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1. INTRODUCTION

1.1 Background Discussion

In applied econometrics it is generally apparent that the researcher

has undertaken a "search" for the preferred specification of the model, or

for the appropriate estimator to use. Sometimes this strategy is made

explicit and it may have been undertaken in a systematic way. In other

cases there is only a vague impression that the final results are not the

only ones that were generated during the course of the analysis. Most

economists who use econometric tools are aware that "mining" the data may be

distortive in some sense and that the end results may not be what they

appear to be.

Consider some simple but common examples of this sort of sequential

econometric analysis. First, suppose that the following regression model

has been fitted to the data by Ordinary Least Squares (OLS):

Yi g0 
3
1xli g2x2i ei (1)

Then, to determine the "significance" of' x2 in the model, a t-test is

conducted. If the usual t-ratio exceeds the tabulated critical value (for

the chosen significance level) then x2 is deemed to be a "significant"

regressor and it is retained in the model. On the other hand, if x2 is

"insignificant" it is deleted from the model, which is then re-estimated

(effectively by Restricted Least Squares (RLS)). So, the final

specification of the model depends on the outcome of a prior test and the

estimates of the coefficients of the other variables in the model also

depend on the outcome of this test. In addition, the properties of any

further tests that may be conducted are affected by the way in which the

model's specification was determined.

As a second example, consider the estimation of' (1) by OLS. Then,

suppose the Durbin-Watson statistic is computed to test whether or not the

model's errors are serially independent. If this hypothesis cannot be

rejected, the OLS estimates of the coefficients are retained. However, if

serial independence is rejected the model is re-estimated (perhaps using the

Cochrane-Orcutt (CO) estimator), and different coefficient estimates are

obtained. Again, the estimates that are finally reported depend on the

outcome of a "preliminary test", and if (for example) one then tests the

significance of a regressor in the usual way, the "t-statistic" is no longer

t-distributed.
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Both of these examples are realistic, though they over-simplify the

situation because in practice a sequence of such tests might be adopted.

However, they capture the esspntial feature of "pre-test" strategies in

econometrics - the choice of estimator, and the final estimates, depend on

the outcome of a random event. The probability of choosing OLS or RLS

estimation in the first example, or of choosing OLS or CO estimation in the

second example, depends on the significance level for the pre-test, as well

as on the test's power. In effect, the estimator that generates the

reported estimates is a stochastic mixture of two (in these examples)

"component" estimators. In general this Pre-Test Estimator (PTE) will differ

from each of its components in the sense that it will have a different

sampling distribution, and so generally its bias and precision will also

differ. Pre-testing generally affects the sampling properties of the

estimators that we use. For instance, in the first example given above the

PTE is biased unless 132=0. These effects are often complicated and depend

on the unknown \ parameters in the model.

Pre-test testing is also widely practised in econometrics, and the

consequences of such strategies are of considerable interest. In certain

rather special cases, two successive econometric tests may be independent.

Then, the effect of the first test on the properties of the second can be

controlled, and this may have implications for the extent to which there is

a pre-test testing "problem". Two further examples may be helpful.

Consider a sequence of "nested"• models or hypotheses, such as when we

take a multiple regression model, which successively delete regressors in

such a way that each model in the sequence can be obtained from its

predecessor by the deletion of one or more regressors, and we attempt to

find the most parsimonious "significant" model specification. It is well

known (e.g., Mizon (1977)) that, with such a nesting, the size of the test

of restrictions on the coefficients at any stage can be controlled (against

the overall maintained hypothesis) if each null is tested against the

previously accepted null in the sequence. Without such nesting, size

control is not generally possible, and the resulting size distortion is due

to the inherent pre-test nature of the analysis. Similarly, if the

hypotheses are nested but the researcher tests each successive null against

any alternative other than the immediately preceding null, then a pre-test

problem arises.

Finally, consider the familiar Chow test for the structural stability

of a regression coefficient vector. It is well known that the validity of
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the standard form of this test relies, among other things, on the

homoscedasticity of the error variance across the two subsamples. When this

assumption is violated, we have a form of the famous Behrens-Fisher problem

and alternative approximate tests are available. So, there is a strong

motivation to pre-test for homogeneity of the variance prior to conducting

the test of primary interest (the test for structural stability). In

contrast to the preceding example, however, in this case the form of the

second test depends on the outcome of the pre-test. The standard pre-test

statistic in this case is an F-ratio, and it is readily shown (e.g.,

Phillips and McCabe (1983)) that this statistic is independent of the Chow

test statistic. Consequently, the true size of the second stage Chow test

is the product of the nominal sizes chosen for this test and for the

pre-test. Judicious choices of these nominal sizes can be used to control

the true second stage size for the Chow test itself, as desired. However,

even with this independence there remains a pre-test testing issue as an

alternative test would be used only if the pre-test null was rejected. We

explain this further in Section 6.1.

Typically non-independence of successive test statistics is the norm in

sequential hypothesis testing in econometrics, and in these cases there are

pre-test testing issues to be addressed, as we shall see in Section 6.

Specifically, how are the (true) size and the power of a second test

affected by the presence. of a pre-test?

Although sequential inference alters the properties of estimators and

tests, the commonly held view, that pre-testing is intrinsically "bad", need

not be true, as we shall see. It should also be emphasised that these

effects arise purely because of the introduction of a randomisation process,

and not because the same data are being used more than once. Indeed, even

if the sample is split and one part is used for preliminary testing and the

other part for subsequent estimation, the pre-test effects that we have

described still arise'. Also, if a sequence of pre-tests is used, the

randomisation process becomes increasingly complicated, especially if the

various tests are not independent of each other. In such cases it becomes

difficult to determine the properties of the resulting estimators.

The above examples will be familiar to anyone who has undertaken

applied econometric research. Indeed, pre-testing is probably the norm,

'For example, see Toyoda and Wallace (1979).
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rather than the exception, in applied econometrics and so it not surprising

that a sizeable literature on this topic has developed. While much of this

literature does not attempt to offer prescriptions about what researchers

should or should not do in their empirical work, it does provide a

considerable amount of information about the likely consequences of

pre-testing in econometrics. Accordingly, the recent contributions in this

field are of practical interest to many economists, and the purpose of this

paper is to highlight some of the major themes that have emerged recently in

the pre-testing literature, at least with respect to econometric (as opposed

to purely statistical) analysis. We also attempt to extract practical

recommendations as far as possible to assist applied workers.

1.2 Historical Setting

The seminal contribution of Bancroft (1944) can be taken as the

starting point for the analysis of pre-testing problems that are of direct

interest to economists. Motivated in part by the earlier remarks of Berkson

(1942), that there was a need to investigate the statistical properties of

sequential estimation strategies, Bancroft analysed two pre-testing problems

which set the scene for much of the subsequent work in this field.

The first is as follows. Suppose that we draw two independent samples

from two Normal populations, each with possibly different variances. These

variances can be estimated separately from the respective samples. We can

also test for variance homogeneity, and if this hypothesis is accepted then

there is good reason to "pool" the two samples and estimate the (common)

population variance from the combined data. In particular this "pooled"

estimator may be more efficient than one based on a single sample. This

suggests a pre-test strategy : test for variance homogeneity and either pool

the data, or don't, according to the outcome of the prior test. Bancroft

derived exact analytic expressions for the bias and variance (and hence Mean

Squared Error (MSE)) of this PTE, for the case where the pre-test involves a

one-sided alternative. For economists, the interest in this result is that

it can be translated into a regression problem where one is testing for a

specific type of heteroscedasticity of the errors, and pooling subsamples of

data prior to estimating the error variance only if the errors are thought

to be homoscedastic. This in turn suggests another related pre-test problem

to which we return later : after pre-testing for this type of

homoscedasticity, what are the sampling properties of the regression

coefficient estimator?



The second problem considered by Bancroft was explicitly regression

oriented, and was essentially that discussed above in relation to equation

(1). To reiterate, suppose a regression model with two regressors has been

fitted by OLS, and the model is either retained or simplified by deleting

one of the regressors, depending on the outcome of a t-test. Bancroft

derived an exact analytic expression for the bias of this pre-test

estimator. Subsequent authors considered the estimator's second moment, and

extended the analysis to the more realistic case of the multiple regression

model.

Much of the basic work on pre-test problems of this type, or problems

of "inference based on conditional specification", as it was referred to,

was undertaken by Bancroft in collaboration with his colleagues and

students. Bancroft and Han (1977) provide an annotated bibliography of this

early work, though many of the problems considered are not of direct

interest to econometricians. A second bibliography is given by Han et at.

(1988).

Pre-test problems with an explicit econometric content were taken up

subsequently by a series of researchers. In particular, work by Dudley

Wallace and a series of graduate students at the University of North

Carolina led to several seminal developments, and helped to raise interest

in this field among a number of Japanese researchers. Other path-breaking

contributions came from George Judge, Thomas Yancey, Mary Ellen Bock and

their associates and students at the University of Illinois, Purdue

University, and later at Berkeley. The range of econometric pre-test

problems that has now been analysed is extensive, but in many cases they are

essentially variants of those first considered by Bancroft (1944).

In the next section the key results from the econometrics pre-testing

literature are stated and summarised briefly, as a background to a more

systematic discussion of the major themes that have emerged recently in

research in this field. These are taken up in Sections 3 to 7, and some

concluding remarks appear in Section 8. Each sub-section includes some

summary comments to assist the reader who is concerned primarily with the

practical implications of the results under discussion.

2. PRINCIPAL RESULTS

2.1 Pre-Testing Linear Restrictions in Regression

As in the rest of this paper, we concentrate here on "conventional"
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PTE's that is, ones whose components are the traditional ones that have been

used in empirical econometric analysis. In particular, while recognising

their interest and importance, we do not consider Bayesian PTE's or ones

whose components are of Stein-like form. For a discussion of these related

alternatives, the reader is referred to Judge and Bock (1978, 1983), Vinod

and Ullah (1981) and Judge et al. (1985).

Much of the econometrics pre-test literature is based on a natural

generalisation of Bancroft's second problem. This involves the linear

multiple regression model,

y = x13 + e ; e-N(0,cr2I) (2)

where y and e are (Txl); X is (Txk), non-stochastic and of rank k; and 13 is

(kxl). In addition, prior information suggests m (<k) exact independent

linear constraints on the regression coefficients

R13 = r (3)

where R is (mxk), r is (mxl), and both are known and non-stochastic. We

will consider the estimation of both 13 and cr2. Let 3 = Rfi-r be the error in

the prior information. This situation is commonly encountered in applied

econometrics, except usually the researcher is uncertain of the accuracy of

the prior beliefs. Accordingly, the procedure usually followed in practice

is to (pre- )test the validity of the restrictions and if the outcome of the

pre-test suggests that they are correct then the model's parameters are

estimated incorporating the restrictions. If the pre-test rejects the prior

information then the parameters are estimated from the sample information

alone. Prior to considering the properties of such pre-test estimators of 13

and cr
2 
we will briefly review the estimators which ignore the restrictions

(the "unrestricted" estimators) and those which assume the restrictions are

correct (the "restricted" estimators).

The unrestricted OLS (and maximum likelihood) estimator of 13 is well

known to be b = S-1X' y, where S = (X' X) and b N cr2S-1) Consequently

its risk under squared error loss (the sum of the MSE's of each individual

element of b) is p(f3,b) = E ((b-g)' (b-(3)) = cr2tr(S-1). From the Gauss-Markov

theorem we know that b is the best linear unbiased estimator (BLUE). It is

minimax and, among the class of unbiased estimators, minimises risk under

quadratic loss.

A best (minimum variance) quadratic unbiased estimator of (r2 is the

usual least squares estimator, given by c71.2=(y-XV (y-Xb)/v, where v=(T-k),

p( _12
and 

2
,)=204/v. If we allow the estimator of o-2 to be biased then the

estimator of cr2 with smallest MSE is .7)-142 =(y-Xb)' (y-Xb)/(v+2), and its risk is
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p(cr2,C;m21=2Ar 4/(v+2). The maximum likelihood estimator of a. is
)0s4/T2.

crML 
2 =(y-Xb)' (y-Xb)/T and p(cr2,cr-

M
2
L
)=(2v+k2

Imposing the restrictions in (3), we estimate 13 by
--b*=b+S-1R' (RS -1R' 11(r-Rb), which, with D=S-1R 

qRS-1R, 11Rs1, 
has a risk

under squared error loss of p(13,V)= cr2tr (S-1-D)

tr (S-11Z1 [RS-1R' J-1661 ERS-1R' 1"1RS1 b* is unbiased if and only if the

restrictions are correct (3=0). Further, as D is at least positive

semi-definite, var(b)avar(bi), i=1, 2, ... ,k, and within the class of linear

estimators of 13, b* is BLUE in this case.

The corresponding restricted estimators of are

CI
2=(y-Xb*)I (y-Xb*)/(v+m) cri:4

12
=(y-Xb*)' (y-Xb*)/(v+m+2), and

cr* 
2
=(y-X13*)1 (y-Xb*)/T. Now ((y-Xb*)1 (y-Xb*) 

4v+m,A
where theML 

non-centrality parameter, A, defined by A=.3' [RS -1R' ri6/2T2, is a measure of

the validity of the linear restrictions. If the restrictions are true, 6=0

and so A=0. It is straightforward to show that 
p(0.2,012) =

2(2A2+4A+v+m)cr4/(v+m)2 , p(o-2,142) = 2(2A2+v+m+2)cr4/(v+m+2)2 , and 
p(cr2014L2)

= (2(m+v+4A)+(m-k+2A)1 cr4/T2 .

Several studies2 have considered the conditions under which the risk of

b dominates that of b* and vice versa. These conditions are generally data

specific, as their risks depend on X. This limits the generality of any

comparisons based on quadratic risk and so to avoid this complication we

will, as others have, concentrate on the conditional forecast of y rather

than on 13 itself. This is equivalent to assuming orthonormal regressors

(Le. X' X = I
k
) in the 13 space. So, though similar conclusions are drawn

from comparing the risk functions, the mapping from the conditional mean (or

orthonormal regressors) case to that of considering the unweighted risk of

estimators of g (i.e. nonorthonormal regressors) is not direct and is

significantly more complicated3. The risk of Xb, the unrestricted estimator

of E(y), is

2
For instance, see Toro-Vizcarrondo and Wallace (1968), Wallace and

Toro-Vizcarrondo (1969), Wallace (1972), Goodnight and Wallace (1972),

Yancey et at. (1973), Bock et a/. (1973). See also Judge and Bock (1978)

for a summary and a discussion.

3See, for instance, Wallace (1972), Brook (1972, 1976), Bock et at. (1973),
Yancey et a/. (1973), and Judge and Bock (1978). Brook (1972, 1976), Bock et
a/. (1973), and Judge and Bock (1978) also consider the unweighted risk
function of the pre-test estimator of 13 itself.



p(E(y),Xb) = E((Xb-X(3)' (xb-xf3)) = E

while that of the restricted estimator, Xb*, is

(b-f3)' X(b--13)

(4)

p(E(y),Xb*) = cr2(k-m+2A). (5)

Comparing (4) and (5) we see that the risk of Xb* is less than or equal to

that of Xb if Am/2.

Similarly, there is a A-range over which the risk of the restricted

estimator of tr2 is less than or equal to that of the unrestricted estimator.

The values of A, A* ( j=L,M,ML) for which the risks are equal depend on the

estimation method, but it is readily shown that At*m/2 and so, if the

researcher desired the minimum risk estimators of E(y) and cr2, there will be

some A-range over which his strategy should be to use the restricted

estimator of Cr2 but the unrestricted estimator of E(y). This suggests

considering a joint risk function for E(y) and cr2, something which has not

been pursued in the literature.

We now consider the situation where the researcher undertakes a pre-

test of the validity of the restrictions. Traditionally,

Ho : 8=0 vs H1 : 8*0

is tested using the Wald (and Lagrange Multiplier) statistic

= ((Rb-r)I [RS-1R' ]-1
(Rb-r)v)/(m(y-Xb)I (y-Xb)).

If Ho is correct, the test statistic t has a central F distribution with m

and v degrees of freedom, F(m,v). 
If one or more of the restrictions are

invalid, e has a non-central F distribution with m and v degrees of freedom

and non-centrality parameter A. We reject Ho if t>F7m,v)=c, where the

critical value, c, is determined for a given significance level of the test

a, by I dF,m,v)= Pr. (F(m,v)lsc)=(1-a). This is a UMPI size-a test of the

0
validity of the restrictions. If Ho is rejected we use the unrestricted

estimators of E(y) and G.2. If tsc, we assume the restrictions are correct

and use the restricted estimators of E(y) and cr2. So, the estimators of

E(y) and cr2 actually reported are the PTE 's

Xb if t > c
Xb — (6)

Xb* if t c

and

9.



,2 cri if > c
=

cr*2 i f f c

j=(L, M, ML). It is useful to rewrite (6) and (7) as

and

Xb
[0,c]

(e)Xb* + I
(c,03)

(f)Xb

^2
a'. = I (e)crt

2 
+ I (e)cr.

j [0,c] j (c,03)

where I
( 

(f) is an indicator function which takes the value unity if.,.)
falls within the subscripted range and zero otherwise. From (8) and (9), it

is clear that the PTE's are functions of the data, the hypothesis, and the

significance level of the test. Representing a PTE in this way highlights

the difficulty of deriving its sampling properties; it is the sum of two

parts, both of which are composed of products of non-independent random

variables.

Bancrofts' second problem is a special case of the above - he

considers a single "zero" restriction when k=2, and derives the bias of b1.

Toro-Vizcarrondo (1968) derives the MSE of b
1 
for this estimator, and Brook

(1972, 1976) generalizes these results, by deriving the unweighted risks of

the pre-test estimators of 13 and E(y) for the general multiple restrictions

problem, as outlined here. Sclove et al. (1972) also derive the risk of the

PTE of 13 in the orthonormal regressor model and Bock et al. (1973) extend

their analysis to the non-orthonormal case4.

The risk of Xb, under squared error loss, is

where5

= Pr. [Fi m+i,v+i;A) (cm(v+j)) / (v(m+i))] ; i,j=0,1, (11)

Figure 1 illustrates typical risk functions of Xb, Xb*, and Xb (for

ce(0,03)). Some features are:

(a) If the restrictions are valid the pre-test risk is less than that of

the unrestricted estimator but higher than that of the restricted estimator.

(10)p(E(y),Xb) = cr2 
(1c+(4A-m)P20-2-XP40)

4
These results are discussed, for instance by Wallace and Asher (1972),
Wallace (1977), Judge and Bock (1978), who also further generalise this
research, and Judge et at. (1985).
5
F' is a non-central F-statistic with m+i and v+j degrees of(m+i,v+ j;A)

freedom, and non-centrality parameter A, defined above.
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Intuitively, if A=0, the PTE will lead us to use the restricted estimator

100(1-a)% of occasions but 100a% of the time we will erroneously ignore the

prior information.

(b) p (E(y),Xb) =p (E(y),Xb I ce(0,03)) occurs for a value of A A e[rn/4,m/a

So, for Ae[O,A1) the risk of the PTE, Xb, is less than that of the

unrestricted estimator, Xb, but higher than that of the restricted

estimator, Xb*, while for Ae(X2'
co), Xb has smaller risk that that of Xb* but

is dominated by Xb, where A_
z 

is the value of A such that

p (E(y),X13,*) =p (E(y),Xb) . For Xe(A1,A2), Xb has higher risk than that of both

Xb and Xb*. Thus, pre-testing is never the preferable strategy.

R
E
L
A
T
I
V
E
 R
I
S
K
 

. .. .
Xb* Xb Xb Xb

a=0.01 a=0.05 a=0.30

-----------------------------------

----------------------------------------

Figure 1. Relative risk functions for Xb, Xb*, and Xb .

(c) For finite c, as 3 increases, the risk of Xb monotonically increases

to a maximum, which occurs at a value of X>X2, it then monotonically

decreases and as A-a, p(E(y),Xb)-,p(E(y),Xb). Intuitively, when the prior

information is so wrong that A is very large, then pre-testing will lead us

to do the right thing: to ignore the restrictions.

(d) The smaller a is (the larger c is), the closer p (E(y),Xbi is to

plE(y),XV) as a smaller test size increases the probability of accepting
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the null hypothesis. This results in a risk gain in the region to the left

of A but at the cost of a (possibly) much higher risk for relatively large1
A. An analogous argument can be made for large a. Clearly, from (8), if c

is chosen to be zero (infinity), we always reject (accept) the hypothesis,

and the PTE degenerates to the unrestricted (restricted) estimator.

(e) Of the estimators considered, no one strictly dominates any of the

others. Cohen (1965) proves, under certain assumptions and a squared error

loss function, that the PTE is inadmissible. Basically, this is because the

estimator is a discontinuous function of the test statistic, f, with a

single jump at f=c. Nevertheless, practitioners continue to report the

conventional PTE and so, given the lack of dominance of either X13-, Xb, or

Xb* and the fact that A is rarely known, the next obvious question to ask is

"is there an 'optimal' pre-test estimator?". The answer will certainly

depend on the definition of 'optimal' but, more importantly, it will be

linked to the choice of test size. This question is taken up below6.

We now consider the PTE of cr2, which has received less attention in the

literature than have the PTE's of 13 and E(y). As o-2 is often regarded as a

nuisance parameter, this is perhaps not surprising. However, an estimator

of o-
2 

is often used as a measure of the model's "goodness of fit" and if one

is interested in forming standard errors, prediction or confidence intervals

or undertaking certain hypothesis tests, after pre-testing, then the PTE of

needs to be investigated. The risk functions of are derived by
J'

Clarke et a/. (1987a,b). They depend on the data only through T, k, m and

A. Figure 2 depicts typical risk functions for Cr-2 
ML' cr*'

2 and cr- 2 TheMLML 
following points may be noted:

(a) As the pre-test size increases, we reject the hypothesis more

frequently, and so the risk of the PTE approaches that of the unrestricted

estimator. This has the effect of decreasing the maximum risk of at

the expense of increasing its minimal risk value. A converse argument can

be given for a decrease in the test size.

(b) When using the ML components pre-testing is never the preferred

strategy, and it can be the worst alternative.

6
Though we do not discuss the Stein-rule family of estimators, it is worth

noting that the above analysis has also been considered, by, for example,
Judge, Yancey and Bock (1983), using Stein-rule estimators as the component
estimators. They show that if (k-m)a3 then their Stein PTE dominates, under
squared error loss, the traditional PTE.

12



(c) Among the component estimators of cr2 considered, under a minimax

criterion with respect to risk, those based on the principle of minimum mean

squared error are preferable when constructing the PTE of (7.2. Clarke et at.

(1987b) show that the PTE cr-L, though composed of the minimum MSE

unrestricted and restricted (when Ho 
is true) estimators of cr

2
, is not

itself best invariant.

R
E
L
A
T
I
V
E
 R
I
S
K
 

•••• 2
0"ii 

2 "2 "2 "2
Cr cr cr
ML ML °' ML ML ML

a=0.01 a=0.05 a=0.30

------------------------------------------------------------

Figure 2. Relative risk functions for ;2 L' cr*ML 
2 and cr-

M' MI;

(d) The risk of the restricted estimator is smaller than that of the

unrestricted estimator and of the PTE when the restrictions are true. The

restricted estimator continues to dominate the pre-test and unrestricted

estimators for A e [0,A*.). However, as the hypothesis error grows and

approaches infinity, the risk of .the restricted estimator is unbounded,

while the pre-test risk approaches that of the unrestricted estimator.

For certain values of c the risks of ;2 and ;2 approach that of the

unrestricted estimator from below. That is, the PTE can strictly dominate

the unrestricted estimator. This feature, which is noted by Ohtani (1988a),

contrasts with the results found when estimating E(y) (or 13) after a

13



pre-test for linear restrictions. It does, however, also occur when

estimating the error variance after a pre-test for homogeneity, in the two

sample model, as we shall see below. Ohtani (1988a), extends the work of

Clarke et a/. (1987b), by deriving the improved estimator of the variance

proposed by Stein (1964), which dominates the unrestricted estimator, ;m2.

He shows that this estimator, say crs2, is in fact a PTE with a critical value

equal to v/(v+2). Using numerical evaluations Ohtani proposes that crs2 has

the minimum risk among the pre-test estimators which dominate the

unrestricted estimator. This result is proved by Gelfand and Dey (1988a)7.

Giles (1991a) shows that a similar result holds when using the least

squares component estimators. Then there exists a family of PTE's with

cE(0,1] which strictly dominate the unrestricted estimator, and it is

optimal to use c=1. She also suggests, from her numerical evaluations, that

when mis2 the PIT which uses c=1 strictly dominates both of its component

estimators. Giles (1990) shows that there is no corresponding case when

using the maximum likelihood estimators. Then the smallest risk results

from either using the unrestricted or the restricted estimator.

Clarke (1986, 1990) derives and analyses the PTE of the "standard error

of estimate", o-, after a preliminary test of linear restrictions on the
1/2coefficients; this PTE, say (T, is not equal to (cr ) . We will not discuss

this research here; it suffices to say that the results are found to be

qualitatively similar whether one is estimating (72 or cr.

From a practical viewpoint, applied researchers should be aware that

pre-test estimation of the regression coefficients, after a test of

restrictions on the coefficient vector, is never better than estimating the

model without a prior test. Indeed, from a MSE viewpoint it may be the

worst of the three basic strategies that can be adopted. The same is true

if the maximium likelihood estimator of the error variance is obtained after

the pre-test, and there is some advantage in using the minimum MSE estimator

instead. Finally, when using the least squares PTE of the error variance,

it is best to set the pre-test critical value to unity, especially if only

one or two restrictions are being tested.

7
See also Gelfand and Dey (1988b).
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2.2 Homoscedasticity Pre-test Regression Estimators

Frequently we wish to estimate models for which we suspect that the

assumption of a. scalar error covariance matrix is invalid. For example, the

errors may be autocorrelated or the observations may be drawn from different

populations, which may result in different error variances. Then, least

squares is generally an unbiased but inefficient estimator of the

coefficient vector; the generalized least squares estimator (GLS) is minimum

variance unbiased. So, we might test for the presence of a non-spherical

error covariance matrix prior to estimating the model. Here we consider one

such case, that of pre-testing for homogeneity of the error variances in the

two-sample linear model. This is a natural extension of Bancroft's first

problem. The other obvious case of pre-testing for autocorrelated errors is

discussed in Section 7.1. So, we assume that model (2) involves two

samples, with T1 and T2 observations (T1+T2=T) respectively:

yl 
0 11 f31 + [ el

[ y2 1 = (o X21 [ 132 e2

2

•[ 0,

TiL,

T1
0

(12)
e2

[ 
0 0,2

2 T
2

where yi and ei are (Tixl), Xi is (Tixki), gi is (kixl) and kr i = 1,2.

In Section 2.2.1 we consider the estimation of crz given the uncertainty

about whether the second sample comes from the same population as the first.

We examine the estimation of •the coefficient vector, assuming that gi=f32
=i3,

in Section 2.2.2.

2.2.1 Estimation of the Scale Parameter

If the variances are equal then the two samples may be pooled and an

2 2 2 2
unbiased estimator of cri is sA=(visi+v2s2)/(vi+v2) where vi=Ti-ki,

-1 2

si=(yi-Xibi)' (y.-Xibi)/vi, bi=Si S 
ii 

i=(X1 Xi), i=1,2. We call sA the

always-pool estimator of o-2i. Conversely, if the variances are unequal, an

2 2 2 2
unbiased estimator of cri is sN=si. We call sN the never-pool estimator.

The usual procedure, to decide which estimator of cr21 to use, is to

undertake a preliminary test of the hypothesis

2 2
: CTi = cr2 - vs H1 : Ho not true.

The alternative hypothesis can be one- or two-sided depending on the

researcher's prior beliefs. A test statistic for homoscedasticity is

J=s
2
/S
2 

(or J*=s
2

/' 
S
2 

depending on H
1 
), with f(J)=0-1f (F(v v 

))
2 1 1 2 

, where

2' 1
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(v2' v1)
(1)=(cr2i/cr) is a measure of the hypothesis error.

one-sided alternative Hi: cr2i<cr22, we accept H

is a central F variate with v
2 

and v
1 

degrees of freedom.

Assuming for simplicity the

if J:EFcc 
v )

=c where the0 ( v
2' 1

critical value of the test, c, satisfies I dF
(v )

=Pr. (F
(v2'v1)

-sc) =(1-a),
0 2'

v 
1

for a size-a test.

If the outcome of the pre-test suggests that the variances are equal

(J•sc) then we estimate cr2i using the always-pool estimator sA2 , while we

employ the never-pool estimator sN2 if J>c; that is, when we reject Ho.

After such a (pre-)testing procedure, the estimator of cr2i actually reported

is the PTE

2

f2 SN if j > C

SP = 2
sA if J -s c,

2 2 2 8The risks of sN, sA, and sp are

Purf,sN2 = 2-;02/v1.

(13)

(14)

P(0'21, si2) = cr24 102(2Vi+V22)-2V220+V2(V2+2)) /(V1+V2)2. (15)

p(0-21,s12,) = p(a.12, +a.; (02112 [2V1 (V 
_1 Z-

)0 (Vi+2)(V2+2Vi )Q041 +2V1V20

• [v1Q22-(vl+v2)Q
20] 

+v1v2(v2+2)Q40) / (v1 (v1+v2)2) '

where, for i,j=0,1,2,... ,

Qii = Pr. [F v2+i,v1+ < (v2(v1+ j)c) / (vi(v2+0) .

(16)

(17)

Bancroft's first problem is equivalent to the one described here with

an appropriate re-definition of the degrees of freedom. He derives the bias

and variance of sp2 and finds that the bias of si2, is smaller than that of s 2A

when is close to zero: that range of where the bias of sA2 is highest.

We recall that the always-pool estimator is only unbiased when the variances

8
See, for instance, Bancroft (1944) or Toyoda and Wallace (1975).
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are equal. Intuitively, the pre-test is leading us to follow the correct

path when 0 is small - reject the null. From the MSE comparisons Bancroft

finds that the pre-test which uses c=1 results in a MSE equal to or smaller

than that of s
2 

for all possible values of 0 - that is, this PIE strictly

dominates the never-pool estimator. These estimators are considered further

by Toyoda and Wallace (1975).

Figure 3 illustrates typical risk functions for sN2 , sA2 , and sp2 , for

various values of ce(0,co). Note that when c=0 we always reject the

hypothesis and so, p(cr2rsi
2
)=13(cr22i) . Conversely, p(cr, S

2 
)=p(cr2, S

2 
) when

P 1 A

c=co, so that we always accept the hypothesis. This figure highlights the

following points:

s;,

0.0

s2

A
2

5113
cc=0.01

0.4 0.5

2 2 2
Figure 3. Relative risk functions for sN, sA. and sp .

2 2
sP sP

co=0.05 0.75

0.1 0.2 0.3 0.6 0.7 0.8 0.9

SF
c=1

1.0

(a) Comparing equations (14) and (15), there are two possible values of 0,

0 and 0
2' 

for which 
1 

2
A 
) and p(cr2,s 2 ) intersect, provided that

1 1 N

v1v2-4v1-2v2*0 (see Toyoda and Wallace (1975)). In any particular case only

one of these values, say 01, will lie in the interval (0,1). If 0<0<01 then

2 2
sN dominates sA. Intuitively, the variances are so different that the gain

in sampling error from the extra degrees of freedom is outweighed by the

bias from pooling the (unequal) variances. Alternatively, sA2 has smaller

risk than s when
2

(b) There exist values of ce(0,2) such that sp strictly dominates sN for
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all possible values of 0, Oqrsl. Though these particular PTE's do not
dominate s2A for all 0, they do so over a wide range of 0. It is only within
the neighbourhood of 0=1 that the risk of sA2 is smaller. Ohtani and Toyoda
(1978) prove, for a given value of 4 and ce[0,1], that the minimum pre-test
risk occurs when c=1; so sN2 is inadmissible and specifically, is dominated
(at least) by the PTE with c=1. These features raise the question of an
optimal pre-test critical value - we return to this issue in Section 2.3.

2.2.2 Estimation of the Coefficient Vector

Assuming that f31=132=f3, model (12) is

Y2

y1 = Xi[ e ,
1 T

1X
2 g 1- [ eel I ' [ eti 0, [ :21 Cr

2
2I0 

il

T
2

or

(18)

y = XI3 + e, e-N(0,E) . (19)
If the variances are equal we estimate f3 from the T1+T2 observations and bA
= S IX' y, which is the usual least squares (and maximum likelihood

estimator) of 13, is BLUE. bA is the always-pool estimator of g. However,

if the variances are unequal, a feasible GLS estimator of f3 is the

"two-step" Aitken estimator (2SAE) bN=ESi/s21+S2/s221-1[Xii y1/s21+X2' y2/s221.
b
N 

is the never-pool estimator of 13. The PTE of f3 is

{=
bP

b
A 

if J c,

b
N 

if J > c

(20)

The research on this particular pre-test problem has either worked within

the framework of the orthonormal model
9 

or a reparameterised version of the

model
10 

given by:

y = + e, (21)

where Xs=XP, 13*=P-113, and P=Txdiag ((l+tii)-1/21 is a non-singular matrix, and

are the roots of the polynomial I X2' X2/cr2-piX1X1/cr2i 1=0 (i=1,...,k). The

matrix T is chosen so as to diagonalise XIX1 and X21X2 simultaneously.

9
See, for example, Ohtani and Toyoda (1980), Yancey et at. (1984) and Judge
and Yancey (1986).
10
For example, Taylor (1977, 1978), Greenberg (1980) and Mandy (1984).
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Taylor (1978) establishes the finite sample moments of the ith element of

the 2SAE within the context of (21). Let this estimator be

i=1,2,...,k. He shows that 13;H is an unbiased estimator of fit and that

under appropriate conditions the 2SAE is consistent and asymptotically

efficient. The least squares estimator of 13* is also unbiased, and Taylor

shows that neither estimator dominates, in terms of risk, though he

concludes that substantial gains can result from using the 2SAE, depending

on the values of v1, v2, 0, and

Greenberg (1980) follows Taylor's approach and derives the risk of

the two-sided pre-test estimator, , corresponding to the ith element of

b' for the reparameterised model and where the test statistic is J* rat
her

P' 
than J. He shows that is an unbiased estimator of f3T, and that no one

estimator, of those evaluated, strictly dominates the others. Nevertheless,

the results would seem to favour the 2SAE, unless one had a very
 strong

belief that the variances were equal.

Ohtani and Toyoda (1980) derive the risk of the PTE, for the

orthonormal model, when the alternative hypothesis is Ii1:a-21>cr22. They show

that in this situation the 2SAE is inadmissible, as it is dominated by the

PTE when the critical value is chosen appropriately. In particular, if one

adopts the criterion of minimizing average risk, then the optimal critical

value is unity. Mandy (1984) generalises Ohtani and Toyoda's analysis to

the non-orthonormal case. He shows that if the direction of the alternative

hypothesis is correct then the (inequality) PTE that takes this directional

information into account is superior, in terms of risk, to the two-sided

(equality) PTE analysed by Greenberg (1980). However, of course, if the

alternative hypothesis should be H1:cr2i<cr22 then the inequality PTE is risk

inferior to the equality PTE.

Finally, Adjibolosoo (1989, 1990a) suggests that this traditional

pre-test procedure may lead the researcher to use the 2SAE when in f
act the

degree of heteroscedasticity may be such that it is still preferable to use

OLS. Consequently, he considers a PTE (the "probabilistic

heteroscedasticity PTE") which chooses between bA and bN according to a

measure of the degree of severity of the heteroscedasticity rather than

according to the Goldfeld-Quandt J test. Using a Monte Carlo experiment,

11
See ozcam (1987) for some extensions to this work.
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Ad jibolosoo shows first, that this new test is generally more powerful than
the J test and secondly, he shows that the probabilistic heteroscedasticity
PTE is typically preferable, in terms of MSE, to its traditional
Goldfeld-Quandt counterpart.

Some of the most important practical implications for the applied
researcher who pre-tests for error variance homogeneity in the two-sample
case are the following. First, if estimation of the error variance is of
direct interest, then there are advantages in pre-testing with a critical
value of unity, rather than using simply the "never-pool" or "always-pool"
estimators. Second, as far as estimation of the coefficient vector is
concerned, the preferred strategy may depend on the form of the alternative
hypothesis for the pre-test itself. If this alternative is that the
sub-sample variances are unequal, then the use of the 2SAE (without
pre-testing) seems advisable. On the other hand, if the alternative
hypothesis is one-sided then pre-testing with a critical value of unity is
again a good strategy.

2.3 Another Homoscedasticity Pre-Test Estimator of the Error Variance

Several studies examine the problem of estimating the error variance in
the classical linear regression model, y=X13+e, e-N(0,cr2IT), after a

2 2preliminary test of H
0 
:cr
2 
=cr
' 

where cr
o 

is some known value available from0 
previous experience. The alternative hypothesis, HA, can be one- or

two-sided. If we accept Ho then we use cro2 as our "estimator" of cr2, while
we use cr. =(y-Xb)' y-Xb)/v, the usual least squares estimator of cr

2
, if we

reject Ho. The PTE is then:

a. , if accept Ho2

CrP
= 1 cr-2 , if reject Ho

Assuming orthonormal regressors, Yancey et at. (1983) (see also

Srivastava (1976)) derive the risk, under squared error loss, of cr.12, assuming

H
A 
:cr2 4:r2
' 
. and also the risk of the PM, say cr*2, which would arise after0

2 2 2 2testing H0
 
:a. ?--cr vs. H

A <cr. 
They numerically evaluate their exact risk0 0 

expressions for a 57. significance level and find, of the estimators

investigated, that there is no strictly dominating estimator, though when

the direction of the hypothesis is correct, the risk of cr*2 is always equal

to or less than the risk of cr"2. Comparing the risks of 4r*2 and cri2, their

results suggest that if (c7.2/a.) e [0.75,1.251 then cr*2 has smaller risk than
2 2cr

2 
while the converse is typically the case for other values of (a. Ar

o
).P'

4-
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Inada (1989) considers the problem of estimating the variance of a

normal variate after a pre-test that the variance lies in the neighbourhood

of a known value; that is, Ho: [cro2/c0--50-2 02 co], where co is a known positive

constant. He considers two PTE's, say PT, and PT2, where

0 
if c -11 <u/cro2<c,

2

and

{PT
1 
= wu if u/cro2> c 1

-
w u if u/cr2--sc- 1

0 1

WU

• PT2 = _1
W

n 
where u= Z (X.-5)

2 

/(n-1), the weight w is a constant such that 0<w:51, and c,

is an appropriate critical value. Inada derives the risks of PT, and PT2,

and solves for the values of w such that PT, and PT2 are minimax estimators,

given the value of co. He compares these PTE's with the traditional PTE crp2 ,

and shows that it is preferable to use PT1, in small or moderate samples,

when H
o 

is in the neighbourhood of being true, but in large samples, the

risks of PT„, PT2, and u are virtually indistinguishable.

Ohtani (1991b) (see also Ohtani (1991a)) considers the PTE, (12, which

arises after testing H0:cr2=cr vs. 
11
A:o.2>crs

2
), when we use the Stein (1964)

estimator of cr2, say cr2
' 

rather than ;2 if we reject Ho. 
Recall from the

S 
discussion in Section 2.1 that oss2 is itself a PTE, so tr2 is a special type

of multi-stage PTE. We discuss this further in Section 7.2. Ohtani shows

that if the direction of .the prior information is valid, and the size of the

pre-test on cr2 is chosen appropriately, then (-1-.2 strictly dominates cr.

2.4 The Choice of Significance Level

One feature of these pre-test risk functions considered so far is their

dependence on the choice of significance level. If the test size is varied,

the pre-test risk function changes, and so too do the differences between

the risk of the PTE and the risks of its component estimators. A second

feature is that for any particular problem, there exists no dominating

estimator; in general, the risks of the PTE and its component estimators

cross somewhere in the hypothesis error space.

As the extent to which the non-sample information is true or false is

unknown, these features raise the question: "Is there an optimal choice of
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test size such that the pre-test risk is as close as possible to the
smallest that could be achieved?". Several studies have addressed this
issue. Among other things, the answer depends on the pre-test under
investigation and the chosen optimality criterion.

First, we review those studies which have considered the optimal
choice of test size after a pre-test for linear restrictions. From Figure
1, the minimum risk that could conceivably be achieved, for all A, is given
by the boundary traced out by the risk of the restricted estimator for
AE[0,m/2], and for Adm/2,co) by the risk of the unrestricted estimator12: So
we desire a choice of test size which results in the risk of the PTE being
as close as possible to this boundary. As a increases the risk of the PTE
moves down (up) toward the risk of the unrestricted estimator to the right
(left) of A=m/2, and there is a trade-off between the proximities of the
pre-test risk and the minimum risk boundary. There are various ways of
measuring this distance.

One possibility is the criterion of minimax regret. For a given test
size, we determine the maximum regret of p (E(y),Xb) from the boundary for
all A, then solve for the value of the critical value, c, which minimizes
the maximum regret. This value of c is the optimal critical value. For the
case of a single hypothesis involving a t test, Sawa and Hiromatsu (1973)
use this criterion and find an optimum value of c of about 1.8. (See also
Farebrother (1975).) For the situation of multiple restrictions, Brook
(1972, 1976) chooses values of c, say c*, that minimise the maximum regret
on either side of A=m/2. This is a slight modification of the Sawa and
Hiromatsu criterion.

For the conditional mean forecast problem (or, when the regressors are
orthonormal), Brook finds that c* is generally very close to two, regardless
of the degrees of freedom. This result gives some comfort to researchers
who traditionally use the 57. significance level: two is an approximate
critical value when the degrees of freedom are moderate to high, say greater
than 25, and m>4. The robustness of this result to model mis-specification
is considered in Section 3.

Another way of defining the optimal critical value is as follows.
Instead of searching for the maximum regret for each level of a, we could

12
Note that James-Stein type estimators exist which have smaller risk than

this boundary. See, for instance, Sclove et at. (1972) and Judge and Bock
(1978).
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take into account the regret for each value of A and search for the value of

a which minimises their sum or average. That is, minimise the area between

the pre-test risk and the minimum possible risk boundary. This criterion is

considered by Toyoda and Wallace (1976), who find that it leads to a

critical value of zero (i.e. use the least squares estimator) if the number

of restictions is less than five. For m5<60, they find that the

(non-constant) optimal critical value is smaller than that observed by Brook

(1976), and approximately equal to Brook's values for m?..60.

Brook (1976) and Toyoda and Wallace (1976) effectively assume a diffuse

(non-informative) prior for A. This may be giving too little weight to

small A, as the investigator must believe A is in the neighbourhood of zero

to be pre-testing at al113. Wallace (1977) postulates that with a strong

prior on A weighted towards zero, the minimum average risk critical value

would be increased. Toyoda and Ohtani (1978) extend the analysis of Toyoda

and Wallace (1976) to include prior knowledge about A, by assuming a gamma

prior density on A which allows one to weight the likely values of the

hypothesis error. They find that if more weight is given to values of

around the null hypothesis then the optimal critical values do increase from

those proposed by Toyoda and Wallace. Nevertheless, typically, their

results do not support the use of the common test sizes of 1% and 5%.

Brook and Fletcher (1981) extend the analyses of Toyoda and Wallace

(1976) and Brook (1976) to the case of multicollinear (non-orthonormal)

regressors. Then the optimal critical value depends on the level of

multicollinearity. They consider testing 110432=0 in y=X1g1+X2(32+e, under

the usual classical assumptions, where (31 is ((k-m)xl) and 132 is (mxl), and

show that the optimal critical value of the pre-test according to the Toyoda

and Wallace average risk criterion can be well approximated by

c=v(m+t-4)/(m(v+2)), where v=T-k, t=trace(C22) and C22 is the (mxm)

sub-matrix of

-1 [ C11 C12 I
(X' X) = C

21 
C
22

When the regressors are orthonormal C22 
=1
m
 and t=m, but as the columns of X

exhibit higher degrees of collinearity then t increases. Brook and Fletcher

find c* to be very accurate, especially for large m and v values, and they
TW

13 
This is not always the case. For instance, stepwise regression is an

obvious counter-example. See, for example, Wallace (1977).



show that the optimal critical value of the prior F-test for t:54 is 0; that

is, it is preferable to ignore the prior information. This is analagous to

the result• found by Toyoda and Wallace (1976). For t?--4, c increases with

m and v, and it increases as t increases for a given m and v, implying a

higher probabilty of choosing the restricted estimator.

Under a minimax regret criterion Brook and Fletcher show that the

optimal critical value, for multicollinear X, is well approximated by

c;31=(1+t/m). Recall that for orthonormal regressors t=m and so cr3z-2, as

found by Brook (1976). cr3 depends only on t/m, and not on v, and increases

as the relative degree of multicollinearity (t/m) increases. Typically

these optimal critical values are still substantially higher than those

implied by the traditional 17. and 57. significance levels, and cr3 is close to

for reasonably large m and v.

Until recently there has been no research into the choice of an

optimal critical value when estimating the error variance after a pre-test

for exact linear restrictions. Then, when using the least squares component

estimators, the PTE which uses c=1 strictly dominates the unrestricted

estimator and can also strictly dominate the restricted estimator for m152.

For the latter case there is then no optimal size problem - it is always

optimal to pre-test using c=1 even if the restrictions are valid. When

using the minimum mean squared error component estimators Ohtani (1988a)

shows that the PTE using c=v/(v+2) strictly dominates the unrestricted

estimator but that there is still a range in the neighbourhood of the null

hypothesis where the restricted estimator has smaller risk. Finally, Giles

(1990) shows that it is never better to pre-test when using the maximum

likelihood components.

Giles and Lieberman (1991b) consider the choice of optimal critical

value for a pre-test of exact linear restrictions when estimating the

regression error variance. They calculate the critical value, c*,

according to a minimax regret criterion and show that regardless of which

component estimators are used c* is not constant. This contrasts with

Brook's general finding. However, for a given m, k and estimation

procedure, c* is relatively constant as v varies. Giles and Lieberman also

compare the risk functions of the PTE which uses c* and that which uses the

critical value which minimises the pre-test risk function (c=1 for the L

estimators, c=v/(v+2) for the M estimators and c=0 for the ML estimators).

They find that generally the risk of the PTE which uses these latter (easier

to apply) critical values is smaller than that which uses the critical value
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derived from the minimax regret criterion.

We now consider the question of the optimal size for a pre-test for

homogeneity. Toyoda and Wallace (1975), Hirano (1978), Ohtani and Toyoda

(1978) and Bancroft and Han (1983) each investigate this problem when the

parameter being estimated is the error variance, cr2i, while Ohtani and Toyoda

(1980) seek an optimal critical value for the PTE of the location vector in

the orthonormal model.

Toyoda and Wallace base their choice of optimal critical value on the

minimum average risk criterion; with a diffuse prior. They prove that the

necessary condition for the minimum is attained when c=1 and they

numerically check the sufficiency and the uniqueness of this minimum. They

show that this optimal critical value typically implies a type one error

ranging from 40 to 60 percent. Relatively high optimal levels of

significance are also reported by Hirano (1978). He considers the choice of

significance level one should adopt for the pre-test on the basis of

minimising Akaike's information criterion.

A minimax regret criterion is employed by Ohtani and Toyoda (1978).

When the alternative hypothesis is one-sided, they find that the optimal

critical value depends on the degrees of freedom and varies from about 1.7

to 2.8. This contrasts with the results of Toyoda and Wallace (1975).

Bancroft and Han (1983) investigate yet another criterion: relative

efficiency of the PTE to the never-pool estimator. For given values of

v2, and a, and a one-sided alternative hypothesis, they numerically solve

for the maximum and minimum values of this efficiency. For certain values

of a, the PTE strictly dominates the never-pool estimator; and so, they

suggest selecting a test size such that maximum efficiency is the largest

and minimum efficiency is no less than unity. This procedure should ensure

the largest gain in efficiency. Bancroft and Han find that this criterion

results in optimal significance levels in the region of 307. to 507..

Ohtani and Toyoda (1980) adopt the criterion of minimising average

relative risk when they seek the optimal critical value of the pre-test for

homogeneity, prior to estimating the location vector in the orthonormal

model. They consider a one-sided alternative hypothesis and show that the

2SAE is inadmissible, as it is strictly dominated by the PTE with a critical

value of unity. Ohtani and Toyoda derive the extrema of the average

relative risk function and conclude that the optimal critical value for the

pre-test is c*=1.

From these studies we see the influence of the chosen criterion on
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the proposed optimal test size. Nevertheless, these results suggest optimalvalues of a that are substantially different from those traditionally usedin practice. Further, depending on the criterion adopted, the optimalcritical values may vary with the degrees of freedom.
There are some clear prescriptions here for the applied economist who

adopts pre-test estimation strategies. If the pre-test relates to linear
restrictions on the coefficients then one should apply the F-test with a
critical value of two if low predictive risk is desired. If attention
focuses on estimation of the coefficient vector itself, then the clw and
critical value formulae of Brook and Fletcher provide clear guidelines. Onthe other hand, when estimating the error variance after this same pre-test,
it is generally advisable to use a critical value of unity, v/(v+2), or
zero, depending on whether one uses the OLS, minimum MSE, or ML variants of
the scale parameter estimator. Finally, if the pre-test is one for variance
homogeneity, a crtitical value of unity seems advisable when estimating the
coefficient vector, assuming a one-sided alternative hypothesis.

3. ROBUSTNESS OF PRE-TEST ESTIMATORS

In any econometric application there is some chance of mis-specifying
the model. The errors may not obey the usual "ideal" assumptions; some
irrelevant regressors may be included in the model, or relevant ones
excluded; the error term may be non-Normal, serially correlated, or
heteroscedastic; or the functional form of the model may be mis-represented.

The traditional pre-testing literature in econometrics is based on the
premise that there are no such mis-specifications. No other "complications"
are allowed for. Recently, this situation has been rectified, and several
studies have considered some of the consequences of pre-testing in the
context of models that are already mis-specified in some way. Specifically,
models which are incorrectly specified in terms of the regressors or with
respect to the error term assumptions have now been analysed, but
pre-testing in the context of a model whose functional form is mis-specified
has yet to be researched.

3.1 Mis-Specification of the Regressors

Mis-specification of the regressor matrix in a linear regression model
is a common situation. Extraneous regressors may be included in the model,
but it is more likely that relevant .regressors will be omitted. The latter
situation may arise either because of the researcher's lack of understanding
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of the underlying theory, or because certain data are unavailable. In the

latter case, another type of mis-specification may also arise - a proxy

variable may be substituted for the "real" regressor.

With this in mind, several authors have reappraised some of the

standard pre-test estimation strategies, allowing for such model

mis-specification. The inclusion of extraneous regressors is easily dealt

with. Giles (1986) shows that in this case the risks of the OLS, RLS and

pre-test estimators of the regression coefficient vector, after a test of

exact linear restrictions on this vector, are the same as in the properly

specified model except for a simple scaling of the results. Accordingly,

there are the usual regions in the parameter space over which the relative

dominance of one of these estimators over the others arises, as in Figure 1.

In particular, such pre-testing is never the best of these three strategies,

and can be worst. Moreover, the results relating to the optimal choice of

pre-test size are unaffected by such a mis-specification.

This situation changes fundamentally if relevant regressors are

excluded from the regression. Effectively, this possibility and that of

including extraneous regressors was first studied by Ohtani (1983). He

considered a pre-test for exact restrictions on the regression coefficients

when the model includes proxy variables - that is, effectively, relevant

regressors are omitted and irrelevant ones are also included in the model.

Unaware of this work, Mittelhammer (1984) dealt with the more extreme case

of pre-testing in the context of omitted regressors. Measuring performance

in terms of squared error predictive risk, imposing valid restrictions no

longer guarantees dominance of RLS over OLS, or of the PTE over OLS! This

should be contrasted with result (a) noted in connection with Figure 1.

Further, referring to result (b) associated with that diagram, the region in

which the pre-test and OLS predictive risks must cross is unaltered if the

model is mis-specified in this way. Finally, as the degree of model

mis-specification increases, the OLS, RLS, and pre-test predictive risks are

all unbounded, for a given level of hypothesis error.

When the model is mis-specified in this way, it is also natural to ask

whether or not the optimal choice of pre-test size is affected.

Intuitively, one would expect that the omission of relevant regressors would

generally affect this choice, given the preceeding comments about the

effects on the risk functions themselves. Giles, Lieberman and Giles (1992)

re-consider Brook's (1976) result relating to a preliminary test of linear

restrictions on the coefficient vector when the regressors are orthonormal.
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They find that Brook's mini-max regret criterion no longer leads to an

optimal critical F-value of approximately two when the model is

mis-specified. In fact, the optimal critical value is then sensitive to the

degrees of freedom in the problem, and can differ substantially from Brook's

value. Further, for a given number of restrictions and regression degrees

of freedom, the opimal choice of pre-test critical value declines, and the

optimal pre-test size increases, monotonically as the model becomes

increasingly mis-specified. This has the effect of accentuating the other

strong result from Brooks' analysis - the optimal choice of pre-test size in

this problem is often much greater than the commonly assigned values such as

5% or 1% - when relevant regressors are omitted from the model.

Giles and Clarke (1989) study the estimation of the regression scale

parameter after the same pre-test in the same mis-specified model.

Qualitatively, they come to the same conclusions as Mittelhammer in the case

of predictive risk. In particular, imposing valid restrictions need not

lead to lower risk than if the prior information is ignored or if a pre-test

is undertaken. Clearly, there can be serious costs in omitting relevant

regressors. Giles (1991b) extends the analyses of Mittelhammer (1984) and

Giles and Clarke (1989) when the disturbances are incorrectly assumed to be

normal and we have simultaneously omitted relevant regressors. We discuss

this study forther in the next section.

Estimation of the scale parameter in the context of omitted regressors

is also considered by Ohtani (1987a), but for a different preliminary test,
2 2 2 2 2 2namely Ho:cr =cro vs. Her *cro or HA:cr >cro. He finds that under the one-sided

alternative (but not under the two-sided one), there exists a family of

PTE's for 0..2 which strictly dominate the unrestricted estimator. This

dominance is robust to mis-specification through the omission of regressors.

He considers a numerical example with v=20 degrees of freedom, and

conjectures that the PTE based on a size of 45% has minimum risk in this

dominating family. It is straightforward to show, using the approach of

Giles (1991a,b, 1992b), that the optimal such critical value is c=v

(regardless of model mis-specification). This implies a pre-test size of

45.8% if v=20.

Assuming a one-sided alternative, Giles (1991c) extends Ohtani's

(1987a) and Giles' (1992b) analyses to • the testing of homogeneity in the

two-sample linear heteroscedasticity model when relevant regressors are

omitted from the model's for each sample (possibly different regressors) and

the disturbances are spherically symmetric. Then the J test for homogeneity
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is invalid under the null, as its distribution depends on all aspects of the

problem, including the degree of mis-specification and the variance mixing

distribution. She also shows that the critical values, identified by Giles

(1992b) (see the next section) which minimise the pre-test risk in the

correctly specified model also hold this property for the mis-specified

model. Analagous to Ohtani's results, there is a family of PTE's which

strictly dominate the never-pool estimator, and also in some cases the

always-pool estimator. It is never preferable to always-pool the samples

without testing the validity of the null hypothesis, nor is it optimal to

ignore the prior information.

Ohtani's (1983) contribution focusses on predictive risk in the context

of proxy variables, when the pre-test involves coefficient restrictions.

Implicitly, it subsumes the essential pre-test results of Mittelhammer

(1984) and Giles (1986). One of Ohtani's most important results is that the

pre-test strategy can have lower risk than both of its component estimators.

This is contrary to the situation in the properly specified regression

model, as depicted in Figure 1, and it again underscores the point that once

we move away from the make-believe world of a properly specified model to

the real-life situation of invalid models, our standard textbook results

need to be re-assessed. In this context, perhaps the most important lesson

for applied econometricians is that extreme care must be taken over the

model's specification. With a mis-specified model it is difficult to offer

many helpful prescriptions.

3.2 Non-Normal Regression Errors

Our discussion so far has assumed that the regression disturbances are

normally distributed, but there is • a large literature which suggests that

this assumption is sometimes unrealistic. In particular, many economic data

series exhibit more kurtosis (and hence fatter tails) than the normal

distribution
14
. This has obvious implications for the distribution of the

regression disturbance term, and accordingly there has been increasing

interest in the sampling properties of estimators and test statistics for

non-normal disturbances. Many studies have considered this issue and

various distributions have been investigated (see, for example, Judge et al.

14
Such studies include those of Mandelbrot (1963), Fama (1965), Blattberg and

Gonedes (1974), Rainbow and Praetz (1986), and Lau et al. (1990) in respect

of returns analyses in the stock, financial and commodity markets.
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(1985)). Two general forms of non-normality are usually analysed. The

first assumes that the errors are dependent but are uncorrelated (for

example, multivariate Student-t errors), while the second assumes that the

non-normal errors are identically . and independently distributed (for

example, univariate Student-t).

Little work has been undertaken on the investigation of the properties

of PTE's with non-normal disturbances. Assuming particular non-normal

distributions, Mehta (1972) and Giles (1992b) consider the risk, under

squared error loss, of estimators of the error variance after a pre-test for

homogeneity of the variances in the two-sample linear regression model,

while Giles (1991a, b) derives the risk of PTE's of the prediction vector

and of the error variance after a pre-test for exact linear restrictions.

Mehta (1972) considers a family of symmetric distributions given by

2/(1+1)/2 crf(x I 0
1 
,cr2,7) =243+3 21 , which1 1 2 1

includes the normal, double exponential and rectangular distributions as

special cases. Mehta considers the problem of estimating the scale

parameter from a random sample which follows this distribution when we also

have a second, independent, random sample which follows the same

distribution but with cr2 different from cr. The interest in this problem to
1 2 

economists was outlined in Section 1.2.

Mehta derives the MSE of two PTE's of cr2
' 

The first is analagous to
1 

.the  PTE for this problem that was discussed in Section 2.2 - this PTE is a

dis-continuous function of the test statistic. He also derives the MSE of a

PTE which is a continuous function of the test statistic, and he compares

the MSEs of the estimators. For the cases investigated, the qualitative

results are the same for all values of g, the non-normality parameter. He

suggests that a test size of between 25%-507. be used.

The remaining pre-test literature in this area considers that the

departure from normality is to the spherically symmetric family of

distributions, which includes the multivariate Student-t (Mt) and normal as

special cases. Aside from the normal distribution, this family results in

dependent uncorrelated disturbances. One particularly strong motivation for

considering this family is that a particular subclass, the so-called

compound normal family, can be expressed as a variance mixture of normals.

That is, f(e)= ff,,,(e)f(t)d-r, where f(e) is the probability density function
0 "

(pdf) of e, fN(e) is the pdf of e when e-N(0,T21) and f(T) is the pdf of

supported on (0,03). Non-normal regression disturbances can arise, even if
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each ei (i=1,...,T) is normally distributed, when the variance of ei is

itself a random variable15. For example, the Mt distribution arises if 7' is

an inverted gamma variate.

Many studies have investigated linear regression models with

spherically symmetric disturbances16. Of particular relevance to this paper,

Box (1952) shows that the null distribution of t, the test statistic for

exact linear restrictions, is the same for all members of the spherically

symmetric family°. Thomas (1970) derives the non-null distribution of t and

shows that it depends on the specific form of the variance mixing

distribution. King (1979) extends many of Thomas' results. In particular,

he shows that if a test has an optimal power property for normal

disturbances over all possible values of T2 then it maintains this property

when the errors are compound normal. Consequently, t is a UMPI size-a test

for compound normal disturbances. King also proves that if any function of

y (be it a test statistic or an estimator) is invariant to the values taken

by T2 when e-N(0,T2IT) then the function has the same distribution for the

wider class of spherically symmetric distributions (in fact, elliptically

symmetric). So, assuming a correctly specified design matrix, the test

statistic for homoscedasticity, J, has the same null and non-null

distributions under the wider error term assumption (see also Chmielewski

(1981b)).

Giles (1992b) considers the same pre-test problem as Mehta (1972) (and

for instance, Bancroft (1944) and Toyoda and Wallace (1975) under normal

errors) when the disturbances follow the compound normal family of

elliptically symmetric distributions, but are wrongly assumed to be normal.

She derives the risk of the PTE and also broadens the standard assumption

that the never-pool variance estimators are based on the least squares

principle. Two families of variance mixing distributions are considered for

specific illustrations - the inverted gamma density and the gamma density.

The former mixture results in the Mt family of densities, while Teichroew

15
Further discussion of the family of distributions is beyond the scope of

this paper. See, for example, Kelker (1970), Chmielewski (1981a), and

Muirhead (1982).
16
For example, Box (1952), Thomas (1970), King (1979), Chmielewski (1981a,

b), Sutradhar and All (1986), Sutradhar (1988), Brandwein and Strawderman

(1990).
17
In fact, this result holds for all members of the wider elliptically

symmetric family. See King (1979).
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(1957) derives the density and distribution functions of a random variable

generated from the latter member of the spherically symmetric family. Giles

shows that the results are qualitatively invariant to which of these mixing

distributions is used and to the choice of estimation method used to form

the never-pool estimator.

The key results from the Giles (1992b) study are first, that the PTE

can strictly dominate both of its component estimators for sufficiently

non-normal disturbances. Secondly, it may be preferable to use the maximum

likelihood principle to form the never-pool estimators rather than the least

squares principle for non-normal disturbances. Finally, she shows that the

risk function of the pre-test estimator has a minimum when c*=1 for the

least squares component estimators, c*=v1T2/(v2T1) for the (usual) maximum

likelihood component estimators, and c*= (vi(v2+2)) / (v2(vi+2)) for the

(usual) minimum MSE component estimators18. Giles (1991c) extends this

analysis to the simultaneous possibility of omitted regressors, as discussed

in the previous section.

Assuming a correctly specified design matrix, Giles (1991a) derives the

risk of PTE's .of the prediction vector and of the error variance after a

pre-test for linear restrictions when the disturbances are compound normal.

Her study suggests that the risk properties of the PTE of the prediction

vector are qualitatively the same for all members of the compound normal

family as presented in Section 2.1 for normal disturbances. In particular,

pre-testing is never the preferable strategy. This is incorrect. Wong and

Giles (1991) show that it is possible for the PTE to dominate both of its

component estimators over some of the A-range. The investigations of Wong

and Giles for Mt disturbances, suggest first that the existence and

magnitude of the dominating region for the PTE depends on the values of m

and v, the degrees of freedom parameter of the Mt distribution19. Secondly,

their results show that there is no strictly dominating PTE.

Giles (1991a) also shows that the wider error distribution assumption

can have a substantial impact on the risk function of the estimators of the

error variance. She considers the least squares estimators of the error

18
That is, the ML amd M estimators under a normality assumption.

19
v=c0 corresponds to normal errors.
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variance
20
 and she shows that the pre-test risk function has an extremum when

c=0, co, and c=1 - the PTE can dominate both of its component estimators. In

fact, using the Mt distribution to illustrate, there exists a family of

PTE's with cE(0,1] which strictly dominate the unrestricted estimator for

all A, and the PTE using a critical value of unity has the smallest risk of

those PTE's with cE[0,11 for all A.

This family of PTE's also dominates the restricted estimator over part

of the A-range, and the numerical evaluations suggest that this will be

strict dominance for small values of v, say v<15. The results also suggest

that this may occur for normal disturbances if m is small, say, equal to

one. Thus, when estimating the error variance, using the least squares

estimators, it is never preferable to ignore any linear restrictions on the

coefficients. Pre-testing is always preferable, and the optimal pre-test

critical value is unity. Further, it is better to pre-test using c=1 than

to impose the restrictions without testing, unless there is a strong belief

that the restrictions are valid. Then pre-testing is better only if v is

small (that is, the tails of the marginal distribution of the disturbances

are "fat" in relation to normality) or m is small.

Giles (1991b) extends the Giles (1991a) study to the omitted variables

model. She finds that the results of Mittelhammer (1984) and Giles and

Clarke (1989) assuming normal errors carry over to the wider error term

assumption. In particular, imposing valid restrictions does not guarantee a

reduction in risk if we have omitted relevant regressors.

The question of the optimal size of a pre-test for linear restrictions

with non-normal disturbances has received little attention. The evaluations

of Giles. (1991a) show that Brook's optimal critical value of two does not

extend to all members of the compound normal family, though she offers no

alternative critical value. Wong and Giles (1991) consider the extension of

the Brook minimax regret criterion to Mt disturbances. They show first,

that the optimal critical values are not constant for all values of v.

Secondly, for a given value of v, the optimal critical values are relatively

invariant to the degrees of freedom and the number of restrictions. For

instance, for v=5 the optimal critical value is approximately 2.4,

approximately 2.1 when v=10, and the optimal critical value of 2 suggested

20
Giles (1990) extends these results to the maximum likelihood and the

minimum mean squared error component estimators.
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by Brook for normal errors holds reasonably well for the case of Mt errors

when v?:20. Wong and Giles also suggest, if v is unknown, that a researcher

could be (practically) content to continue to use Brook's optimal critical

value prescribed for normal errors.

Further research is obviously required on deriving the properties of

PTE's under non-normal disturbances. In particular, it would be of interest

to know whether the observed results extend to the situation of non-normal

but identically, independently distributed disturbances. However, from a

practical viewpoint it is clear that in the likely event of non-normal

disturbances, the prescriptions offered so far may have to be re-examined.

3.3. Other Forms of Model Mis-specification

Recent studies of the effects of model mis-specification on the

properties of standard pre-test strategies have proved to be most

enlightening, in the sense of overturning a number of apparently strong

results which in fact rely on a correct model specification for their

validity. A final form of mis-specification that has been considered in

this context is that of a nonscalar covariance matrix for the regression

errors. Given the likelihood of autocorrelated or heteroscedastic errors in

practice, it is natural to ask what effects these may have on some of the

standard pre-testing results.

The only two contributions to date which respond to this question are

those of Albertson (1991) and Giles, Giles and Wong (1992). Albertson

considers the estimation of the regression coefficient vector after a

pre-test of linear restrictions on the coefficients, and where the

researcher fails to take account of the fact that the errors have an

arbitrary nonscalar covariance matrix. Exact analytic results are derived

for the OLS, RLS and PTE risks under quadratic loss, and these are evaluated

for various data sets and for the cases of AR(1), AR(4) and MA(1) errors.

The form of the regressor variables appears to have some bearing on the

results, and several interesting points emerge. First, in the case of

trended data and positive AR(1) or MA(1) errors, the usual PTE can be

strictly dominated by OLS. Second, in the case of nontrended data, or

negative autocorrelation, it is generally preferable to pre-test than to use

OLS estimation. Accordingly, prior information about the error process is

helpful in prescribing an overall strategy, though it should be • noted that

autocorrelation pre-test testing raises other considerations, as is

discussed in Section 6.4. Third, heteroscedastic errors affect the
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properties of the PTE in a less systematic way, though again it is possible

for this strategy to be strictly dominated by OLS, something which cannot

occur if the model is properly specified.

Other work in progress in this area considers the consequences of this

type of mis-specification for optimal pre-test size, pre-test estimation of

the regression scale parameter, and investigates the implications of

simultaneously mis-specifying the error term properties and omitting

relevant regressors.

Giles, Giles and Wong (1992a) consider the robustness of the exact

restrictions PTE for the prediction vector in the multiple regression model,

to the presence of ARCH or GARCH errors. As such an error distribution is

typically more leptokurtic than under normality, it is not surprising that

the results are qualitatively somewhat similar to those reported by Giles

(1992b) in the case of errors which follow multivariate Student-t and

certain other compound Normal distributions. In particular, Giles, Giles

and Wong find that when the conventional pre-test is applied (based on the

assumption of Normal errors), but the disturbances actually follow a

sufficiently strong GARCH process, it is possible for the PTE to strictly

dominate both of the OLS and RLS estimators in terms of quadratic risk.

Again, the intention of both this latter study and that undertaken by

Albertson is to base the analysis of pre-test strategies in a more realistic

environment, thus making the results more useful to applied econometricians.

4. PRE-TESTING WITH INEQUALITY RESTRICTIONS

Frequently, we may wish to test the validity of inequality restrictions

on the coefficients of a regression model, as opposed to testing exact

equality restrictions, as we have discussed so far. For example, after the

estimation of a consumption equation we may test whether the marginal

propensity to consume is less than unity. Suppose in the classical linear

regression model, y=X13+e, that we have prior information on the coefficien
t

vector which we express as a single inequality constraint, C' 132:r, where C'

is a (lxk) known vector and r is a known scalar. The estimator of g which

ignores the prior constraint is simply the OLS estimtor b, while the

estimator which includes the non-sample information is the so-called

inequality restricted estimator b**. Rather like a PTE, b** comprises two

components: if b satisfies the inequality constraint then b**=b, but if

C' b<r then b**=b*, the equality restricted estimator,
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b*=b-(X' C[C' (X' X)
-1
C]
-1
(C' b-H.

The sampling properties of b** are well known. Zellner (1961)
showsthat b** is biased and that it has a truncated normal distribution (see
also Judge and Takayama (1966)). This implies, for instance, that a
standard t-test based on b** can be misleading (Lovell and Prescott (1970)).

The superiority of b** relative to b is considered by, for example, Lovell

and Prescott (1970), Liew (1976), Judge et at. (1980), Judge and Yancey

(1981, 1986), Thomson (1982), and Thomson and Schmidt (1982). They find

that when the direction of the inequality constraint is correct it is

preferable, in terms of quadratic risk, to use b** rather than b. Further,

if the direction of the constraint is in fact incorrect then it is still

preferable to use b** rather than b in the neighbourhood of Ho, but b has

smaller risk than b** for a sufficiently large hypothesis error. These

features are evident in Figure 4, which illustrates typical risk functions

for this problem.

The sampling properties of the estimator of the model's parameters

which results after a pre-test for the validity of Ho : C' 13. -r vs. HA : 13<r

have not received as much attention. Assuming that cr2 is known, Judge et

at. (1980) and Judge and Yancey (1981, 1986) derive the exact risk of the

PTE defined by:

.%
{ b if we reject Ho

b if C' bar .
b** if we cannot reject H0; b** =

b* if C' b<r

So, 13 is the unrestricted OLS estimator of g, b, if we reject the validity of
the constraint while it is the inequality restricted estimator of 13, b**, if

we cannot reject Ho. Figure 4 depicts a typical risk result (under quadratic

loss) and shows, in particular, that it is never preferable to pre-test. In

fact, pre-testing is sometimes the worst strategy. These results are

qualitatively the same as those that we discussed in Section 2.1 with

reference to the pre-test for exact linear restrictions. Hasegawa (1989)

considers the unknown cr2 case and shows that qualitatively there is no change

in the results. He also considers some Bayesian estimators and shows that

these can be preferable to the classical estimators, in a risk sense.

Yancey et a/. (1989) and Judge et at. (1990) extend this literature to

the multi-parameter hypothesis case (see also Judge and Yancey (1986)).

They consider the case of two inequality constraints and investigate a

number of potential PTE's. Yancey et at. (1989) examine two multivariate
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inequality PTE's; the first after a pre-test of Ho : Rf3=r vs. HA : R13>r and

the second after a pre-test of H : 1432:r vs. H' : not H. They show that
0 A 0 

neither of the inequality PTE's strictly dominates the other.
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b* b** g g g
a=0.01 a=0.05 a=0.25

Vg>r Vg=r Vg<r

CONSTRAINT SPECIFICATION ERROR

Figure 4. Relative risk functions for b, b*, b**, and p.

The pre-tests examined by Judge et a/. (1990) are similar though,

unlike Yancey et al. (1989), they consider the same test statistic for each

of the hypothesis tests. Judge et al. (1990) find that no one PTE strictly

dominates any other and over some parts of the hypothesis error space the

equality restricted Pit has smaller risk than the inequality PTE's.

The current literature on inequality pre-testing has considered only the

unrealistic situation of a properly specified model. The effects of model

mis-specifications on the above results have only recently begun to receive

attention. Wan (1992) extends the analyses of Judge et al. (1980), Judge and

Yancey (1981, 1986), and Hasegawa (1989) to the case of a researcher who
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unwittingly omits relevant regressors from the design matrix21. Wan shows

that the use of valid prior information in an underfitted model does not

necessarily guarantee a reduction in risk. This is consistent with the

results found for the exact linear restrictions pre-test which we discussed

in Section 3.1. He also shows that many of the results of Judge and Yancey

carry over qualitatively to the mis-specified case. An exception is the

dominance of b by /3 when the direction of the constraint is valid. This need

not occur when we have omitted relevant regressors.

Given these results there is an obvious question of the choice of an

optimal critical value for the pre-test of inequality constraints. Wan

(1992) investigates this issue using the Toyoda and Wallace (1976) criterion

of minimising the average relative risk. His results suggest that for the

case of testing one inquality restriction we should simply ignore the prior

information and use b. This result is analagous to that obtained by Toyoda

and Wallace (1976) for the pre-test of exact linear restrictions.

We can also define a corresponding inequality PTE of the scale

parameter. Wan (1992) derives the exact risk of this estimator for both the

correctly specified and omitted variables models. He finds that

qualitatively many of the results noted in Section 2.1 and Section 3.1 for

the estimation of cr2 after a pre-test for exact linear restrictions carry

over to the pre-test of inequality constraints on the coefficient vector.

In particular, he shows that the choices of c which result in stationary

points of the risk function of the PTE are identical to those reported by

Giles (1990, 1991a,b).

Hasegawa (1991) considers the PTE of the coefficient vector when the

pre-test relates to the validity of an interval constraint, Ho:r1:5-C'13-1r2,

where r1 and r2 are known scalars. He assumes that the testing procedure is

undertaken in two steps. First, we test Hoi:C' 13?:ri vs. Hm:C'13<ri using the

usual standard normal test statistic (assuming o•2 is known). If Ho is

rejected we use the OLS estimator b as our estimator of 13.
If, on the other hand, we cannot reject H01 we proceed to the second

test, H02'• C' 13-r2 vs. H
A2
: C'f3>r

2
. If H

02 
is rejected then b is used as the

estimator of 13, while we use the so-called interval constrained least

squares estimator b+ if we cannot reject H02. This latter estimator is

21
See Ohtani (1991c) for related work. He investigates the properties of

the inequality restricted estimator when there is a proxy variable in the
model, but he does not examine the inequality pre-test estimator.
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given by:

{ 

r if b<r
1 1

b+ = b if yb5.r2 .

r2 if b>r2

The properties of this estimator are examined by, for exampl
e, Escobar and

Skarpness (1986, 1987), and Ohtani (1987d). So, the PTE is

b if we reject H01 or we accept H01 and reject H02

"4-
P = b+ if we accept H01 

and accept H02• 

"•••
Hasegawa derives the risk, under quadratic loss, of 13 and he also solves for

the critical value of the second stage test, given that this test depends 
on

the outcome of the first stage test. He compares the risks of b+ and f3+,

finding first that neither strictly dominates the other, and secondly that

the preference for one estimator over the other depends on the
 relative width

of the interval constraint. In particular, when the distance of the interval

constraint increases, b+ dominates (-3+ over a wider range.

5. EXACT DISTRIBUTIONS OF PRE-TEST ESTIMATORS

As will be apparent from the discussion so far, the main 
emphasis in

the pre-test literature has been on the first two moments of PTE's. In

particular, the literature emphasises the use of risk under quadratic loss

as a measure of estimator performance, and so it focusses on
 Mean Squared

Error and the associated trade-off between estimator bias and precision.

Accordingly, the emphasis is on the consequences of pre-testing for point

estimation, rather than• interval estimation.

To deal with the latter important topic we need more informatio
n. For

example, to determine the effects of pre-testing on the probability content

of a confidence interval we need knowledge of the full sampling 
distribution

of the PTE. Given the additional demands that this places on the analysis,

it is not surprising that the econometrics literature was virtually silent

on this point until quite recently.

To date, there appear to be only two exact results and one si
mulation

experiment relating to the full sampling distribution of PTE's which are of

direct interest to econometricians. Fittingly, the exact results relate to

the two problems first studied by Bancroft (1944), as disc
ussed in Section

39



1.2. Giles (1992a) considers the sampling distribution of the estimator of
a variance parameter after a preliminary test of variance homogeneity across
two Normal populations; and Giles and Srivastava (1990) derive the sampling
distribution of the OLS estimator of a coefficient in a two-regressor model
after a preliminary t-test of the significance of the other regressor.

The first of these problems has an econometric interpretation in terms
of the estimation of the error term's scale after a pre-test for

homoscedasticity in a regression model which may be subject to structural
change. So, it relates directly to the earlier discussion in Section 2.2.1.

N.
Giles (1992a) considers two random samples, (x. .) .

1 
- N(1.1 .,cr2.) ; j = 1,2.ij 1= J J

, N.
12 j - - 1The usual unbiased estimator of cr

2 
is s = — E (x. -x .)

2 
 , where x =j n

j 1=1 
ij j j N .

N.

E x. 
.' 

and n . = N . - 1; j = 1,2.
i=1 1J J J

. The hypothesis under test is Ho : cr2i = cr22 vs. HA : cri > o. As is
2 2

well known, the statistic (s2i/s22) is F-distributed with n1 and n2 degrees of
freedom if Ho is true. If Ho is accepted there is an incentive to pool the
samples and estimate T21 by s2 = (nisf + n2s)/(n1 + n2), which leads to the

following PTE of cr2i:

"2

0-1 
= 1 2

Si ; if (521/522) > Fc

s
2

; if (s2/s2) -s F
1 2 c

where F
c 
= F (a) is the critical F-value for a significance level of a.c

The sampling properties of ;21 differ from those of the "never pool"

estimator, s2i, and of the "always pool" estimator, s2. In particular, ;21 is

biased in finite samples. Clearly, misleading inferences may be drawn if

one constructs confidence intervals centered on ;21, but with limits chosen

as if no pre-testing had occurred. To analyse this situation fully, Giles

(1992a) derives the full c.d.f. of ;-21, which is shown to be a rather

complicated function of the various parameters of the problem, but it does
not depend on the sample values and is easily evaluated numerically. Given

such evaluations, the pdf for the pre-test estimator is readily obtained by

numerical differentiation, and is found to be uni-modal.

Extending earlier related work by Bennett (1956), Giles (1992a) uses

these results to examine the extent to which confidence intervals for cr2i. are
"2distorted when they are based on cr but with the confidence limits

2(wrongly) determined from the x
2 

_1 n
1 

 
distribution of si or the x

2

" +n2
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distribution of s2. It transpires that as long as Ho is not too false,

confidence intervals based on pre-testing have higher probability content

than those based on s
2 
' 

while they have lower probability content than those
1 

based on s
2
. The converse applies for large departures from the null

hypothesis. Substantial departures from the assumed confidence level can

arise in practice, so extreme care must be taken in applied work.

As with point estimation, the choice of critical value, Fc, can

crucially affect the results. Interestingly, when the optimal values

suggested by Toyoda and Wallace (1975) and Bancroft and Han (1983) are

chosen, there are regions of the parameter space for which the pre-test

confidence interval for cr2 has higher probability content than do either of
1

the intervals based on s
2 
or s

2
.

1
Broadly speaking, similar conclusions emerge with the problem analysed

by Giles and Srivastava (1990). They consider the estimation of (31 in the

model

y
t 
=13

1
x
l 

+/3
2 
x
2 
+u • t= 1,...,T

t t t '

where the ut's are iid N(0,cr2), after a pre-test of Ho : f32 = 0 vs. HA : (32

0. Their result extends earlier related work for Normal means by Bennett

(1952). The cdf of the PTE 131 is readily evaluated, and its (uni-modal) pdf

is again obtained numerically. Using these results to assist in the

evaluation of confidence limits, results corresponding to those of Giles

(1992a) above emerge. It is clear that while pre-testing may affect the

true confidence level of an interval estimate either adversely or

favourably, only by applying the unrestricted estimator without any prior

testing, can we be sure that the true and nominal levels coincide.

Monte Carlo simulation results reported by Basmann and Hwang (1988)

focus on the effect of certain pre-tests on the location and shape of the

sampling distributions of estimators of a simultaneous structural model.

More specifically, the pre-testing situation that is considered relates to

the application of a likelihood ratio test of the over-identifying

restrictions on the parameters prior to estimation of the latter by Two Stage

Least Squares (2SLS) or Three Stage Least Squares (3SLS).

The Monte Carlo experiment is based on Klein's Model I of the U.S.

economy. Using the Kolmogorov-Smirnov goodness-of-fit test, the authors

conclude that the sampling distributions of the PTE's under consideration

are not particularly sensitive to the size of the pre-test itself. The same

goodness-of-fit test, and the first four moments are used to compare the
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conditional and marginal distributions of the 2SLS and 3SLS estimators.

On the basis of such a limited study it is difficult to offer strong

practical recommendations, but one conclusion that emerges is that the

pre-test 2SLS estimator is generally superior to the pre-test 3SLS estimator

in terms of bias and MSE, but the latter exhibits less skewness than the

former. Also, as it seems that the identifiability test statistic is not

distributed independently of the restricted structural coefficient

estimators, the usual diagnostic statistics such as "t-ratios" and R2 may be

extremely misleading, and one should be aware of this in applied work.

6. PRE-TEST TESTING

6.1 Introduction

The econometrics pre-testing literature has emphasized pre-test

estimation, much more than pre-test testing, resulting in something of an

imbalance. However, work in progress may soon alter this situation. To

some degree, this imbalance has arisen because the properties of many of the

PTE's that we have considered can be established analytically and without

resorting to asymptotic approximations, while the properties of their

pre-test test counterparts are generally somewhat less tractable. So, there

has been a tendency to focus attention on those problems for which exact

results are more readily forthcoming.

The •two pre-test testing examples cited in Section 1.1 exposed the

importance of the independence of successive tests if a controllable

pre-test situation is to be attained. For instance, the researcher's

ability to control the overall test size in the context of "nested"

hypotheses relies on the independence of such tests, if appropriately

formulated, and can be established by appealing to Basu's (1955)

Independence Theorem. Moreover, Anderson (1971, pp. 34-43, 116-134,

270-276) shows, for the case of normal linear models, that such a nested

testing procedure is UMP in the class of procedures which fix the

probabilities of accepting a less restrictive hypothesis than the true one.

Seber (1964) provides some asymptotic justification when nested testing is

conducted in the context of nonlinear models. Here, there is no substantive

pre-test testing "problem". Parenthetically it is worth noting that this

result provides strong justification for testing from the "general" to the

"specific" when deciding on a regression specification, and underscores

Leamer's (1988) point that most "stepwise regression" routines are probably
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better described as "stepUNWISE".

The second pre-test testing example given in Section 1.1 also involves

an independence issue, but one of a different sort. Extensions of that

independence result to a range of other interesting testing situations

involving statistics based on quadratic forms in normal random vectors are

considered by Phillips and McCabe (1989). However, even with this

independence there remains a pre-testing issue. The Chow test would be used

only if the null for the pre-test could not be rejected. Otherwise an

alternative test, such as a Wald test, for structural stability would be

used. So, even with the advantage of statistical independence there remains

a pre-test effect of substance in this case - the true size of the two-part

test for structural change will differ from the nominal sizes assigned to

the Chow test and its alternative, because of the prior test for variance

homogeneity.

Furthermore, pre-test testing generally involves an element of

non-independence between the "component" test statistics. In such cases,

there are immediate effects on the true (as opposed to nominal) sizes of the

second and subsequent tests, as well as on their powers. These issues have

been considered primarily in the context of three testing situations in the

econometrics literature, each of which is considered in turn below. The

properties of certain estimators after more than one preliminary test are

discussed briefly in Section 7 under the title of "multi-stage pre-testing".

If several tests are undertaken simultaneously, rather than sequentially,

then one can consider the global or multiple significance level for the

collection of tests. A good discussion of this situation is given by Kramer

and Sonnberger (1986, pp.147-154), and we do not pursue this topic here.

6.2 Testing the Coefficient Vector After a Pre-Test of the Error Variance

Several studies have used exact analytic methods to consider the

properties of the test for linear restrictions on the regression model's

coefficient vector, after a pre-test of some hypothesis relating in one way

or another to the variance of the error term. In this class of problems,

the form of the test for linear restrictions depends on the outcome of the

pre-test. For instance, Ohtani and Toyoda (1985) consider a pre-test of the

form H
0 
:o-
2
=0'

2 
VS. H

A 
:cr
2
t-Cr
2 

' 
where cr 

2 
is the regression error variance, and

0 0
2
To is a fixed value, supposedly known on the basis of previous experience or

analysis. In this case, the test of primary interest (that of linear

restrictions on the coefficient vector) is based on the usual F-statistic if

43



the pre-test null is rejected, and otherwise on a Chi-square statistic.

Ohtani (1987b) extends this analysis to the case where cro2 is unknown, and it

is estimated from an "auxiliary" regression; and Ohtani (1987c) considers a

closely related problem, one where the model includes a "proxy" regressor,

and the main test of linear restrictions is simply one of the significance

of the unobservable regressor which is being proxied. In each of these

studies, similar results emerge. The true size of the two stage test can

differ substantially from the nominal size of the main test, especially for

small degrees of freedom, but this can be corrected by assigning a 257.-307.

significance level to the pre-test. Further, the two-stage test can often

be more powerful than the single main test, once size correction has been

taken into account. Both of these results have obvious implications for

applied researchers.

Toyoda and Ohtani (1986) and Ohtani and Toyoda (1988) generalise

earlier work by Gurland and McCullough (1962) by considering a more familiar

testing problem of the type discussed in the second example cited in the

Introduction to this section. Specifically, the pre-test is for variance

homogeneity (against either a one-sided or two-sided alternative) in a two

sample linear regression situation, followed by a Chow test or an

alternative test for the structural stability of the coefficient vector

across the two samples, depending on whether the first null is accepted or

rejected. , The first of these two studies employs a modified (approximate)

F-test as the alternative to the Chow test, while the second study uses the

Wald test. Consistent with the results noted above, it is found that a

pre-test size of up to 807. may be advisable in order to avoid size

distortion in the test for structural change. Then, the two-stage test is

generally more powerful than the single stage test suggested by Jayatissa

(1977) and the Wald test, though typically less powerful than the

size-corrected variant of the latter suggested by Rothenberg (1984). Again,

there are some clear implications here for applied econometricians.

6.3 Testing the Error Variance After a Pre-test on the Coefficient Vector

A pre-test testing strategy which is essentially the reverse of the

ones just discussed is considered by Ohtani (1988b). Specifically, his

pre-test relates to exact linear restrictions on the regression coefficient
2 (2) 2 t.cfs:7rvector, while the main test of interest is of 

H0:0. _,T 
against HA

:0. 

2 
where c io s known.

As before, the size of the two-stage test can be controlled to that of

44



the main test if the nominal pre-test size is much larger than would

commonly be chosen. Specifically, a size of the order of 307. is

recommended. Again, with such a choice, pre-test testing can be more

powerful than applying the main test by itself.

6.4 Autocorrelation Pre-Test Testing

In the next section we consider the properties of various estimators

involving a preliminary test for the serial independence of the regression

errors. However, autocorrelation pre-testing also gives rise to some

important pre-test testing situations. Primarily, attention has focussed

here on the following problem - what are the properties of the usual t-test

for the significance of a regression coefficient after a prior Durbin-Watson

(or similar) test for autocorrelation? In this case, the form of the

"t-test" varies according to the outcome of the pre-test - if the null of

independent errors is accepted then the t-test is based on OLS estimates;

but if the errors are found to be autocorrelated then the second test is

based on Cochrane-Orcutt or full maximum likelihood estimates, for example.

Attention has centred on tests of single linear restrictions at the second

stage, and the nature of the problem has necessitated Monte Carlo simulation

rather than exact analytical treatment.

Nakamura and Nakamura (1978) and King and Giles (1984) have studied

this problem. The former study is the more limited, being based on a model

with a single trended regressor, and considering only the Durbin-Watson and

Geary autocorrelation tests. A much wider range of tests and design

matrices are examined by King and Giles, and (following the findings of

Fomby and Guilkey (1978)) both 5% and 507. sizes are considered for the

pre-tests. Nakamura and Nakamura find that the size of the pre-test

"t-test" exceeds its nominal size, increasingly so as the degree of positive

first-order autocorrelation in the errors increases. They also suggest that

simply adjusting for autocorrelation and then testing is preferable to

either pre-test testing, or t-testing on the basis of OLS estimation in this

context. This preference is based on the degree of size distortion.

King and Giles find that their results are somewhat sensitive to the

regressor data, and that trended regressors can produce extreme results, so

this raises some questions as to the strength of the results just cited.

Generally, they find that the size of the pre-test "t-test" is distorted

less than those of the two component "t-tests", especially if a 50% pre-test

size is used. Further, once size distortion is taken into account, the
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powers of the pre-test "t-test" and the "t-test" conducted after an

automatic allowance for AR(1) errors are found to be similar, and greater

than that of the simple OLS-based t-test. These results are quite

supportive of autocorrelation pre-testing, especially if a larger than usual

pre-test size is adopted, and they are broadly consistent with the principal

results discussed in the last two subsections. The converse autocorrelation

pre-testing problem is discussed by Giles and Lieberman (1991a). That is,

they consider the size and power of the (exact) Durbin-Watson test after a

preliminary t-test. Their results are based on a mixture of analytical and

Monte Carlo results. When there is no pre-testing the exact power

properties of the Durbin-Watson test are easily computed for any regressor

data, but a simulation experiment is needed to analyse the pre-test

strategy.

Working with a range .of data sets, different sample sizes, and pre-test

sizes of 57. and 507., Giles and Lieberman find that pre-testing distorts the

true size of the Durbin-Watson test above its nominal value, unless the

restriction under test is true. This distortion can be reduced in

percentage terms by choosing a large nominal size (say, 507.) for the

Durbin-Watson test. The results with respect to power are less clear, but

there are situations in which pre-testing can result in increased power of

the Durbin-Watson test. These results suggest that autocorrelation

pre-testing, defined in either of the above ways, is not necessarily a "bad"

thing. Moreover, they lend considerable support to the case made by Fomby

and Guilkey (1978) for assigning much larger sizes than usual to tests for

autocorrelation, and this should be borne in mind by applied

econometricians.

7. OTHER DEVELOPMENTS

There are several other important pre-test problems which have

attracted attention in the more recent econometrics literature. Some of

these are discussed briefly in this section.

7.1 Autocorrelation Pre-Testing Estimation

The second motivating example given in Section 1.1 serves as an

introduction to an interesting pre-test situation that arises frequently in

applied econometrics. That example relates to the use of the Durbin-Watson

test for serial independence of the regression errors, as a basis for

choosing between least squares estimation and Cochrane-Orcutt estimation of
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the regression coefficients. Pre-test strategies of this general type have

been analysed to some degree.

Judge and Bock (1978, pp. 143-164) consider the empirical risks of such

autocorrelation PTE's based on both the Durbin-Watson and Berenblutt and

Webb tests, with various component estimators. Specifically, the Durbin,

Cochrane-Orcutt and Prais-Winsten estimators are considered when a positive

AR(1) error process is detected by one of the tests. A limited Monte Carlo

experiment, based on a model with four orthonormal regressors, forms the

basis of their analysis, and estimator performance is measured in terms of

risk under squared error loss. Only positive autocorrelation is considered.

The risks of the component estimators and of the various PTE's increase with

the degree of autocorrelation.

This study suggests, among other things, that it is the choice of

estimators, rather than the choice of test, which determines the risk

consequences of autocorrelation pre-testing. Strategies which incorporate

the Durbin estimator when serial correlation is detected are especially

favoured. It also indicates that autocorrelation pre-testing doesn't incur

particularly large risk losses (relative to no pre-testing), even when there

is slight serial correlation, and for moderate to large degrees of serial

correlation there can be substantial gains from pre-testing.

These conclusions are corroborated in recent work by Chen and Saleh

(1991). Their experimental design is virtually identical to that of Judge

and Bock, but they emphasise the performance of autocorrelation pre-test

strategies based on shrinkage estimators of the type proposed by Sen and

Saleh (1985) and Saleh and Sen (1985). In particular, they find that

autocorrelation PTE's of this type uniformly dominate their conventional

autocorrelation pre-test counterparts. This illustrates the (known)

inadmissibility of standard autocorrelation pre-test strategies, in the same

way that Judge and Bock (1978, pp. 189-195) illustrate the inadmissibility

of the conventional linear restrictions PTE for the regression coefficients.

(Of course, the autocorrelation PTE's suggested by Chen and Saleh are

themselves inadmissible, being discontinuous functions of the random data.)

King and Giles (1984) extend the results of Judge and Bock in several

directions by considering additional tests for serial independence as well

as the full maximum likelihood estimator to allow for AR(1) errors. They

also consider the effects of autocorrelation pre-testing on the power of the

test for regressor significance, as was discussed in Section 6 above, and on

predictive performance. Their Monte Carlo experiment is more comprehensive

47



than those discussed above, with an allowance for different (nonorthogonal)

design matrices with three to six regressors, different sample sizes, and

both the 57. and 507. pre-test significance levels. The latter size reflects

results obtained by Fomby and Guilkey (1978), and extended recently by

Kennedy and Simons (1991). Fomby and Guilkey showed that, in terms of

maximising the (MSE) efficiency of the PTE relative to that of OLS, after a

preliminary Durbin-Watson test, the • size of the latter test should be of the

order of 507., rather than the conventional 17. or 5%.

One of the most important findings from the study by King and Giles is

that the form of the regressor matrix is crucial in determining the risks of

autocorrelation PTE's. This implies that other related results based on

more limited studies should be interpreted cautiously. This study also

finds that PTE's which incorporate the full maximum likelihood estimator to

allow for autocorrelation are preferable to those which involve the Durbin

estimator, except for problems involving relatively small degrees of

freedom. At conventional significance levels, and especially with small

sample sizes, the results also suggest a slight preference for the

Berenblutt and Webb test, or King's point optimal test as the pre-test. The

choice of pre-test is generally less consequential if a 50% significance

level is used.

Griffiths and Beesley (1984) extend the earlier Judge-Bock analysis in

a different direction. In a Monte Carlo experiment limited to a single

regressor model, but considering both trended and stationary data, they

analyse the autocorrelation PTE based on the (two-sided) Durbin-Watson test

and either OLS or Maximum Likelihood estimation. They also consider what is

effectively a multi-step PTE (further examples of which appear in the next

subsection). In particular, they analyse the consequences of using the

Durbin-Watson test to discriminate between serial independence and

autocorrelation of the errors, and Akaike's Information Criterion to select

between AR(1) and MA(1) disturbances in the latter case. In terms of

reasonably uniform point estimation relative efficiency over the entire

parameter space, the multi-step PTE is found to be quite successful.

However, in the case of interval estimation, the OLS-AR(1) PTE of the form

considered by the other authors is found to be preferable to multistage

pre-testing, at least in terms of the tests considered by Griffiths and

Beesley. As with the results of King and Giles, the type of regressor data

is found to • be an important determinant of the estimators' relative

performances.
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Folmer (1988) provides a more complete summary of the studies discussed

above, and provides Monte Carlo and bootstrap approximations to the full

distribution of the autocorrelation PTE based on the Durbin-Watson test and

the OLS and Durbin estimators. His results accord with those noted already,

and he concludes that (wrongly) applying standard results, when

autocorrelation pre-testing has taken place, can be very misleading. This

is especially so in the case of confidence intervals, a result which accords

with the conclusions reached in Section 5 above.

Autocorrelation pre-testing in the context of models which include a

lagged dependent variable as a regressor is considered by Giles and Beattie

(1987). Again, given the nature of the problem, this study is based on

Monte Carlo analysis. The risks of nine PTE's are evaluated, and are found

to exhibit similar shapes to those encountered in the fixed-regressor

studies discussed already. Consistent with those other results, this study

also finds that autocorrelation pre-testing can lead to significant

reductions in risk over large parts of the parameter space, and that the

choice of component estimators is generally more important than the choice

of preliminary test. PTE's which incorporate Wallis's (1967) three-step

procedure and Durbin's (1970) "m test" are found to be advantageous from a

risk viewpoint.

In summary, autocorrelation pre-testing is generally preferable to

simply applying OLS. In terms of both point estimation and interval

estimation, pre-testing is also preferable to simply estimating under the

assumption of AR(1) errors when the degree of autocorrelation is small, and

for high degrees of autocorrelation pre-testing is no worse than this

alternative approach. Finally, significance levels much higher than those

conventionally assigned in econometric work deserve serious consideration in

this context.

7.2 Multi-stage Pre-Testing

Though the majority of the pre-test literature concentrates on the

properties of PTE's after a single pre-test, the analysis of multi-stage

PTE's has recently received attention. This is, of course, closer to the

procedure actually undertaken by applied researchers, who would typically

undertake a series of pre-tests prior to deciding the "final" version of .the

model. For instance, a researcher may test for autocorrelation, and on the

basis of this test decide whether to use OLS or some feasible GLS estimator.

After this decision, he may then undertake a test for heteroskedasticity,
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with the test being used dependent on the outcome of the prior pre-test for

autocorrelation. The outcome of the second pre-test - the

heteroscedasticity test - will determine whether he keeps the "current"

version of the model or whether some modification is undertaken and so on.

Clearly, given that each step in this sequential testing procedure is

dependent on the outcome of the previous pre-test, and that typically, the

tests are not independent of each other, it is difficult to derive the

properties of multi-stage PTE's analytically. To date, as far as we are

aware, only four studies have attempted to consider some finite sample

properties of various multi-stage PTE's - Shukla (1979), Ad jibolosoo

(1990b), ozcam and Judge (1991), and Ohtani (1991a).

Shukla (1979) considers the estimation of the slope coefficients in the

two-sample simple linear regression model

v. = . + 13 .x. + e. ; j=1,2; i=1,2, ,T .-
'1i J J J'

Nwhere e
ij 

(0,cr
2
), after two preliminary tests of significance. The first

pre-test is of H :cr
2
=o-
2 

where T
o 

is a known constant, and this test is
01 0' 

2

undertaken using a x2-statistic. The second pre-test is of H02:132=131, for

which a z-test is used if we do not reject H01, while if we reject H01 a

t-test is undertaken. Shukla derives the bias and MSE of the PTE of (31/

Unfortunately, though he notes that the expressions are too complicated for

comparisons to be made, he does not undertake any numerical evaluations of

the expressions.

ozcam and Judge (1991) extend Shukla's investigation to the multiple

regression case and possibly heteroscedastic error variances. The first

pre-test is of H01:(3.21=cr22 (vs. HAi:cri>cr2) followed by a second pre-test of
2 2

H02431132 
(vs. HA2431*(32) in

y =
y
2 

0 X
2 

13
2 

e2

2
whereN e.- (0,criIT.) and the usual assumptions on Xi are satisfied; i=1,2.

1
1

The two-stage pre-test estimator (2SPE) of 131, assuming orthonormal

regressors, comprises the least squares estimator (LSE=(Xii y1+X2' y2)/2) , the
2 2

Two-Step Aitken estimator 12SAE=(0X
1
' y

1
+(1-0)X

2
' y

2
), where 0=s /(s +s

2 
) and

2 1 
2s2

. is the usual unbiased estimator of o-.) , and the Gauss-Markov estimator
1 1

(GME=X1' yi). H01 is tested using the Goldfeld-Quandt test, while H02 is

tested using the Chow test if we accept that the error variances are
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homoscedastic, but using the Wald test if we reject homoscedasticity. zcam

and Judge derive the risk, under quadratic loss, of the 2SPE and using

numerical evaluations of these exact expressions, they compare the

estimators assuming that each tet is undertaken at the (nominal) 57. level.

For a given value of cr2i/cr22 they find that the 2SPE is preferable to the GME,

regardless of whether 131 and (32 are equal. Further, their results suggest

that the risk advantages of the 2SAE and the LSE over the 2SPE under H01

disappears as the difference between 131 and (32 disappears.

Ad jibolosoo (1990b) also considers a two-step estimator of the

coefficients in the two-sample heteroscedastic linear regression model.

Following the lines of Ad jibolosoo (1989, 1990a) he considers the

possibility that one may still prefer to use the LSE even if H01 is

rejected, if the degree of heteroscedasticity is not severe, and suggests

that a second step should be incorporated if we reject H01 to compare the

relative efficiency (strong MSE) of the LSE and the 2SAE. • If the LSE is

relatively more efficient we use this estimator even though we have rejected

homoscedasticity. Using a Monte Carlo experiment, he shows that the risk of

the two-step PTE is typically better than that of the traditional PTE

discussed in Section 2.2.2.

Ohtani (1991a) investigates the sampling properties of a PTE for the

variance of the classical linear regression model, P, after a pre-test for
homogeneity H02: cr2=cr02, where cro2 is known (vs. HA,:o•2>cr02) when the estimator

we use if we reject the null hypothesis is Stein's (1964) estimator, crs2. We

mentioned Ohtani's study in Section 2.3 and we recall that crs2 is itself a

PTE with its components being the restricted (cri:42) and unrestricted (O.j.:4)

minimum MSE estimators of the error variance when the test critical value is

v/(v+2). The pre-test is for exact linear restrictions, H01:143=r vs

:R.13*r. So, we first test H
01 

using a critical value of v/(v+2); if we
HAI
reject this hypothesis we use 2r•m2 while we use alia4l2 if we accept H01. Thus,

2
the estimator actually used is as' 

We then test 
H02' 

• if we accept H
02 

we

2 2
use cro, while we continue to use crs if we reject H02. Ohtani derives the MSE

of this two-stage PTE and compares it with that of a•s2 using numerical

evaluations. He shows that if the size of the test for H
02 

is chosen

appropriately (say, 25%) then the two-stage PTE strictly dominates the Stein

estimator, assuming that the direction of HA2 is valid, and that it is only

around the neighbourhood of H02 being true that other choices of test size

may be more appropriate.

Given these studies, it is apparent that further research is required
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into the properties of multi-stage PTE's. Nevertheless, the papers

discussed in this section suggest that multi-step pre-testing may be a

preferable option to naively imposing or ignoring prior information.

7.3 Alternative Loss Functions

All of the above discussion reflects the emphasis in the econometrics

pre-testing literature on the use of a quadratic loss function. The appeal

of this type of loss, of course, is that it leads to risk measures which are

in the form of matrix MSE (or its trace), and so incorporate the familiar

bias-variance tradeoff when assessing estimator performance. However, an

interesting question that naturally arises is, "to what extent are the

various results in the pre-testing literature robust to departures from the

quadratic loss assumption?"

There is only scant evidence in answer to this question, though this is

an important topic currently under research. One feature of a quadratic

loss function is that it is symmetric - underestimation and overestimation

are equally penalised. Accordingly, it would be interesting to know whether

the standard pre-testing results are sensitive to choices of loss functions

which are non-quadratic, but still symmetric, as opposed to ones which are

asymmetric. With respect to the former, there is apparently no published

evidence. Current work by Giles and Lieberman (1992) reconsiders the first

of Bancroft's (1944) problems in terms of risk based on an absolute error

loss function. The results to date suggest that, except in one respect, the

known results under quadratic loss apply qualitatively under absolute error

loss. In particular, when estimating a single regression coefficient after

a preliminary t-test of the significance of the second regressor, the risk

of the unrestricted estimator is still independent of the test statistic's

noncentrality parameter; the pre-test estimator's risk has the same shape

properties as in Figure 1; but the risk of the restricted estimator is

mildly concave to the origin. The same types of regions of estimator

dominance hold as for the quadratic loss function. So, pre-testing can be

the worst strategy, it is never best, and the same question of the optimal

choice of pre-test size arises.

Any symmetric loss function is unduly restrictive in certain estimation

situations. For example, underprediction and overprediction of the future

exchange rate are unlikely to be equally costly mistakes. Underestimating
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the error variance in a regression model will lead to calculated t-

statistics which make the regressors appear to be more "significant" than is

warranted. A conservative researcher may prefer to err in the opposite

direction.

Work in progress by Giles, Giles and Wallace (1992) considers the

former problem, using the asymmetric LINEX loss function proposed by Varian

(1975), and subsequently adopted by Zellner (1986) and Srivastava and Rao

(1992). Using this same loss function, of which quadratic loss is a special

case, Giles and Giles (1991, 1992) consider the second problem suggested

above. They consider the estimation of the scale parameter in a multiple

regression model with Normal errors after a preliminary test of exact linear

restrictions on the coefficient vector, or after a pre-test of variance

homogeneity. They find that the risk functions for the pre-test,

unrestricted, and restricted estimators are robust to mild departures from

quadratic loss (at least qualitatively). However, as the degree of

asymmetry in the loss function increases, rather different results can

emerge. On the basis of this limited information, it seems that the PTE

properties may be reasonably robust to departures from quadratic loss which

are still symmetric, or only mildly asymmetric. Strong asymmetry in the

loss function, however, may lead to results at variance with those in the

established literature, and this remains a topic for further investigation.

7.4 Other Pre-Test Problems

As we have seen already, many of the tests that are used in

econometrics can be reduced to ones of the validity of exact restrictions on

the regression coefficients, or to tests that can be linked to

homoscedasticity of the regression errors. Accordingly, the detailed

attention that we have paid to the related PTE's effectively covers a range

of specific situations, such as testing the "significance" of an individual

regressor, or testing for structural change. Also, there are other closely

related pre-test situations that are of interest to economists.

One recent such example is the problem of estimating the regression

coefficient vector after a linear restrictions pre-test, but in a situation

where there are two sets of linear constraints, one of which contains only

valid information, but the second of which may contain some invalid

information. This problem is studied by Hessenium and Trenkler (undated),

who derive necessary and sufficient conditions for the dominance of the PTE

53



in terms of matrix MSE22.

Another example, considered by. Griffiths and Judge (1989), involves

estimating regression coefficients after the application of Weerahandi's

(1987) test of coefficient stability. This test allows for the possibility

that the errors may be heteroscedastic across the two sub-samples. The

component estimators in this case are OLS and the restricted 2SAE. Using

Monte Carlo analysis, Griffiths and Judge compare this PTE with the

corresponding one based on an asymptotic F-test23 and find that although the

former PTE is slightly risk-superior to the latter for small degrees of

hypothesis error, generally there is no clear advantage in using

Weerahandi's "exact" test, rather than the asymptotic F-test, in this

pre-test environment.

There are other interesting pre-test problems of various sorts which

deserve brief mention here. For example, Morey (1984) derives the

asymptotic risks of specification pre-test estimators based on Wu-Hausman

tests in the context of a linear model which may be mis-specified in the

sense that certain of the errors may be correlated with the disturbances.

The two component parts of this PTE for the coefficients are OLS (if the

test suggests independence between the errors and the regressors) and

Instrumental Variables (IV) estimation (if the errors and regressors are

thought to be correlated). The most interesting feature of Morey's results

is that this PTE is strictly dominated by the IV estimator itself. However,

to be conservative, and given that the degree of mis-specification will be

unknown in practice, Morey recommends against simply using the IV estimator

without a pre-test, and instead suggests testing with a much higher

significance level than would usually be adopted. In this respect his

results accord with those discussed already in the context of

autocorrelation pre-testing.

More recently, zcam et at. (1991) consider an important PTE in the

context of the Seemingly Unrelated Regressions (SUR) model. The setting for

their analysis is a two-equation SUR model with orthonormal regressors, and

the PTE is based on OLS and GLS, depending on whether there is evidence of

cross-equation (population) correlation between the disturbances. The

22
See also Pordzik and Trenkler (undated).

23
This is just a scaled Wald statistic.
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latter is tested using the corresponding sample correlation coefficient

based on the "restricted" OLS residuals. Although the (squared error) risks

of the PTE and its components "cross" in the usual sense, there are regions

of the parameter space over which the PTE's risk is the smallest of the

three. As we have seen already, contrary to popular mythology (which is

based on the standard "exact restrictions" PTE problem) there are situations

In which pre-testing can be advantageous from a MSE viewpoint.

The pre-test literature has not kept pace fully with certain

significant developments in econometrics which are of vital importance to

applications in both macroeconomics and financial economics. The modelling

of high frequency financial time-series now invariably considers the

possibility of leptokurtic errors, specifically by specifying some sort of

autoregressive conditionally heteroscedastic (ARCH) process for the

disturbances. Very little is known about the properties of pre-test

strategies in the context of ARCH or GARCH regression errors. The nature of

the problem does not allow an analytical treatment, and finite-sample

results must be obtained by Monte Carlo simulation.

Engle et al. (1985) consider the following pre-test problem. The model

is estimated by OLS and a one-sided version of the LM test for ARCH(1)

errors is applied in its nR2 form. Depending on the outcome of the test,

either the OLS results are retained, or the coefficients are re-estimated by

MLE. This PTE is found to be unbiased. Moreover, in terms of finite sample

efficiency, it is found to be little worse than OLS when the errors are free

of an ARCH process, much better than OLS when there is an ARCH effect

present, and almost as good as the MLE in the latter case. Giles, Giles and

Wong (1992b) consider a related pre-test testing problem. They use Monte

Carlo analysis to determine the effects that various pre-tests for ARCH(p)

or GARCH(p,q) errors have on the size of a subsequent "t-test" for the

significance of a regressor. Their results show that such pre-testing is

quite innocuous in samples of 100 or more observations, but in small samples

it may be preferable to use a smaller than usual size for the pre-test.

Empirical macroeconomics has been revolutionised in recent years with

the recognition that the use of cointegrated time-series has special

implications for model formulation, estimation and testing. Several tests

for the order of integration of time-series, and for their possible

cointegration, are now routinely used. Pre-test strategies also abound in

this context in practice, though their implications are only just beginning

to be explored. Again, the asymptotic nature of the tests concerned

55



necessitates the use of Monte Carlo simulation to analyse the finite-sample

properties of cointegration pre-test estimators and tests. This remains a

fruitful and important area for research, and work underway by the authors24

considers such issues as the effects that multi-stage sequential pre-testing

for order of integration and the presence of cointegration may have on test

sizes; and the finite-sample properties of estimators of the parameters of

VAR/error correction models after cointegration pre-testing.

8. CONCLUSIONS

In this paper we have attempted to provide an overview of

preliminary-test problems as they arise in econometrics, and to indicate

some of the recent developments in this field. Inevitably, there will be

omissions, but hopefully we will have captured the principal thrust of the

associated literature while exposing both the historical and recent

connections between the different strands of research into pre-testing

problems.

A number of specific practical implications that arise from the

econometric pre-testing literature have been presented in the paper.

However, by way of conclusion it may be appropriate to offer some general

comments. First, pre-test estimation and pre-test testing are perhaps the

norm rather than the exception in applied econometric analysis, so the

issues and results that we have discussed are of direct relevance to

economists who engage in empirical work.

Second, once pre-testing takes place the standard "textbook results"

relating to the properties of various estimators and tests generally no

longer apply. For instance, estimators which are unbiased under a specified

set of assumptions or conditions may be biased if used after one or more

preliminary tests relating to the specification of the model. The applied

researcher should be aware of this as it may affect the overall strategy

that is adopted when specifying, testing and estimating an economic

relationship.

Third, and contrary to a commonly encountered viewpoint, this is not to

say that pre-testing is necessarily a "bad" thing. On the contrary, we have

given examples of situations in which pre-testing may lead to estimators

which have uniformly smaller Mean Squared Error than can be achieved by

24
This work is being undertaken with John Small.
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applying the estimator without a suitable prior test. The essential point

is that the sampling properties (such as bias, efficiency, size and power)

of the estimators and tests that economists use in their empirical research

are typically altered if pre-testing occurs prior to their application.

Fourth, as with any estimators or tests, the established results are

based on various assumptions, including the presumption that the model is

"correctly specified". If any of these assumptions are violated then

typically the established results are affected. One of the recent

developments in the pre-testing literature has been an examination of the

robustness of established results to the type of assumption violations (such

as the omission of regressors, or non-normal errors) that are likely to

occur in practice. This makes the literature more directly relevant to

practitioners.

Fifth, there are more established results relating to pre-test

estimation situations than to pre-test testing situations. This is an

important imbalance, and is one that is being addressed to some degree in

current work in the field. Given the nature of the statistical issues

involved, it seems likely that these developments will rely more on

simulation analysis than on exact distribution theory. In any event, there

is an urgent need for more information about the implications of pre-test

testing, especially in the context of ARCH-GARCH tests and tests for

integration and cointegration with economic time-series data.

Sixth, most of the available information concerning the implications of

pre-testing in econometrics relates to the application of a single

preliminary test. In reality, economists engage in multi-stage pre-testing

in a regression environment. While we have discussed a few results relating

to this situation, the• available information is very limited. Certainly,

multi-stage pre-testing alters the standard pre-test results, though again

it is not necessarily the case that things get "worse" (in some sense) as

the degree of pre-testing is increased. However, one general point that

does emerge in this context (and in many simple pre-test testing situations)

is that it is often advisable to conduct our standard diagnostic tests with

nominal significance levels that are far different than we typically adopt.

Much remains to be done before the full implications of pre-test

strategies of the type that economists actually use in their empirical work

are properly understood. More information is needed about pre-test testing,

multi-stage pre-testing, the impact of non-normal disturbances, and the full

sampling distributions of pre-test estimators. However, the recent work in
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this field has provided us with a good deal of information that is of direct

practical benefit to econometricians and applied economists alike.
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