 1991a, 1991b).

Details are available on request.
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Appendix A

Proof of Theorems -1 and 2

We need the following supporting lemmas in order to derive the risk
•• ••2 -2functions of Xfi , X, cr and cr :

Lemma 1:

If w is a normal random variable with mean 0 and variance 1, and d e R , then

E[I w)wl ItE=i0(Ei
to

P(x2 a f2)/2
t J t t+i

if fs0 (A.1)

j [ I(t) - P( 2 if f>0 (A.2)xt+i f2)/21r1 -t 

where = 2u2r((t+i)/2)/r(1), f = d-0 and I(t) = 0 if t is odd, 1

otherwise. This Lemma generalises Theorem 1 of Judge and Yancey (1986, 72-73)

to a normal variable with non-zero mean.

Proof:

Let z = (w - 0) - N(0,1), then E[I (w)wl can be written as(--co,d)

E [I(d_o)(z)(z-f0)1 . Now 
E[I( d-0) 

(z)(zt0J-t)1 , t=0,..j, can be evaluated

using Theorem 1 of Judge and Yancey(1986). Lemma 1 then follows.

Lemma 2:

Let w, d, f and I(t) be defined as in Lemma 1. Let X(% A) 
and c e

then for f s 0,

E
(4-fi+d)

(w)wl

=E
ii

t=0 t

V iiico) (_
1)
toi-ti..2 e-A z X

1

t 1=0 il2v/2+1r(2:+i) IP Xt+1
2 

0--
2 2

and for f > 0,
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E11 dip+d)(w)vil

co v IP
= E
i [ i (_otoi-tcl e-X 13

, 1
A  1 p 

(x2"1 

(cifi--b+f)2 2
-4.1-1 --

e 2/2 dipt 
v/2+1r(Yt=0 t i=o 112 2-+I) 0 

f
2
/c
2

V 
111-1 
-/

1 
-+

+Ho p (x2 1< (c4+f)2) 02 e 2do
t + (A.4)

Proof:

Since c E R-, hence f s 0 4 C111/+f S 0. Using Lemma 1,

E 
I 
, _ 
of 
r-
l+cr50[1(co d)(W)W1 

= )( -nt 0j- t 
( 

tp (X +1a 2t+it(c+f )2) /2.r-
w Il-- ,cy ill+

i 1=0 t

Therefore, E [I( -i-j+d;(w)wl = E ( ) (-1)V-tf2 E p 
, [P (x2 

i 
'-(cii-P+f )2) 1/2 whent t t+ 

f s 0, which leads to (A.3). Now, when f > 0, the sign of di-sts + f is

undetermined. When cliiii + f s 0, the range of 0 is restricted to 0 t f
2 
/c
2

while clr,li + f > 0 to 0 < 0 < 12/c2. Hence when f > 0, E [I(...0(w)wil =

Eli ( f z/c2,.)(0)Ewl cirp+f <0 [I(_codiTi+d)(w)wi] +
i(o,r2/c2)(iP)Ew I c4f>0

+d) 
(w)wl 1. The two inner expectations may be evaluated using Lemma 1.

Noting that I 
f2/c2,03)

(0) = 1 - 
I( 

2
/c 
2
) 
NI), (-1)t + 1 = 2I(t),0,r 

f 
2
/c
2

2 2 (ONO)] = F(P) p.d.f. OP) dtp and P (X2 t(c4+f =Co,f ic ) t+1

1+2 <(c4+f )2) for any given 0, (A.4) follows directly.t +

Proof of Theorem 1

The expectations in (18) may be evaluated directly using Lemma 1, for j =

1, 2, 3, and by recognising that A2 = (T-)2/2/72 enables the derivation of

p(X13",E(y)).

To establish p()43,E(y)), we require Lemma 2 to evaluate the expectation
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terms of the form El!(-co,(cij.+T)cr-1)(.)1 in (19). The remainder of the

expectations may be evaluated using Lemma 1. Hence p(X(3,E(y)) follows

directly.

Proof of Theorem 2

The evaluation of p(cr2",cr2) involves the straight forward application of

Lemma 1 for j = 1,

Finally, the derivation of p( 2,0'2) involoves the evaluations of

E [I (udcr and E  )cr (u 4]. among others. Now
-1(-03,(c13.+T)o. ) (-03,(c

-, 
o-+T)o. )

(u) I u may be regarded as a function of ;2, as ; is defined
(-03,(c';+-r)cr-‘) 1 1

"•2 -only on the non-negative horizon and each Cr corresponds to a unique Cr.

Therefore, using the lemmas given in Clarke et al. (1987a) or Judge and Bock

(1978, pg 319-321),

2
cr

E[I(u)cr = - v E I
-1 (u1)n+O ,z 

+ 2A 
2

-c;C X ( v+2,A
2
)+TCr )

E (11 
1 
)]1 .

(-03,C/X 2
)

i 
-1,

(v+4,A
2
) 4. 

(A.5)

The two inner expectations can be evaluated using Lemma 2. The evaluation

of E[I (u )Cr#4 involves the repeated use of (A.5). Using these
(-co,(c';+r)a•-̀ ) 1

results and the two Lemmas given above yields p(O‘'2,0s2) directly.
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Table 1: Mini-max regret critical values for the pre-test of an inequality restriction when

estimating E(y)

2

2 10 25 50

v
.
c a(%)

.
c a(%)

.
c a(%)

.
c a(%)

.
c a(%)

2 -1.112 19.096 -0.642 29.322 -0.338 38.363 -0.221 42.287 -0.158 44.455

5 -1.118 15.717 -0.834 22.115 -0.502 31.834 -0.340 37.401 -0.246 40.774

10 -1.122 14.395 -0.949 18.253 -0.649 26.538 -0.460 32.774 -0.340 37.049

15 -1.124 13.929 -0.999 16.682 -0.737 23.632 -0.541 29.816 -0.407 34.482

20 -1.125 13.691 -1.027 15.829 -0.796 21.765 -0.602 27.687 -0.460 32.514

25 -1.126 13.547 -1.045 15.293 -0.839 20.458 -0.651 26.061 -0.504 30.926

30 -1.127 13.449 -1.058 14.926 -0.873 19.490 -0.690 24.769 -0.542 29.603

35 -1.127 13.38 -1.067 14.658 -0.899 18.705 -0.723 23.715 -0.574 28.477

40 -1.127 13.327 -1.074 14.455 -0.92 18.150 -0.752 22.835 -0.603 27.504

45 -1.127 13.286 -1.08 14.295 -0.938 17.667 -0.776 22.093 -0.628 26.652

50 -1.127 13.253 -1.085 14.165 -0.953 17.267 -0.797 21.454 -0.660 25.617

55 -1.127 13.227 -1.088 14.059 -0.965 16.929 -0.816 20.900 -0.672 25.227

60 -1.127 13.204 -1.092 13.970 -0.976 16.640 -0.833 20.414 -0.691 24.623

65 -1.127 13.185 -1.094 13.894 -0.986 16.390 -0.848 19.984 -0.708 24.078

70 -1.E28 13.169 -1.097 13.828 -0.994 16.172 -0.861 19.601 -0.724 23.582

75 -1.128 13.155 -1.099 13.771 -1.002 15.980 -0.874 19.258 -0.738 23.130

80 -1.128 13.142 -1.1 13.722 -1.009 15.810 -0.885 18.949 -0.752 22.715
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