

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Department of Economical UNIVERSITY OF CANTERBURY

CHRISTCHURCH, NEW ZEALAND
ISSN 1171-0705

TESTING FOR ARCH-GARCH ERRORS
 IN A MIS-SPECIFIED REGRESSION

David E. A. Giles, Judith A. Giles and Jason K. Wong

Discussion Paper

No. 9201

This paper is circulated for discussion and comments. It should not be quoted without the prior approval of the author. It reflects the views of the author who is responsible for the facts and accuracy of the data presented. Responsibility for the application of material to specific cases, however, lies with any user of the paper and no responsibility in such cases will be attributed to the author or to the University of Canterbury.

Department of Economics, University of Canterbury Christchurch, New Zealand

Discussion Paper No. 9201

January 1992

TESTING FOR ARCH-GARCH ERRORS IN A MIS-SPECIFIED REGRESSION

David E. A. Giles, Judith A. Giles and Jason K. Wong

TESTING FOR ARCH-GARCH ERRORS IN A MIS-SPECIFIED REGRESSION ${ }^{*}$

David E.A. Giles
Judith A. Giles
and
Jason K. Wong

Department of Economics
University of Canterbury

January 1992

Abstract

This paper considers several one-sided and two-sided asymptotic tests for $\operatorname{ARCH}(q)$ and $\operatorname{GARCH}(p, q)$ regression errors, and uses Monte Carlo analysis to investigate their finite-sample sizes and powers when a regressor has been inadvertently omitted from the model. The results are compared with those obtained when the model is correctly specified. The extent to which such model mis-specification affects the tests' properties can depend on the form of the omitted regressor, but generally one-sided tests out-perform their twosided counterparts.

Address for Correspondence: Professor David Giles, Department of Economics, University of Canterbury, Private Bag, Christchurch, NEW ZEALAND.

1. Introduction

Since they were first discussed by Engle (1982), autoregressive conditionally heteroscedastic (ARCH) processes have received considerable attention in the econometrics and empirical finance literatures. In particular, ARCH and generalised ARCH (GARCH) processes have been found to be useful characterisations for the disturbances in regression models relating to financial time-series data of various sorts (e.g., see Bollerslev et al. (1992)).

There is only a limited literature on the problem of testing for white noise regression disturbances against the alternatives of ARCH or GARCH errors. Engle (1982) suggested a simple Lagrange Multiplier (LM) test for ARCH disturbances, which is shown by Lee (1991) to be also an LM test against GARCH errors. A one-sided version of this test, suitable for ARCH(1) and GARCH $(1,1)$ processes, was considered by Engle et al. (1985). Recently, Lee and King (1991) have suggested a locally best score (LBS) test which also takes account of the one-sided nature of the testing problem against higherorder alternatives.

Each of these tests has (large sample) asymptotic justification, but relatively little is known about their finite-sample properties. Some evidence, based on Monte Carlo analysis, is given by Engle et al. (1985), Lukkonen et al. (1988), Bollerslev and Wooldridge (1988), Diebold and Pauly (1989), Gregory (1989) and Lee and King (1991). Even less is known about the robustness of these tests to various forms of model mis-specification. Lee and King (1991) consider the effects of conditionally leptokurtic errors, but the robustness of the tests to other departures from the underlying assumptions remain to be explored.

There is evidence (e.g., Small et al. (1992), Giles and Saxton (1992)) that other tests based on Least Squares regression residuals lack robustness
to shifts in the mean of the disturbances. In practice, this is a very common form of model mis-specification. Accordingly, in this paper we investigate the finite-sample sizes and powers of ARCH-GARCH tests when they are applied in the context of a regression model from which a relevant regressor has been unwittingly omitted.

2. The Model and Tests

Consider the linear regression model

$$
y_{t}=b_{0}+\sum_{i=1}^{k-1} b_{i} x_{i t}+u_{t} ; t=1,2, \ldots, T
$$

where

$$
\begin{equation*}
u_{t} \mid \Phi_{t-1} \sim \operatorname{IN}\left(0, \sigma_{t}^{2}\right) \tag{2}
\end{equation*}
$$

and Φ_{t} is the information set available at time t. If the disturbances; u_{t}, follow a $\operatorname{GARCH}(p, q)$ process (e.g., Bollerslev (1986)) then

$$
\begin{equation*}
\sigma_{t}^{2}=\sigma^{2}+\sum_{i=1}^{q} \alpha_{i} u_{t-i}^{2}+\sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{2} \tag{3}
\end{equation*}
$$

where $\sigma^{2}>0 ; \alpha_{i}, \beta_{j} \geq 0$ (all i, j) and $\sum_{i=1}^{q} \alpha_{i}+\sum_{j=1}^{p} \beta_{j}<1$. ARCH(q) errors arise as a special case of (3) when $\beta_{j}=0$ (all j).

Although Ordinary Least Squares (OLS) estimation of (1) is best linear unbiased in the context of GARCH or ARCH errors, greater efficiency can be achieved by using the (non-linear) Maximum Likelihood (ML) estimator which takes account of (3). Further, ARCH and GARCH errors have unconditional distributions which are fatter-tailed than under normality. This property, and their ability to account for volatility clustering, mean that ARCH-GARCH processes are useful characterisations of prices or returns for many speculative assets. For these reasons, testing for the presence of ARCH-GARCH disturbances is of considerable importance in financial econometrics.

Specifically, we wish to test

$$
H_{0}: \alpha_{1}=\alpha_{2}=\ldots .=\alpha_{q}=\beta_{1}=\beta_{2}=\ldots \beta_{p}=0
$$

against

$$
\begin{aligned}
& H_{A}: \alpha_{i} \geq 0 ; \beta_{j} \geq 0 \quad \text { (with at least one strict inequality; } \\
& \qquad i=1, \ldots, q ; j=1, \ldots, p \text {) }
\end{aligned}
$$

in the $\operatorname{GARCH}(p, q)$ case. In the $\operatorname{ARCH}(q)$ case we wish to test

$$
H_{0}^{\prime}: \alpha_{1}=\alpha_{2}=\ldots .=\alpha_{q}=0
$$

against

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{A}}^{\prime}: \alpha_{i} \geq 0^{\circ} \quad \text { (with at least one strict inequality; } \\
& \\
& i=1, \ldots, \mathrm{q})
\end{aligned}
$$

Lee (1991) has shown that the Lagrange Multiplier (LM) test of H_{0}^{\prime} against H_{A}^{\prime}, as proposed by Engle (1982), is also the $L M$ test of H_{0} against H_{A} (for the same q value). This test rejects H_{0} for large values of the statistic

$$
L M=\delta^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} \delta / 2
$$

where

$$
\begin{aligned}
& \mathrm{w}^{\prime}=\left(\mathrm{w}_{\mathrm{q}+1}: \cdots \cdots \cdot \cdot \cdot \mathrm{w}_{\mathrm{T}}\right) \\
& \mathrm{w}_{\mathrm{t}}^{\prime}=\left(1, \hat{u}_{\mathrm{t}-1}^{2}, \cdots, \hat{u}_{\mathrm{t}-\mathrm{q}}^{2}\right) \\
& \delta^{\prime}=\left(\left(\hat{u}_{\mathrm{q}+1}^{2} / \hat{\sigma}^{2}\right)-1, \ldots,\left(\hat{u}_{\mathrm{T}}^{2} / \hat{\sigma}^{2}\right)-1\right)
\end{aligned}
$$

\hat{u}_{t} is the OLS residual associated with (1), and $\hat{\sigma}^{2}$ is the ML estimator of σ^{2} under H_{O} or $\mathrm{H}_{\mathrm{O}}{ }^{\prime}$

As Engle (1982) and Engle et al. (1985) note, an asymptotically equivalent test can be constructed using the statistic $n R^{2}$, where $n=T-q$ and R^{2} is the coefficient of determination from the OLS regression of \hat{u}_{t}^{2} on an intercept and q successive lags of \hat{u}_{t}^{2}. The $L M$ and $n R^{2}$ statistics are each asymptotically $\chi_{(\mathrm{q})}^{2}$ under H_{0} or H_{0}^{\prime}.

One potential weakness of these two tests is that neither takes account of the one-sided nature ${ }^{2}$ of H_{A} and H_{A}^{\prime}. To compensate for this in the ARCH(1)
case, Engle et al. (1985) suggest using a one-sided test based on the asymptotically standard normal statistic $z\left(n R^{2}\right)=\operatorname{sign}\left(\hat{\alpha}_{1}\right)\left(n R^{2}\right)^{1 / 2}$, where $\hat{\alpha}_{1}$ is the estimated coefficient of \hat{u}_{t-1}^{2} in the regression used to define R^{2} above. Alternatively, nR^{2} can be replaced by LM , and from Lee's (1991) results, either $z\left(n R^{2}\right)$ or $z(L M)$ is also appropriate against a $\operatorname{GARCH}(p, 1)$ alternative.

This approach is not helpful in the construction of a one-sided test if $q \geq 2$, which has motivated Lee and King (1991) to use the approach of King and Wu (1990) to develop a Locally Best Score (LBS) test of H_{0} or H_{0}^{\prime} against H_{A} or $\mathrm{H}_{\mathrm{A}}^{\prime}$. This one-sided test is also based on an asymptotically standard normal statistic of the form

$$
\text { LBS }=\frac{\sum_{\mathrm{t}}\left(\left(\hat{\mathrm{u}}_{\mathrm{t}}^{2} \hat{\sigma}^{2}\right)-1\right) \sum_{\mathrm{i}=1}^{\mathrm{q}} \hat{\mathrm{u}}_{\mathrm{t}-1}^{2}}{\left\{2 \ell^{\prime}\left[\sum \hat{z}_{\mathrm{t}} \hat{z}_{\mathrm{t}}^{\prime}-\Sigma \hat{z}_{\mathrm{t}} \hat{\mathrm{t}}_{\mathrm{t}}^{\prime} / \mathrm{T}\right]\right]^{1 / 2}}
$$

where ℓ is a $(q \times 1)$ vector of ones and $\hat{z}_{t}^{\prime}=\left(\hat{u}_{t-1}^{2}, \ldots, \hat{u}_{t-q}^{2}\right)$. The LBS test of H_{0} against H_{A} is also the LBS test of H_{0}^{\prime} against H_{A}^{\prime} (for the same q value), and LBS collapses to $z(L M)$ when $q=1$.

As noted above, there is only limited evidence concerning the finitesample properties of these tests. This information is based on Monte Carlo simulations, and in this paper we adopt the same procedure to investigate the robustness of these tests to model mis-specification through the omission of a relevant regressor from (1). Our experimental design is described in the next section.

3. Monte Carlo Analysis

Our Monte Carlo experiment is based on a correctly specified datagenerating process of the form (1) and (2) with $k=3$, but the researcher wrongly fits the model (and tests for ARCH or GARCH disturbances) assuming
that $k=2$. That is, x_{2} is wrongly omitted from the model. As all of the tests are based on OLS residuals they are invariant to the values of σ^{2}, b_{0} and b_{1}. These are set to $0.3,1.0$ and 1.0 respectively. However, the tests' properties depend on the regressor data and the other parameters.

Our choice of regressors is similar to that of Engle et al. (1985) and Lee and King (1991), though the former consider only a single-regressor model through the origin, and all but one of the data sets considered by the latter involve only one regressor in addition to an intercept. ${ }^{4}$ Specifically, we use $x_{1 t}=\theta x_{1 t-1}+\varepsilon_{t}\left(\varepsilon_{t} \sim \operatorname{IN}(0,1)\right)$, with $\theta=0,0.8,1.0,1.02$. Our second regressor is either $x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t}$, or $x_{2 t}=t$. This allows for a wide range of time-series characteristics in our data.

The extent of model mis-specification depends on the values of both x_{2} and b_{2}. For convenience, we measure this effect through the value of $\lambda=$ $b_{2}^{2} /\left(2 \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)$, where $R=(0,0,1)$ and $X=\left(\underset{\sim}{1}, x_{1}, x_{2}\right)$. The scalar λ is the non-centrality parameter associated with the usual t-test of the restriction $\mathrm{b}_{2}=0$. Values of $\lambda=0,10,50$ imply different values of b_{2} which are used to generate the y_{t} data under various ARCH-GARCH specifications. ${ }^{5}$ Clearly, $\lambda=0$ implies a correctly specified model. The other λ values generate different degrees of mis-specification while maintaining plausible signal/ noise ratios.

The SHAZAM package (White et al. (1990)) was used on a VAX 6340 for all of our simulation analysis. $\operatorname{ARCH}(1), \operatorname{ARCH}(2), \operatorname{GARCH}(1,1) \operatorname{AND} \operatorname{GARCH}(1,2)$ specifications were investigated, and 5,000 replications were used throughout. ${ }^{6}$ First, with $n=20$ and 100 the true sizes of the various tests were determined for different λ values when the (asymptotic) critical values associated with nominal 17 and 10% significance levels are used. Second, for a representative selection of situations, the rejection probabilities for the tests based on these same asymptotic critical values were determined under H_{A}
or $\mathrm{H}_{\mathrm{A}}^{\prime}$, as appropriate. These probabilities represent "pseudo powers", not being size-adjusted. Finally, for the same selected situations, simulation analysis was used to find the finite-sample critical values which ensure the desired significance level for each test when $\lambda=0$. Using these critical values, genuine (size-adjusted) powers were computed, including cases where $\lambda=10$ and 50. In keeping with the mis-specification theme of this study, the finite-sample (size-adjusted) critical values associated with $\lambda=0$ are also pertinent if $\lambda>0$, as the researcher would be unaware of the model's misspecification.

4. Results

The results of the three parts of our study are discussed in the order noted above.

4.1 Actual Test Sizes

Tables 1 and 2 summarise the actual sizes of the tests against ARCH(1) or $\operatorname{GARCH}(1,1)$, and $\operatorname{ARCH}(2)$ or $\operatorname{GARCH}(1,2)$ errors respectively. When $\lambda=0$ the model is correctly specified with respect to the regressor set, so these results accord with those of Lee and King (1991), in broad terms, as expected. ${ }^{7}$ However, these results are needed as a bench-mark against which to judge the effects of model mis-specification ($\lambda>0$).

Consistent with the findings of other studies, we observe that, when $\lambda=$ 0 , all of the tests have sizes which are less than the nominally assigned size when $\mathrm{n}=20$. Even when $\mathrm{n}=100$, nominal sizes of 10% over-state the true situation. Generally, there is less size-distortion with the one-sided z tests than with their two-sided counterparts in the case of an ARCH(1) alternative. While the $n R^{2}$ and $L M$ tests generally exhibit similar sizes, the former is to be slightly favoured (especially for $n=20$), with its one-sided
variant being the least distorted of the four tests examined. In contrast, while there is little to choose between the $\mathrm{LM}, \mathrm{nR}^{2}$ and one-sided LBS tests in terms of size-distortion against $\operatorname{ARCH}(2)$ errors when $\mathrm{n}=100$, the LBS test has the greatest such distortion, and this is even more pronounced when $\mathrm{n}=20$. Finally, the two-sided tests exhibit similar results in the $\operatorname{ARCH}(1)$ and $\operatorname{ARCH}(2)$ situations, but the LBS test (which is the $\mathrm{z}(\mathrm{LM})$ test against ARCH(1)) generally shows slightly greater size-distortion against ARCH(2) disturbances than against ARCH(1) errors.

When $\lambda>0$, the effect on the sizes of the tests depends crucially on the form of the omitted regressor. At least within sampling variation, ${ }^{8}$ sizes increase with λ when x_{2} is a time-trend, and decrease with increasing λ (for λ $>0)$ when x_{2} is autoregressive. In the former case, with moderate sample sizes, test sizes several times greater than their nominal values are readily attained. Regardless of the form of x_{2}, sizes do not necessarily increase with n , when the model is mis-specified, so (ironically) the degree of size distortion can worsen with an increased sample size in such cases. While these patterns hold quite generally, the specific test sizes can be quite sensitive to the form of the included regressor (the value of θ) once a second regressor is unwittingly omitted. The extra information utilized by the one-sided tests is again generally reflected in greater sizes than for their two-sided counterparts when testing against ARCH(1) errors in a mis-specified model, as may be seen in Table 1. However, when testing against ARCH(2) errors, this is not generally true and tends to occur only when a trend variable is omitted from the regression.

Accordingly, to minimize the degree of size distortion, the $z\left(n R^{2}\right)$ test is typically preferred against $\operatorname{ARCH}(1)$ ($\operatorname{GARCH}(1,1)$) errors if there is a likelihood of having omitted an $\operatorname{AR}(1)$ or trended regressor. An exception is that the LM test is preferred in the case of severe mis-specification through
the omission of a trended regressor. On the other hand, in the event of omitting a trended (autoregressive) regressor, the $L M\left(n R^{2}\right)$ test would be a conservative choice in the case of $\operatorname{ARCH}(2)$ ($\operatorname{GARCH}(1,2)$) errors, especially in the face of possibly severe mis-specification.

Abstract

4.2 Unadjusted "Pseudo Powers"

Tables 3 to 6 report simulated probabilities of rejecting H_{0} or H_{0}^{\prime} for a range of situations. That is, pseudo "powers", which have not been sizeadjusted are reported. While these probabilities represent the actual ability of each test to reject a false null, care must be taken with any inter-test comparisons. ${ }^{9}$ These tables all relate to $\mathrm{n}=100$ and $\theta=0.8$, to limit the volume of representative material. For completeness, test sizes from the earlier tables are reproduced here. ${ }^{10}$

The following general results apply, regardless of the alternative hypothesis. First, the "power" shapes are generally orthodox, ceteris paribus, with increasing rejection probabilities as we depart from the null. However, exceptions can arise with $\operatorname{GARCH}(1,1)$ errors and a model which is severely mis-specified through the omission of a trended regressor. Secondly, these probabilities always fall, under the alternative, as the model becomes increasingly mis- specified. Generally, the form of the omitted regressor has little impact on these results, but there is a better (higher) rejection probability when a trend variable is excluded than if an $\operatorname{AR}(1)$ regressor is excluded under severe mis-specification.

Under either the $\operatorname{ARCH}(1)$ or $\operatorname{GARCH}(1,1)$ alternatives both the apparent and true powers of the LM test exceed those of the $n R^{2}$ test, and similarly for the one-sided variants of these tests. The raw rejection probabilities of the one-sided tests exceed those of their two-sided counterparts, though further
exact power comparisons must be left until the next sub-section. These results hold whether the model is properly specified or not.

Under either the $\operatorname{ARCH}(2)$ or $\operatorname{GARCH}(1,2)$ alternatives both the apparent and true powers of the LBS test exceed those of the $n R^{2}$ test whether the model is correctly specified or not. Generally, the LBS test out-performs both two-sided tests when the model is mis-specified, though more definitive evidence on this point emerges below. ${ }^{11}$

Finally, it is clear that each of the tests has greater ability to reject a false null in the case of an ARCH alternative, as opposed to a GARCH alternative. This conclusion is based on the use of $\left(\sum_{i=1}^{q} \alpha_{i}+\sum_{j=1}^{p} \beta_{j}\right)$ as an overall measure of departure from H_{0}.

4.3 Size-Adjusted Powers

Tables 7 to 10 illustrate both the true powers of the tests when the model is correctly specified and the corresponding rejection probabilities associated with testing unwittingly in the context of a mis-specified model when size- adjusting the tests as if the model were correctly formulated. To the extent that firm statements were possible in the last sub-section concerning power rankings, these are confirmed by Tables 7 to 10.

In particular, when testing against $\operatorname{ARCH}(1)$ or $\operatorname{GARCH}(1,1)$ disturbances, the LM test dominates the $n \mathrm{R}^{2}$ test and the $\mathrm{z}(\mathrm{LM})$ (or LBS) test dominates the $\mathrm{z}\left(\mathrm{nR} \mathrm{R}^{2}\right)$ test. Similarly, the one-sided tests generally dominate their twosided counterparts. These results always hold if the model is correctly specified. To the extent that exact comparisons are valid (given relative sizes) when $\lambda>0$, these results also hold when the model is mis-specified. Further, against $\operatorname{ARCH}(2)$ or $\operatorname{GARCH}(1,2)$ errors, the LBS test always dominates the other two tests when the model is properly specified. Again, as far as valid power comparisons can be made, the same is true when $\lambda>0$.

Again, it is clear that all of the tests are considerably more powerful against ARCH errors than against GARCH errors, whether the model is properly specified or not. Finally, at least for the cases where the relative sizes permit power comparisons, it is clear that this type of mis-specification reduces the powers of all of the tests, and that each is somewhat more robust (in terms of power) to the omission of a trend regressor than to the omission of a (stationary) AR(1) regressor.

5. Conclusions

The results of this study have some important implications for the use of several common tests for ARCH and GARCH disturbances in regression models, and hence for the modelling of financial markets. The particular form of model mis-specification that we have considered - namely the omission of a relevant regressor - occurs frequently in practice, and our results show that the tests under consideration can lack robustness to this type of specification error.

Several practical prescriptions can be drawn from our results. First, if size distortion is important, then the choice of test should reflect any prior information about the likely form of the omitted regressor. For instance, if there is a possibility of having omitted a strongly trended variable, then the LM test is a good choice. On the other hand, if the omitted variable is likely to follow a stable $A R(1)$ process, then the $z\left(n R^{2}\right)$ is preferred when testing against $\operatorname{ARCH}(1)$ or $\operatorname{GARCH}(1,1)$ errors, and the $n R^{2}$ test is a good choice against $\operatorname{ARCH}(2)$ or $\operatorname{GARCH}(1,2)$ errors. In either case it must be recognised that the established result, that the exact sizes of ARCH/GARCH tests are less than their (asymptotic) nominal sizes, no longer necessarily holds if the model is mis-specified, especially through the omission of a trended regressor.

Second, if high power is desired (with or without an allowance for size distortion), then the LBS test is a good choice when testing against ARCH(2) or $\operatorname{GARCH}(1,2)$ errors, and the equivalent $z(L M)$ test is preferred against $\operatorname{ARCH}(1)$ or $\operatorname{GARCH}(1,1)$ errors. In any event, the powers of the tests decline as the model becomes increasingly mis-specified, and in many cases the power performance can be very poor, especially against GARCH alternatives.

Overall, the results of this study underscore the fact that established results based on the assumption of a correctly specified model need to be reconsidered if the model is likely to be mis-specified in some way. This is true whether one is considering the absolute performance of a test, or comparing the performances of alternative tests, in terms of size distortion or power performance.

References

Bollerslev, T. (1986), "Generalized Autoregressive Conditional Heteroskedasticity", Journal of Econometrics, 31, 307-327.

Bollerslev, T., R.Y. Chou and K.F. Kroner (1992), "ARCH Modeling in Finance:. A Review of the Theory and Empirical Evidence", forthcoming in Journal of Econometrics.

Bollerslev, T. and J.M. Wooldridge (1988), "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances", Working: Paper No. 505, Department of Economics, M.I.T.

Brent, R.P. (1974), "A Gaussian Pseudo-Random Number Generator", Communications of the ACM, 17, 1704-1706.

Diebold, F.X. and P. Pauly (1989), "Small Sample Properties of Asymptotically Equivalent Tests for Autoregressive Conditional Heteroskedasticity", Statistische Hefte, 30, 105-131.

Engle, R.F. (1982), "Autoregressive Conditional Heteroskedasticity With Estimates of the Variance of U.K. Inflation", Econometrica, 50, 987-1008.

Engle, R.F., D.F. Hendry and D. Trumble (1985), "Small Sample Properties of ARCH Estimators and Tests", Canadian Journal of Economics, 18, 66-93.

Giles, D.E.A. and G. Saxton (1992), "The Goldfeld-Quandt Test: A Reconsideration of the 'One Third' Rule", forthcoming in Journal of Quantitative Economics.

Gregory, A.W. (1989), "A Non-Parametric Test for Autoregressive Conditional Heteroskedasticity: A Markov-Chain Approach", Journal of Business and Economic Statistics, 7, 107-115.

King, M.L. and P.X. Wu (1990), "Locally Optimal One-Sided Tests for Multiparameter Hypotheses", Working Paper No. 2/90, Department of Econometrics, Monash University.

Lee, J.H.H. and M.L. King (1991), "A Locally Most Mean Powerful Based Score Test for ARCH and GARCH Regression Disturbances", Working Paper No. 9/91, Department of Econometrics, Monash University.

Lukkonen, R.P., Saikkonen and T. Terasvirta (1988), "Testing Linearity in Univariate Time-Series Models", Scandanavian Journal of Statistics, 15, 161-175.

Small, J.P., D.E.A. Giles and K.J. White (1992), "The Robustness of Certain Tests for Autocorrelation to the Omission of Relevant Regressors", mimeo., Department of Economics, University of Canterbury.

White, K.J., S.D. Wong, D. Whistler and S.A. Haun (1990), SHAZAM Econometrics Program - User's Reference Manual, Version 6.2 (McGraw-Hill, New York).

Footnotes

*This work was supported by University of Canterbury Research Grant \#1770901.
1 The last of these inequalities ensures that the unconditional variance: of u_{t} is positive and finite.

2
One would conjecture that ignoring this information may reduce the potential powers of the tests.

3
The null hypothesis is rejected for a sufficiently large positive value of the test statistic.

4
Neither of these (or any other) studies allow for the omission of relevant regressors, as we do.

Note that we do not consider any mis-specifications of the error process in our analysis.

The simulations are straightforward to conduct. For example, note that in the $\operatorname{ARCH}(1)$ case the error structure may be written as $u_{t}=$ $v_{t}\left(\sigma^{2}+\alpha_{1} u_{t-1}^{2}\right)^{1 / 2} ; \quad v_{t} \sim \operatorname{IN}(0,1)$, so that only a Normal random number generator is required. The SHAZAM package incorporates the generator proposed by Brent (1974).

Those authors report results based on 5% nominal significance levels.

The sampling error can be determined by noting the binomial nature of the empirical rejections. So, for example, the standard error associated with the value of 0.005 as the first entry in Table $1(a)$ is $\sqrt{0.005(1-0.005) / 5000}=0.000997$.

9
When the true size of one test is less than that of a second one, and the probability of rejecting a false null is greater for the first test than for the second, then the first test has the greater (true) power.

In these, and the following tables, the entries for $\lambda=0$ apply to both forms of $x_{2 t}$. Recalling that $\lambda=0$ corresponds to $b_{2}=0$, the datagenerating process is independent of $x_{2 t}$ in this case.

Recall footnote 9 with respect to what conclusions may be drawn in the absence of size-correction.

TABLE 1 (a): $\operatorname{ARCH}(1), \operatorname{GARCH}(1,1)$ TEST SIZES

TABLE $1(\mathrm{~b}): \operatorname{ARCH}(1), \operatorname{GARCH}(1,1)$ TEST SIZES

TABLE 2(a): ARCH(2), GARCH(1,2) TEST SIZES

$\begin{aligned} & \text { Nominal } \\ & \text { Size } \end{aligned}$	n	nR^{2} Test				LM Test			
				θ				θ	
		0.0	0.8	1.0	1.02	0.0	0.8	1.0	1.02
$\lambda=0$									
1\%	20	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.003
	100	0.008	0.009	0.008	0.008	0.011	0.010	0.010	0.009
10\%	20	0.055	0.058	0.061	0.057	0.029	0.030	0.030	0.030
	100	0.079	0.081	0.074	0.075	0.071	0.072	0.068	0.068
$\lambda=10$									
$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t}$									
1\%	20	0.002	0.002	0.002	0.002	0.001	0.001	0.006	0.004
	100	0.010	0.010	0.009	0.011	0.011	0.010	0.011	0.012
10\%	20	0.051	0.054	0.047	0.052	0.025	0.023	0.016	0.015
	100	0.076	0.076	0.079	0.075	0.069	0.065	0.066	0.069
$\mathrm{x}_{2 \mathrm{t}}=\mathrm{t}$									
1\%	20	0.005	0.007	0.006	0.004	0.005	0.012	0.006	0.002
	100	0.013	0.012	0.012	0.013	0.013	0.011	0.014	0.014
10\%	20	0.067	0.076	0.075	0.077	0.031	0.056	0.037	0.026
	100	0.085	0.080	0.084	0.086	0.071	0.068	0.077	0.077
$\lambda=50$									
$\mathrm{x}_{2 t}=0.1 \mathrm{x}_{2 t-1}+\varepsilon_{t}$									
1\%	20	0.001	0.001	0.000	0.000	0.006	0.002	0.000	0.000
	100	0.008	0.008	0.006	0.007	0.007	0.006	0.005	0.006
10\%	20	0.042	0.046	0.022	0.020	0.014	0.006	0.002	0.002
	100	0.063	0.062	0.062	0.060	0.050	0.049	0.046	0.049
$\mathrm{x}_{2 \mathrm{t}}=\mathrm{t}$									
1\%	20	0.027	0.041	0.050	0.050	0.008	0.054	0.028	0.005
	100	0.086	0.060	0.176	0.162	0.053	0.036	0.161	0.132
10\%	20	0.239	0.263	0.291	0.372	0.076	0.204	0.157	0.086
	100	0.289	0.225	0.447	0.412	0.210	0.152	0.413	0.370

TABLE 2(b): ARCH(2), GARCH(1,2) TEST SIZES

Nominal		LBS Test		
		θ		
Size	n	$0.0 \quad 0.8$	1.0	1.02
$\lambda=0$				
1\%	20	0.0010 .001	0.001	0.001
	100	0.0090 .009	0.008	0.008
10\%	20	0.0260 .029	0.025	0.025
	100	0.0670 .069	0.068	0.066
$\lambda=10$				
$\mathrm{x}_{2 t}=0.1 \mathrm{x}_{2 t-1}+\varepsilon_{t}$				
1\%	20	0.0040 .000	0.000	0.000
	100	0.0100 .010	0.010	0.011
10\%	20	0.0130 .013	0.008	0.009
	100	0.0630 .062	0.061	0.063
$x_{2 t}=t$				
1\%	20	0.0030 .011	0.005	0.003
	100	0.0100 .008	0.013	0.013
10\%	20	0.0340 .062	0.032	0.030
	100	0.0700 .062	0.093	0.087
		$\lambda=50$		
	$\mathrm{x}_{2 t}=0.1 \mathrm{x}_{2 t-1}+\varepsilon_{t}$			
1\%	20	0.0000 .000	0.000	0.000
	100	0.0050 .004	0.004	0.004
10\%	20	$\begin{array}{ll} 0.003 & 0.000 \\ 0.041 & 0.037 \end{array}$	0.000	0.000
	100		0.034	0.034
$x_{2 t}=t$				
1\%	20	$\begin{array}{ll} 0.010 & 0.066 \\ 0.080 & 0.044 \end{array}$	0.009	0.006
	100		0.265	0.208
10\%	20	0.1310 .263	0.087	0.131
	100	0.3310 .248	0.608	0.527

TABLE 3(a): ARCH(1) REJECTION PROBABILITIES
(Not Size-Corrected)

$$
\text { Nominal Size }=1 \% ; n=100 ; \theta=0.8
$$

$$
x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t} \quad x_{2 t}=t
$$

α_{1}

	$z\left(n R^{2}\right)$ Test				
	0.013	0.012	0.009	0.016	0.085
0	0.410	0.287	0.102	0.301	0.221
0.3	0.718	0.631	0.386	0.625	0.474
0.6	0.838	0.797	0.650	0.795	0.681

nR^{2} Test
0.010
0.341
0.008
0.006
0.012
0.057

0
0.3
0.6
0.9
0.795
0.573
0.078
0.250
0.175
0.758
0.333
$\begin{array}{ll}0.572 & 0.418 \\ 0.751 & 0.635\end{array}$
z(LM) Test

0	0.013	0.012	0.009	0.015	0.058
0.3	0.426	0.300	0.111	0.318	0.201
0.6	0.780	0.690	0.423	0.689	0.501
0.9	0.917	0.878	0.732	0.884	0.763

LM Test

0	0.009	0.009	0.005	0.008	0.039
0.3	0.370	0.256	0.090	0.266	0.160
0.6	0.738	0.645	0.382	0.641	0.449
0.9	0.899	0.855	0.696	0.856	0.725

TABLE 3(b): ARCH(1) REJECTION PROBABILITIES
(Not Size-Corrected)
Nominal Size $=10 \% ; n=100 ; \theta=0.8$

α_{1}	$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t}$			$x_{2 t}=t$	
		λ			
	0	10	50	10	50
	$z\left(n R^{2}\right)$ Test				
0	0.080	0.082	0.068	0.094	0.301
0.3	0.679	0.553	0.285	0.566	0.494
0.6	0.905	0.844	0.615	0.848	0.717
0.9	0.963	0.937	0.835	0.941	0.868
$n R^{2}$ Test					
0	0.079	0.079	0.069	0.082	0.214
0.3	0.588	0.455	0.215	0.472	0.395
0.6	0.853	0.780	0.532	0.781	0.632
0.9	0.928	0.894	0.771	0.901	0.811
$z(L M)$ Test					
0	0.073	0.075	0.064	0.086	0.255
0.3	0.681	0.557	0.282	0.567	0.467
0.6	0.920	0.859	0.631	0.863	0.728
0.9	0.978	0.957	0.863	0.959	0.893
LM Test					
0	0.072	0.071	0.060	0.072	0.167
0.3	0.595	0.462	0.211	0.478	0.366
0.6	0.879	0.806	0.556	0.810	0.644
0.9	0.963	0.934	0.817	0.939	0.850

TABLE 4: ARCH(2) REJECTION PROBABILITIES
(Not Size-Corrected)

$$
n=100 ; \theta=0.8
$$

α_{1}	α_{2}	$\mathrm{x}_{2 t}=0.1 \mathrm{x}_{2 t-1}+\varepsilon_{t}$			$x_{2 t}=t$	
		0	10	50	10	50
Nominal Size $=1 \%$						
nR^{2} Test						
0.0	0.0	0.009	0.010	0.008	0.012	0.060
0.2	0.2	0.306	0.221	0.090	0.234	0.174
0.2	0.4	0.530	0.433	0.248	0.445	0.320
0.2	0.6	0.690	0.618	0.439	0.626	0.500
LM Test						
0.0	0.0	0.010	0.010	0.006	0.011	0.036
0.2	0.2	0.337	0.251	0.105	0.261	0.169
0.2	0.4	0.590	0.494	0.291	0.504	0.346
0.2	0.6	0.778	0.718	0.520	0.716	0.566
LBS Test						
0.0	0.0	0.009	0.010	0.004	0.008	0.044
0.2	0.2	0.393	0.299	0.117	0.308	0.191
0.2	0.4	0.649	0.549	0.310	0.556	0.376
0.2	0.6	0.812	0.745	0.551	0.752	0.591
Nominal Size $=10 \%$						
$n R^{2}$ Test						
0.0	0.0	0.081	0.076	0.062	0.080	0.225
0.2	0.2	0.538	0.436	0.234	0.448	0.391
0.2	0.4	0.762	0.670	0.434	0.682	0.553
0.2	0.6	0.866	0.818	0.643	0.822	0.706
LM Test						
0.0	0.0	0.072	0.065	0.049	0.068	0.152
0.2	0.2	0.556	0.446	0.235	0.458	0.359
0.2	0.4	0.785	0.697	0.449	0.707	0.544
0.2	0.6	0.897	0.849	0.681	0.855	0.736
LBS Test						
0.0	0.0	0.069	0.062	0.037	0.062	0.248
0.2	0.2	0.673	0.552	0.294	0.563	0.456
0.2	0.4	0.859	0.783	0.529	0.793	0.641
0.2	0.6	0.939	0.901	0.741	0.903	0.802

TABLE 5(a): GARCH(1,1) REJECTION PROBABILITIES (Not Size-Corrected)
Nominal Size $=1 \% ; n=100 ; \theta=0.8$

TABLE 5(b): GARCH(1,1) REJECTION PROBABILITIES
(Not Size-Corrected)

$$
\text { Nominal Size }=10 \% ; n=100 ; \theta=0.8
$$

α_{1}	β_{1}	$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t}$			$\mathrm{x}_{2 t}=\mathrm{t}$	
			λ			
		0	10	50	10	50
$z\left(n R^{2}\right)$ Test						
0.0	0.0	0.080	0.082	0.068	0.094	0.301
0.2	0.0	0.520	0.396	0.189	0.418	0.417
0.2	0.2	0.526	0.425	0.227	0.438	0.389
0.2	0.4	0.531	0.459	0.291	0.459	0.387
0.2	0.6	0.546	0.504	0.392	0.499	0.424
$n R^{2}$ Test						
0.0	0.0	0.079	0.079	0.069	0.082	0.214
0.2	0.0	0.418	0.303	0.133	0.319	0.318
0.2	0.2	0.423	0.335	0.168	0.343	0.290
0.2	0.4	0.425	0.368	0.216	0.370	0.316
0.2	0.6	0.437	0.409	0.303	0.403	0.327
$z(L M)$ Test						
0.0	0.0	0.073	0.075	0.064	0.086	0.255
0.2	0.0	0.515	0.394	0.182	0.415	0.382
0.2	0.2	0.518	0.425	0.224	0.434	0.363
0.2	0.4	0.523	0.461	0.287	0.456	0.370
0.2	0.6	0.550	0.507	0.393	0.507	0.417
LM Test						
0.0	0.0	0.072	0.071	0.060	0.072	0.167
0.2	0.0	0.415	0.295	0.127	0.318	0.277
0.2	0.2	0.419	0.327	0.160	0.343	0.264
0.2	0.4	0.428	0.364	0.211	0.368	0.272
0.2	0.6	0.450	0.418	0.305	0.411	0.324

TABLE 6: GARCH $(1,2)$ REJECTION PROBABILITIES
(Not Size-Corrected)
$\mathrm{n}=100 ; \theta=0.8$
$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t} \quad x_{2 t}=t$
λ

α_{1}	α_{2}	β_{1}	0	10	50	10	50

Nominal Size $=1 \%$
nR^{2} Test

0.0	0.0	0.0	0.009	0.010	0.008	0.012	0.060
0.1	0.1	0.2	0.157	0.116	0.046	0.121	0.096
0.1	0.1	0.4	0.190	0.155	0.076	0.157	0.113
0.1	0.1	0.7	0.271	0.255	0.213	0.255	0.219

LM Test

0.0	0.0	0.0	0.010	0.010	0.006	0.011	0.036
0.1	0.1	0.2	0.176	0.132	0.052	0.137	0.095
0.1	0.1	0.4	0.212	0.181	0.094	0.179	0.124
0.1	0.1	0.7	0.331	0.321	0.270	0.316	0.270

LBS Test

0.0	0.0	0.0	0.009	0.010	0.004	0.008	0.044
0.1	0.1	0.2	0.216	0.160	0.061	0.159	0.106
0.1	0.1	0.4	0.263	0.213	0.108	0.214	0.138
0.1	0.1	0.7	0.400	0.379	0.322	0.381	0.321

Nominal Size $=10 \%$
nR^{2} Test

0.0	0.0	0.0	0.081	0.076	0.062	0.080	0.225
0.1	0.1	0.2	0.359	0.284	0.162	0.292	0.274
0.1	0.1	0.4	0.400	0.340	0.224	0.347	0.286
0.1	0.1	0.7	0.495	0.475	0.421	0.476	0.420

LM Test

0.0	0.0	0.0	0.072	0.065	0.049	0.068	0.152
0.1	0.1	0.2	0.356	0.281	0.154	0.295	0.243
0.1	0.1	0.4	0.402	0.345	0.219	0.348	0.270
0.1	0.1	0.7	0.523	0.505	0.440	0.513	0.445

LBS Test

0.0	0.0	0.0	0.069	0.062	0.037	0.062	0.248
0.1	0.1	0.2	0.464	0.374	0.192	0.379	0.330
0.1	0.1	0.4	0.511	0.444	0.278	0.444	0.347
0.1	0.1	0.7	0.644	0.622	0.554	0.626	0.552

TABLE 7(a): ARCH(1) POWERS
(Size-Corrected)
Size $=1 \% ; n=100 ; \theta=0.8$
$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t} \quad x_{2 t}=t$
λ

α_{1}	0	10	50	10	50
$z\left(n R^{2}\right)$ Test					
0	0.010	0.009	0.007	0.012	0.067
0.3	0.370	0.260	0.088	0.268	0.194
0.6	0.690	0.597	0.354	0.597	0.440
0.9	0.814	0.774	0.623	0.769	0.654
$n R^{2}$ Test					
0	0.010	0.008	0.006	0.012	0.058
0.3	0.345	0.241	0.079	0.252	0.177
0.6	0.672	0.575	0.335	0.574	0.420
0.9	0.796	0.760	0.608	0.752	0.637
$z(L M)$ Test					
0	0.010	0.010	0.006	0.010	0.045
0.3	0.391	0.274	0.098	0.283	0.174
0.6	0.753	0.663	0.394	0.659	0.468
0.9	0.907	0.864	0.711	0.867	0.740
LM Test					
0	0.010	0.009	0.006	0.011	0.044
0.3	0.389	0.272	0.098	0.281	0.172
0.6	0.751	0.660	0.394	0.656	0.465
0.9	0.905	0.862	0.708	0.865	0.737

TABLE 7(b): ARCH(1) POWERS
(Size-Corrected)
Size $=10 \% ; n=100 ; \theta=0.8$

α_{1}	$\mathrm{x}_{2 t}=0.1 \mathrm{x}_{2 t-1}+\varepsilon_{t}$			$\mathrm{x}_{2 \mathrm{t}}=\mathrm{t}$	
		λ			
	0	10	50	10	50
$\mathrm{z}\left(\mathrm{nR} \mathrm{R}^{2}\right)$ Test					
0	0.100	0.102	0.083	0.113	0.339
0.3	0.712	0.589	0.320	0.603	0.534
0.6	0.924	0.866	0.649	0.869	0.746
0.9	0.973	0.948	0.855	0.949	0.886
$n \mathrm{R}^{2}$ Test					
0	0.100	0.104	0.092	0.110	0.241
0.3	0.622	0.491	0.247	0.504	0.427
0.6	0.873	0.802	0.561	0.806	0.660
0.9	0.941	0.912	0.794	0.916	0.830
$z(L M) ~ T e s t$					
0	0.100	0.102	0.083	0.116	0.314
0.3	0.725	0.605	0.328	0.614	0.526
0.6	0.935	0.883	0.672	0.888	0.762
0.9	0.984	0.965	0.883	0.965	0.910
LM Test					
0	0.100	0.103	0.090	0.106	0.204
0.3	0.634	0.506	0.247	0.517	0.409
0.6	0.899	0.833	0.589	0.836	0.680
0.9	0.970	0.945	0.838	0.951	0.868

TABLE 8: ARCH(2) POWERS
(Size-Corrected)

$$
n=100 ; \theta=0.8
$$

		$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t}$			$x_{2 t}=t$	
			λ			
α_{1}	α_{2}	0	10	50	10	50
Size $=1 \%$						
$n R^{2}$ Test						
0.0	0.0	0.010	0.012	0.009	0.013	0.066
0.2	0.2	0.320	0.235	0.098	0.248	0.185
0.2	0.4	0.544	0.449	0.261	0.462	0.335
0.2	0.6	0.701	0.635	0.456	0.638	0.514
LM Test						
0.0	0.0	0.010	0.011	0.006	0.011	0.036
0.2	0.2	0.339	0.252	0.106	0.262	0.170
0.2	0.4	0.591	0.495	0.292	0.507	0.347
0.2	0.6	0.780	0.719	0.522	0.718	0.567
LBS Test						
0.0	0.0	0.010	0.011	0.004	0.009	0.048
0.2	0.2	0.406	0.309	0.125	0.317	0.202
0.2	0.4	0.665	0.561	0.319	0.567	0.386
0.2	0.6	0.823	0.753	0.559	0.762	0.602
Size $=10 \%$						
$n R^{2}$ Test						
0.0	0.0	0.100	0.095	0.077	0.097	0.250
0.2	0.2	0.567	0.462	0.259	0.477	0.423
0.2	0.4	0.779	0.690	0.456	0.705	0.581
0.2	0.6	0.877	0.834	0.663	0.840	0.729
LM Test						
0.0	0.0	0.100	0.098	0.077	0.095	0.197
0.2	0.2	0.595	0.486	0.270	0.494	0.401
0.2	0.4	0.809	0.728	0.487	0.739	0.584
0.2	0.6	0.911	0.869	0.705	0.875	0.764
LBS Test						
0.0	0.0	0.100	0.091	0.062	0.092	0.329
0.2	0.2	0.734	0.621	0.356	0.635	0.535
0.2	0.4	0.892	0.829	0.590	0.836	0.710
0.2	0.6	0.958	0.925	0.786	0.927	0.844

TABLE 9(a): GARCH(1,1) POWERS
(Size-Corrected)
Size $=1 \% ; n=100 ; \theta=0.8$
$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t} \quad x_{2 t}=t$
λ

α_{1}	β_{1}	$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t}$			$x_{2 t}=t$	
		λ				
		0	10	50	10	50
$z\left(n R^{2}\right)$ Test						
0.0	0.0	0.010	0.009	0.007	0.012	0.067
0.2	0.0	0.205	0.137	0.045	0.148	0.136
0.2	0.2	0.213	0.160	0.060	0.161	0.128
0.2	0.4	0.224	0.185	0.092	0.186	0.130
0.2	0.6	0.240	0.217	0.145	0.217	0.165
$n R^{2}$ Test						
0.0	0.0	0.010	0.008	0.006	0.012	0.058
0.2	0.0	0.190	0.123	0.039	0.132	0.122
0.2	0.2	0.197	0.147	0.053	0.149	0.113
0.2	0.4	0.203	0.167	0.081	0.170	0.116
0.2	0.6	0.224	0.199	0.133	0.201	0.151
z (LM) Test						
0.0	0.0	0.010	0.010	0.006	0.010	0.045
0.2	0.0	0.215	0.144	0.044	0.152	0.113
0.2	0.2	0.226	0.168	0.063	0.173	0.113
0.2	0.4	0.239	0.198	0.098	0.198	0.126
0.2	0.6	0.265	0.239	0.161	0.235	0.178
LM Test						
0.0	0.0	0.010	0.009	0.006	0.011	0.044
0.2	0.0	0.214	0.142	0.044	0.150	0.111
0.2	0.2	0.224	0.165	0.063	0.170	0.111
0.2	0.4	0.237	0.195	0.097	0.195	0.125
0.2	0.6	0.263	0.236	0.159	0.234	0.176

TABLE 9(b): GARCH (1,1) POWERS
(Size-Corrected)
Size $=10 \% ; n=100 ; \theta=0.8$
$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t} \quad x_{2 t}=t$
λ

α_{1}	β_{1}	0	10	50	10	50
$z\left(n R^{2}\right)$ Test						
0.0	0.0	0.100	0.102	0.083	0.113	0.339
0.2	0.0	0.562	0.439	0.218	0.456	0.461
0.2	0.2	0.564	0.467	0.265	0.472	0.430
0.2	0.4	0.567	0.496	0.331	0.499	0.424
0.2	0.6	0.584	0.542	0.430	0.540	0.456
$n R^{2}$ Test						
0.0	0.0	0.100	0.104	0.092	0.110	0.241
0.2	0.0	0.456	0.336	0.160	0.356	0.354
0.2	0.2	0.460	0.364	0.197	0.376	0.330
0.2	0.4	0.463	0.402	0.246	0.399	0.326
0.2	0.6	0.476	0.446	0.335	0.438	0.361
z(LM) Test						
0.0	0.0	0.100	0.102	0.083	0.116	0.314
0.2	0.0	0.567	0.451	0.220	0.466	0.442
0.2	0.2	0.574	0.479	0.268	0.484	0.416
0.2	0.4	0.575	0.509	0.338	0.510	0.424
0.2	0.6	0.596	0.556	0.445	0.557	0.467
LM Test						
0.0	0.0	0.100	0.103	0.090		0.204
0.2	0.0	0.460	0.338	0.161	0.360	0.323
0.2	0.2	0.466	0.367	0.196	0.381	0.312
0.2	0.4	0.476	0.412	0.247	0.409	0.320
0.2	0.6	0.490	0.457	0.351	0.454	0.366

TABLE 10: GARCH(1,2) POWERS
(Size-Corrected)
$\mathrm{n}=100 ; \theta=0.8$

α_{1}	α_{2}	β_{1}	$x_{2 t}=0.1 x_{2 t-1}+\varepsilon_{t}$			$x_{2 t}=t$	
			0	10	50	10	50
Size $=1 \%$							
$n R^{2}$ Test							
0.0	0.0	0.0	0.010	0.012	0.009	0.013	0.066
0.1	0.1	0.2	0.168	0.123	0.050	0.128	0.106
0.1	0.1	0.4	0.200	0.165	0.083	0.166	0.122
0.1	0.1	0.7	0.287	0.270	0.226	0.269	0.231
LM Test							
0.0	0.0	0.0	0.010	0.010	0.006	0.011	0.036
0.1	0.1	0.2	0.178	0.133	0.052	0.138	0.095
0.1	0.1	0.4	0.214	0.181	0.095	0.180	0.125
0.1	0.1	0.7	0.331	0.323	0.272	0.317	0.271
LBS Test							
0.0	0.0	0.0	0.010	0.011	0.004	0.009	0.048
0.1	0.1	0.2	0.227	0.170	0.064	0.166	0.111
0.1	0.1	0.4	0.275	0.222	0.114	0.225	0.146
0.1	0.1	0.7	0.412	0.392	0.333	0.392	0.330
Size $=10 \%$							
$n R^{2}$ Test							
0.0	0.0	0.0	0.100	0.095	0.077	0.097	0.250
0.1	0.1	0.2	0.384	0.314	0.181	0.319	0.300
0.1	0.1	0.4	0.423	0.370	0.244	0.373	0.311
0.1	0.1	0.7	0.517	0.503	0.445	0.499	0.446
LM Test							
0.0	0.0	0.0	0.100	0.098	0.077	0.095	0.197
0.1	0.1	0.2	0.397	0.326	0.185	0.331	0.283
0.1	0.1	0.4	0.441	0.384	0.254	0.384	0.307
0.1	0.1	0.7	0.562	0.547	0.475	0.545	0.481
LBS Test							
0.0	0.0	0.0	0.100	0.091	0.062	0.092	0.329
0.1	0.1	0.2	0.538	0.443	0.247	0.446	0.406
0.1	0.1	0.4	0.580	0.513	0.342	0.518	0.419
0.1	0.1	0.7	0.703	0.681	0.613	0.687	. 0.620

LIST OF DISCUSSION PAPERS*

No. 8801 Workers' Compensation Rates and the Demand for Apprentices and Non-Apprentices in Victoria, by Pasquale M. Sgro and David E. A. Giles.
No. 8802
The Adventures of Sherlock Holmes, the 48% Solution, by Michael Carter.
No. 8803 The Exact Distribution of a Simple Pre-Test Estimator, by David E. A. Giles.
No. 8804
No. 8805

No. 8806
No. 8807

No. 8808 A Note on Sen's Normalization Axiom for a Poverty Measure, by Prasanta K. Pattanaik and Manimay Sen.
No. 8809

No. 8810
 No. 8810

Budget Deficits and Asset Sales, by Ewen McCann. Unorganized Money Markets and 'Unproductive' Assets in the New Structuralist Critique of Financial Liberalization, by P. Dorian Owen and Otton Solis-Fallas.
No. 8901 Testing for Financial Buffer Stocks in Sectoral Portfolio Models, by P. Dorian Owen.
No. 8902 Provisional Data and Unbiased Prediction of Economic Time Series by Karen Browning and David Giles.
No. 8903 Coefficient Sign Changes When Restricting Regression Models Under Instrumental Variables Estimation, by David E. A. Giles.
No. 8904

No. 8905
No. 8906
No. 8907
No. 8908
No. 8909

No. 9001
No. 9002
No. 9003
No. 9004
No. 9005
No. 9006
No. 9007
No. 9008
No. 9009

No. 9010
No. 9011 Testing Linear Restrictions on Coefficients in a Linear Regression Model with Proxy variables and Spherically Symmetric Disturbances, by Kazuhiro Ohtani and Judith A. Giles.
(Continued on next page)

No. 9012 Some Consequences of Applying the Goldfeld-Quandt Test to Mis-Specified Regression Models, by David E. A. Giles and Guy N. Saxton.
No. 9013 Pre-testing in a Mis-specified Regression Model, by Judith A. Giles.
No. 9014 Two Results in Balanced-Growth Educational Policy, by Alan E. Woodfield.
No. 9101 Bounds on the Effect of Heteroscedasticity on the Chow Test for Structural Change, by David Giles and Offer Lieberman.
No. 9102 The Optimal Size of a Preliminary Test for Linear Restrictions when Estimating the Regression Scale Parameter, by Judith A. Giles and Offer Lieberman.
No. 9103 Some Properties of the Durbin-Watson Test After a Preliminary t-Test, by David Giles and Offer Lieberman.
No. 9104 Preliminary-Test Estimation of the Regression Scale Parameter when the Loss Function is Asymmetric, by Judith A. Giles and David E. A. Giles.
No. 9105 On an Index of Poverty, by Manimay Sengupta and Prasanta K. Pattanaik.
No. 9106 Cartels May Be Good For You, by Michael Carter and Julian Wright.
No. 9107 Lp-Norm Consistencies of Nonparametric Estimates of Regression, Heteroskedasticity and Variance of Regression Estimate when Distribution of Regression is Known, by Radhey S. Singh.
No. 9108 Optimal Telecommunications Tariffs and the CCITT, by Michael Carter and Julian Wright.
No. 9109 Price Indices : Systems Estimation and Tests, by David Giles and Ewen McCann.
No. 9110 The Limiting Power of Point Optimal Autocorrelation Tests, by John P. Small.
No. 9111 The Exact Power of Some Autocorrelation Tests When the Disturbances are Heteroscedastic, by John P. Small.
No. 9112 Some Consequences of Using the Chow Test in the Context of Autocorrelated Disturbances, by David Giles and Murray Scott.
No. 9113 The Exact Distribution of R2 when the Disturbances are Autocorrelated, by Mark L. Carrodus and David E. A. Giles.
No. 9114 Optimal Critical Values of a Preliminary Test for Linear Restrictions in a Regression Model with Multivariate Student-t Disturbances, by Jason K. Wong and Judith A. Giles.
No. 9115 Pre-Test Estimation in a Regression Model with a Misspecified Error Covariance Matrix, by K. V. Albertson.

No. 9116 Estimation of the Scale Parameter After a Pre-test for Homogeneity in a Mis-specified Regression Model, by Judith A. Giles.
No. 9201 Testing for Arch-Garch Errors in a Mis-specified Regression, by David E. A. Giles, Judith A. Giles, and Jason K. Wong.

- Copies of these Discussion Papers may be obtained for $\$ 4$ (including postage, price changes occasionally) each by writing to the Secretary, Department of Economics, University of Canterbury, Christchurch, New Zealand. A list of the Discussion Papers prior to 1988 is available on request.

