
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


v

Department of Economics1

i_JNIVERSITY OF CANTERBURY

CHRISTCHURCH, NEW ZEALAND

ISSN 1171-0705

OtJANIC/F,11(,N OI
CULTURAL ECONOMICS

LIB Y

MAY 1'1

TESTING FOR ARCH-GARCH ERRORS
IN A MIS-SPECIFIED REGRESSION

David E. A. Giles, Judith A. Giles
and Jason K. Wong

Discussion Paper

No. 9201



This paper is circulated for discussion and comments. It should not be quoted without
the prior approval of the author. It reflects the views of the author who is responsible for
the facts and accuracy of the data presented. Responsibility for the application of material
to specific cases, however, lies with any user of the paper and no responsibility in such
cases will be attributed to the author or to the University of Canterbury.



Department of Economics, University of Canterbury
Christchurch, New Zealand

Discussion Paper No. 9201

January 1992

TESTING FOR ARCH-GARCH ERRORS

IN A MIS-SPECIFIED REGRESSION

David E. A. Giles, Judith A. Giles

and Jason K. Wong



TESTING FOR ARCH-GARCH ERRORS

IN A MIS-SPECIFIED REGRESSION

David E.A. Giles

Judith A. Giles

and

Jason K. Wong

Department of Economics

University of Canterbury

January 1992

Abstract

This paper considers several one-sided and two-sided asymptotic tests for

ARCH(q) and GARCH(p,q) regression errors, and uses Monte Carlo analysis to

investigate their finite-sample sizes and powers when a regressor has been

inadvertently omitted from the model. The results are compared with those

obtained when the model is correctly specified. The extent to which such

model mis-specification affects the tests' properties can depend on the form

of the omitted regressor, but generally one-sided tests out-perform their two-

sided counterparts.
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1. Introduction

Since they were first discussed by Engle (1982), autoregressive

conditionally heteroscedastic (ARCH) processes have received considerable

attention in the econometrics and empirical finance literatures. In

particular, ARCH and generalised ARCH (GARCH) processes have been found to be

useful characterisations for the disturbances in regression models relating to

financial time-series data of various sorts (e.g., see Bollerslev et at.

(1992)).

There is only a limited literature on the problem of testing for white

noise regression disturbances against the alternatives of ARCH or GARCH

errors. Engle (1982) suggested a simple Lagrange Multiplier (LM) test for

ARCH disturbances, which is shown by Lee (1991) to be also an LM test against

GARCH errors. A one-sided version of this test, suitable for ARCH(1) and

GARCH(1,1) processes, was considered by Engle et at. (1985). Recently, Lee

and King (1991) have suggested a locally best score (LBS) test which also

takes account of the one-sided nature of the testing problem against higher-

order alternatives.

Each of these tests has (large sample) asymptotic justification, but

relatively little is known about their finite-sample properties. Some

evidence, based on Monte Carlo analysis, is given by Engle et at. (1985),

Lukkonen et at. (1988), Boilerslev and Wooldridge (1988), Diebold and Pauly

(1989), Gregory (1989) and Lee and King (1991). Even less is known about the

robustness of these tests to various forms of model mis-specification. Lee

and King (1991) consider the effects of conditionally leptokurtic errors, but

the robustness of the tests to other departures from the underlying

assumptions remain to be explored.

There is evidence (e.g., Small et at. (1992), Giles and Saxton (1992))

that other tests based on Least Squares regression residuals lack 'robustness

2
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to shifts in the mean of the disturbances. In practice, this is a very common

form of model mis-specification. Accordingly, in this paper we investigate

the finite-sample sizes and powers of ARCH-GARCH tests when they are applied

in the context of a regression model from which a relevant regressor has been

unwittingly omitted.

2. The Model and Tests

Consider the linear regression model

where

k-1

Yt = bo + .E bixit + ut ; t = 1,2,...,T (1)
1=1

ut I IN(0,crt2) (2)

and (I)t is the information set available at time t. If the disturbances,, ut,

follow a GARCH(p,q) process (e.g., Bollerslev (1986)) then

2 2
Crt = + E a.u

z .+ E 13 .cr
2 
.

i=1
1 t-1 

j=1 
j t-j

(3)

1 qwhere Cr
2 

> 0; a., 13. 0 (all i,j) and E a. + E 13. < 1. ARCH(q) errors
i=1 1 j=1

arise as a special case of (3) when 13 = 0 (all j).

Although Ordinary Least Squares (OLS) estimation of (1) is best linear

unbiased in the context of GARCH or ARCH errors, greater efficiency can be

achieved by using the (non-linear) Maximum Likelihood (ML) estimator which

takes account of (3). Further, ARCH and GARCH errors have unconditional

distributions which are fatter-tailed than under normality. This property,

and their ability to account for volatility clustering, mean that ARCH-GARCH

processes are useful characterisations of prices or returns for many

speculative assets. For these reasons, testing for the presence of ARCH-GARCH

disturbances is of considerable importance in financial econometrics.
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Specifically, we wish to test

against

H
0 

• a 
1 
= a
2 
= = 

aq 1 
= = = 

p = o2 

H
A 

• a. a 0; (3 a 0 (with at least one strict inequality;•

i = 1,...,q; j = 1,...,p)

in the GARCH(p,q) case. In the ARCH(q) case we wish to test

Ho' : = a2 = = a = 0

against

HA i 
' : a a 0. (with at least one strict inequality;

i = 1,...,q).

Lee (1991) has shown that the Lagrange Multiplier (LM) test of I% against

A
H'
' 

as proposed by Engle (1982), is also the LM test of H
o 

against H
A 

(for the 

same q value). This test rejects Ho for large values of the statistic

where

LM = 3' W(W' WilW13/2

W' = (w : •Nv )q+1. . T

"2 "2w = (1,u ... ,u )
t t-1' t-q

a, = ((u-q2+1A-72 t(4/;2)_1),

is the OLS residual associated with (1), and crA2 is the ML estimator of cr
2u

t

under Ho or H.

As Engle (1982) and Engle et a/. (1985) note, an asymptotically

equivalent test can be constructed using the statistic nR2, where n = T-q and

"2R
2 

is the coefficient of determination from the OLS regression of u
t 

on an

intercept and q successive lags of Zt2. The LM and nR2 statistics are each

asymptotically x2(q) under Ho or H.

One potential weakness of these two tests is that neither takes account

of the one-sided nature2 of HA and H. To compensate for this in the ARCH(1)
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case, Engle et at. (1985) suggest using a one-sided test based on the

asymptotically standard normal statistic3 z(nR2) = sign(â
1 
)(nR2)112, where ;4

1

is the estimated coefficient of iit2..1 in the regression used to define R2

above. Alternatively, nR2 can be replaced by LM, and from Lee's (1991)

results, either z(nR2) or z(LM) is also appropriate against a GARCH(p,1)

alternative.

This approach is not helpful in the construction of a one-sided test if

q a: 2, which has motivated Lee and King (1991) to use the approach of King and

Wu (1990) to develop a Locally Best Score (LBS) test of Ho or F1; against HA or

WA. This one-sided test is also based on an asymptotically standard normal

statistic of the form

2
u ,t u u_

ti 1=1 
LBS -

„ A
2t' [ Ez z' 

t 
-

t
t
t 
t

Ez Ez' /T] t
11/2

t 

"2where t is a (qxl) vector of ones and ft 
= 

(ut-l'''''ut_q). The LBS test of

Ho against HA is also the LBS test of I-1; against HA (for the same q value),

and LBS collapses to z(LM) when q = 1.

As noted above, there is only limited evidence concerning the finite-

sample properties of these tests. This information is based on Monte Carlo

simulations, and in this paper we adopt the same procedure to investigate the

robustness of these tests to model mis-specification through the omission of a

relevant regressor from (1). Our experimental design is described in the next

section.

3. Monte Carlo Analysis

Our Monte Carlo experiment is based on a correctly specified data-

generating process of the form (1) and (2) with k=3, but the researcher

wrongly fits the model (and tests for ARCH or GARCH disturbances) assuming
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that k=2. That is, x2 is wrongly omitted from the model. As all of the tests

are based on OLS residuals they are invariant to the values of cr2, bo and b1.

These are set to 0.3, 1.0 and 1.0 respectively. However, the tests'

properties depend on the regressor data and the other parameters.

Our choice of regressors is similar to that of Engle et al. (1985) and

Lee and King (1991), though the former consider only a single-regressor model

through the origin, and all but one of the data sets considered by the latter

involve only one regressor in addition to an intercept.4 Specifically, we use

(et — IN(0,1)), with 0 = 0, 0.8, 1.0, 1.02. Our secondxlt = "lt-1 + et

regressor is either x2t = 0.1x2t_1 + et, or x2t = t. This allows for a wide

range of time-series characteristics in our data.

The extent of model mis-specification depends on the values of both x2

and b2. For convenience, we measure this effect through the value of A =

2 ( 2_ -1 ,b
2
/ 2o- x(X' X) R , where R = (0,0,1) and X =  The scalar A is the

non-centrality parameter associated with the usual t-test of the restriction

b
2 
= 0. Values of A = 0, 10, 50 imply different values of b

2 
which are used

to generate the yt data under various ARCH-GARCH specifications.5 Clearly,

= 0 implies a correctly specified model. The other A values generate

different degrees of mis-specification while maintaining plausible signal/

noise ratios.

The SHAZAM package (White et al. (1990)) was used on a VAX 6340 for all

of our simulation analysis. ARCH(l), ARCH(2), GARCH(1,1) AND GARCH(1,2)

specifications were investigated, and 5,000 replications were used

throughout.
6 

First, with n = 20 and 100 the true sizes of the various tests

were determined for different A values when the (asymptotic) critical values

associated with nominal 17. and 10% significance levels are used. Second, for

a representative selection of situations, the rejection probabilities for the

tests based on these same asymptotic critical values were determined under HA
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or HA 
as appropriate. These probabilities represent "pseudo powers", not'

being size-adjusted. Finally, for the same selected situations, simulation

analysis was used to find the finite-sample critical values which ensure the

desired significance level for each test when A = 0. Using these critical

values, genuine (size-adjusted) powers were computed, including cases where

= 10 and 50. In keeping with the mis-specification theme of this study, the

finite-sample (size-adjusted) critical values associated with A = 0 are also

pertinent if A > 0, as the researcher would be unaware of the model's mis-

specification.

4. Results

The results of the three parts of our study are discussed in the order

noted above.

4.1 Actual Test Sizes

Tables 1 and 2 summarise the actual sizes of the tests against ARCH(1) or

GARCH(1,1), and ARCH(2) or GARCH(1,2) errors respectively. When A = 0 the

model is correctly specified with respect to the regressor set, so these

results accord with those of Lee and King (1991), in broad terms, as

expected.
7 

However, these results are needed as a bench-mark against which to

judge the effects of model mis-specification (A > 0).

Consistent with the findings of other studies, we observe that, when A =

0, all of the tests have sizes which are less than the nominally assigned size

when n = 20. Even when n = 100, nominal sizes of 107. over-state the true

situation. Generally, there is less size-distortion with the one-sided z

tests than with their two-sided counterparts in the case of an ARCH(1)

alternative. While the nR2 and LM tests generally exhibit similar sizes, the

former is to be slightly favoured (especially for n = 20), with its one-sided
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variant being the least distorted of the four tests examined. In contrast,

while there is little to choose between the LM, nR2 and one-sided LBS tests in

terms of size-distortion against ARCH(2) errors when n = 100, the LBS test has

the greatest such distortion, and this is even more pronounced when n = 20.

Finally, the two-sided tests exhibit similar results in the ARCH(1) and

ARCH(2) situations, but the LBS test (which is the z(LM) test against ARCH(1))

generally shows slightly greater size-distortion against ARCH(2) disturbances

than against ARCH(1) errors.

When A > 0, the effect on the sizes of the tests depends crucially on the

form of the omitted regressor. At least within sampling variation.
8 

sizes

increase with A when x
2 

is a time-trend, and decrease with increasing A (for A

> 0) when x
2 

is autoregressive. In the former case, with moderate sample

sizes, test sizes several times greater than their nominal values are readily

attained. Regardless of the form of x2, sizes do not necessarily increase

with n, when the model is mis-specified, so (ironically) the degree of size

distortion can worsen with an increased sample size in such cases. While

these patterns hold quite generally, the specific test sizes can be quite

sensitive to the form of the included regressor (the value of 0) once a second

regressor is unwittingly omitted. The extra information utilized by the

one-sided tests is again generally reflected in greater sizes than for their

two-sided counterparts when testing against ARCH(1) errors in a mis-specified

model, as may be seen in Table 1. However, when testing against ARCH(2)

errors, this is not generally true and tends to occur only when a trend

variable is omitted from the regression.

Accordingly, to minimize the degree of size distortion, the z(nR2) test

is typically preferred against ARCH(1) (GARCH(1,1)) errors if there is a

likelihood of having omitted an AR(1) or trended regressor. An exception is

that the LM test is preferred in the case of severe mis-specification through
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the omission of a trended regressor. On the other hand, in the event of

omitting a trended (autoregressive) regressor, the LM (nR2) test would be a

conservative choice in the case of ARCH(2) (GARCH(1,2)) errors, especially in

the face of possibly severe mis-specification.

4.2 Unadjusted "Pseudo Powers"

Tables 3 to 6 report simulated probabilities of rejecting Ho or HiS for a

range of situations. That is, pseudo "powers", which have not been size-

adjusted are reported. While these probabilities represent the actual ability

of each test to reject a false null, care must be taken with any inter-test

comparisons.9 These tables all relate to n = 100 and 0 = 0.8, to limit the

volume of representative material. For completeness, test sizes from the

earlier tables are reproduced here.M

The following general results apply, regardless of the alternative

hypothesis. First, the "power" shapes are generally orthodox, ceteris

paribus, with increasing rejection probabilities as we depart from the null.

However, exceptions can arise with GARCH(1,1) errors and a model which is

severely mis-specified through the omission of a trended regressor. Secondly,

these probabilities always fall, under the alternative, as the model becomes

increasingly mis- specified. Generally, the form of the omitted regressor has

little impact on these results, but there is a better (higher) rejection

probability when a trend variable is excluded than if an AR(1) regressor is

excluded under severe mis-specification.

Under either the ARCH(1) or GARCH(1,1) alternatives both the apparent and

true powers of the LM test exceed those of the nR2 test, and similarly for the

one-sided variants of these tests. The raw rejection probabilities of the

one-sided tests exceed those of their two-sided counterparts, though further

9



exact power comparisons must be left until the next sub-section. These

results hold whether the model is properly specified or not.

Under either the ARCH(2) or GARCH(1,2) alternatives both the apparent and

true powers of the LBS test exceed those of the nR2 test whether the model is

correctly specified or not. Generally, the LBS test out-performs both

two-sided tests when the model is mis-specified, though more definitive

evidence on this point emerges below!'

Finally, it is clear that each of the tests has greater ability to reject

a false null in the case of an ARCH alternative, as opposed to a GARCH

( 
q P

alternative.This conclusion is based on the use of E a. + Eg. as an
1=1 I j=1 J

overall measure of departure from Ho.

4.3 Size-Adjusted Powers

Tables 7 to 10 illustrate both the true powers of the tests when the

model is correctly specified and the corresponding rejection probabilities

associated with testing unwittingly in the context of a mis-specified model

when size- adjusting the tests as if the model were correctly formulated. To

the extent that firm statements were possible in the last sub-section

concerning power rankings, these are confirmed by Tables 7 to 10.

In particular, when testing against ARCH(1) or GARCH(1,1) disturbances,

the LM test dominates the nR2 test and the z(LM) (or LBS) test dominates the

z(nR2) test. Similarly, the one-sided tests generally dominate their two-

sided counterparts. These results always hold if the model is correctly

specified. To the extent that exact comparisons are valid (given relative

sizes) when A > 0, these results also hold when the model is mis-specified.

Further, against ARCH(2) or GARCH(1,2) errors, the LBS test always dominates

the other two tests when the model is properly specified. Again, as far as

valid power comparisons can be made, the same is true when A > 0.
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Again, it is clear that all of the tests are considerably more powerful

against ARCH errors than against GARCH errors, whether the model is properly

specified or not. Finally, at least for the cases where the relative sizes

permit power comparisons, it is clear that this type of mis-specification

reduces the powers of all of the tests, and that each is somewhat more robust

(in terms of power) to the omission of a trend regressor than to the omission

of a (stationary) AR(1) regressor.

5. Conclusions

The results of this study have some important implications for the use of

several common tests for ARCH and GARCH disturbances in regression models, and

hence for the modelling of financial markets. The particular form of model

mis-specification that we have considered - namely the omission of a relevant

regressor - occurs frequently in practice, and our results show that the tests

under consideration can lack robustness to this type of specification error.

Several practical prescriptions can be drawn from our results. First, if

size distortion is important, then the choice of test should reflect any prior

information about the likely form of the omitted regressor. For instance, if

there is a possibility of having omitted a strongly trended variable, then the

LM test is a good choice. On the other hand, if the omitted variable is

likely to follow a stable AR(1) process, then the z(nR2) is preferred when

testing against ARCH(1) or GARCH(1,1) errors, and the nR2 test is a good

choice against ARCH(2) or GARCH(1,2) errors. In either case it must be

recognised that the established result, that the exact sizes of ARCH/GARCH

tests are less than their (asymptotic) nominal sizes, no longer necessarily

holds if the model is mis-specified, especially through the omission of a

trended regressor.
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Second, if high power is desired (with or without an allowance for size

distortion), then the LBS test is a good choice when testing against ARCH(2)

or GARCH(1,2) errors, and the equivalent z(LM) test is preferred against

ARCH(1) or GARCH(1,1) errors. In any event, the powers of the tests decline

as the model becomes increasingly mis-specified, and in many cases the power

performance can be very poor, especially against GARCH alternatives.

Overall, the results of this study underscore the fact that established

results based on the assumption of a correctly specified model need to be

reconsidered if the model is likely to be mis-specified in some way. This is

true whether one is considering the absolute performance of a test, or

comparing the performances of alternative tests, in terms of size distortion

or power performance.
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Footnotes

*This work was supported by University of Canterbury Research Grant #1770901.

1

2

3

4

5

6

The last of these inequalities ensures that the unconditional variance of

u
t 

is positive and finite.

One would conjecture that ignoring this information may reduce the

potential powers of the tests.

The null hypothesis is rejected for a sufficiently large positive value

of the test statistic.

Neither of these (or any other) studies allow for the omission of

relevant regressors, as we do.

Note that we do not consider any mis-specifications of the error process

in our analysis.

The simulations are straightforward to conduct. For example, note that

in the ARCH(1) case the error structure may be written as u
t 
=

v (o-2+cc 
u1 
2 
)
1/2

* V ^. IN(0,1), so that only a Normal random numbert 1 t- ' t

generator is required. The SHAZAM package incorporates the generator

proposed by Brent (1974).

7
Those authors report results based on 5% nominal significance levels.

8
The sampling error can be determined by noting the binomial nature of the

9

empirical rejections. So, for example, the standard error associated

with the value of 0.005 as the first entry in Table 1(a) is

V0.005(1-0.005)/5000 = 0.000997.

When the true size of one test is less than that of a second one, and the

probability of rejecting a false null is greater for the first test than

for the second, then the first test has the greater (true) power. -
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10

11

In these, and the following tables, the entries for A = 0 apply to both

forms of x2t. Recalling that A = 0 corresponds to b2 = 0, the data-

generating process is independent of x2t in this case.

Recall footnote 9 with respect to what conclusions may be drawn in the

absence of size-correction.
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TABLE 1(a): ARCH(1), GARCH(1,1) TEST SIZES

Nominal
Size n

z(nR2) Test nR
2 
Test

0.0 0.8 1.0 1.02 0.0 0.8 1.0 1.02

A = 0

1% 20 0.005 0.007 0.006 0.006 0.002 0.004 0.003 0.004
100 0.012 0.013 0.011 0.011 0.009 0.010 0.008 0.008

10% 20 0.054 0.062 0.059 0.061 0.053 0.058 0.061 0.059
100 0.080 0.080 0.082 0.082 0.078 0.079 0.077 0.076

= 10

x2t
= 0.1x2t_i + ct

1% 20 0.006 0.014 0.006 0.006 0.003 0.008 0.003 0.003
100 0.012 0.012 0.012 0.012 0.007 0.008 0.006 0.007

10% 20 0.069 0.100 0.074 0.075 0.055 0.070 0.059 0.062
100 0.083 0.082 0.079 0.082 0.074 0.079 0.077 0.076

x
2t
=t

1% 20 0.016 0.033 0.014 0.009 0.007 0.020 0.006 0.004
100 0.018 0.016 0.024 0.018 0.013 0.012 0.017 0.012

10% 20 0.111 0.181 0.109 0.075 0.084 0.122 0.079 0.073
100 0.102 0.094 0.108 0.100 0.085 0.082 0.091 0.084

= 50

x2t
= 0.1x2t_i + ct

1% 20 0.004 0.017 0.001 0.001 0.002 0.007 0.000 0.000
100 0.009 0.009 0.008 0.007 0.005 0.006 0.005 0.005

10% 20 0.088 0.180 0.035 0.029 0.041 0.086 0.013 0.013
100 0.065 0.068 0.064 0.066 0.067 0.069 0.069 0.069

x
2t
=t

17. 20 0.118 0.308 0.265 0.102 0.061 0.206 0.174 0.056
100 0.120 0.085 0.258 0.177 0.085 0.057 0.194 0.132

10% 20 0.505 0.757 0.698 0.423 0.352 0.618 0.551 0.292
100 0.370 0.301 0.569 0.457 0.267 0.214 0.453 0.340
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TABLE 1(b): ARCH(1), GARCH(1,1) TEST sI7rs

Nominal
Size a

z(LM) Test LM Test

0.0 0.8 1.0 1.02 0.0 0.8
0

1.0 1.02

X = 0

1% 20 0.003 0.005 0.005 0.005 0.002 0.003 0.002 0.002
100 0.012 0.013 0.011 0.012 0.008 0.009 0.006 0.007

10% 20 0.040 0.046 0.047 0.048 0.021 0.028 0.028 0.029
100 0.074 0.073 0.074 0.075 0.072 0.072 0.067 0.067

A=10

x2t = 0.1x2t_1 + ct

17. 20 0.002 0.005 0.004 0.004 0.001 0.002 0.002 0.002
100 0.014 0.012 0.011 0.012 0.008 0.009 0.008 0.008

107. 20 0.041 0.072 0.056 0.053 0.017 0.033 0.027 0.027
100 0.074 0.075 0.074 0.074 .0.067 0.071 0.066 0.065

x
2t
=t

17. 20 0.005 0.011 0.005 0.005 0.003 0.005 0.003 0.003
100 0.017 0.015 0.023 0.018 0.010 0.008 0.017 0.012

10% 20 0.078 0.139 0.068 0.047 0.037 0.071 0.036 0.028
100 0.096 0.086 0.106 0.096 0.079 0.072 0.088 0.076

= 50

x2t = 0.1x2t_1 + ct

1% 20 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000
100 0.009 0.009 0.007 0.007 0.005 0.005 0.005 0.005

10% 20 0.023 0.074 0.015 0.015 0.005 0.020 0.004 0.004
100 0.059 0.064 0.057 0.060 0.058 0.060 0.059 0.059

x
2t
=t

1% 20 0.010 0.083 0.031 0.012 0.004 0.029 0.010 0.005
100 0.086 0.058 0.232 0.145 . 0.056 0.039 0.182 0.107

10% 20 0.297 0.682 0.490 0.204 0.126 0.457 0.270 0.087
100 0.326 0.255 0.546 0.425 0.218 0.167 0.430 0.307
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TABLE 2(a : ARCH(2), GARCH(1,2) SIZESTEST

Nominal
Size n

nR
2 
Test LM Test

0.0 0.8 1.0 1.02 0.0 0.8 1.0 1.02

A = 0

1% 20 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.003
100 0.008 0.009 0.008 0.008 0.011 0.010 0.010 0.009

10% 20 0.055 0.058 0.061 0.057 0.029 0.030 0.030 0.030
100 0.079 0.081 0.074 0.075 0.071 0.072 0.068 0.068

A = 10

x2t
= 0.1x2t_i + ct

17. 20 0.002 0.002 0.002 0.002 0.001 0.001 0.006 0.004
100 0.010 0.010 0.009 0.011 0.011 0.010 0.011 0.012

10% 20 0.051 0.054 0.047 0.052 0.025 0.023 0.016 0.015
100 0.076 0.076 0.079 0.075 0.069 0.065 0.066 0.069

x
2t
=t

17. 20 0.005 0.007 0.006 0.004 0.005 0.012 0.006 0.002
100 0.013 0.012 0.012 0.013 0.013 0.011 0.014 0.014

107. 20 0.067 0.076 0.075 0.077 0.031 0.056 0.037 0.026
100 0.085 0.080 0.084 0.086 0.071 0.068 0.077 0.077

= 50

x2t
= 0.1x2t_i + ct

1% 20 0.001 0.001 0.000 0.000 0.006 0.002 0.000 0.000
100 0.008 0.008 0.006 0.007 0.007 0.006 0.005 0.006

107. 20 0.042 0.046 0.0220.020 0.014 0.006 0.002 0.002
100 0.063 0.062 0.062 0.060 0.050 0.049 0.046 0.049

x
2t
=t

17. 20 0.027 0.041 0.050 0.050 0.008 0.054 0.028 0.005
100 0.086 0.060 0.176 0.162 0.053 0.036 0.161 0.132

10% 20 0.239 0.263 0.291 0.372 0.076 0.204 0.157 0.086
100 0.289 0.225 0.447 0.412 0.210 0.152 0.413 0.370
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TABLE 2(b): ARCH(2), GARCH(1,2) TEST SIZES

Nominal
Size n

LBS Test

0.0 0.8
0

1.0 1.02

X = 0

17. 20 0.001 0.001 0.001 0.001
100 0.009 0.009 0.008 0.008

10% 20 0.026 0.029 0.025 0.025
100 0.067 0.069 0.068 0.066

A=10

x
2t

= 0.1x
2t-1 

+ e
t

1% 20 0.004 0.000 0.000 0.000
100 0.010 0.010 0.010 0.011

107. 20 0.013 0.013 0.008 0.009
100 0.063 0.062 0.061 0.063

x
2t
=t

1% 20 0.003 0.011 0.005 0.003
100 0.010 0.008 0.013 0.013

107. 20 0.034 0.062 0.032 0.030
100 0.070 0.062 0.093 0.087

= 50

x2t
= 0.1x2t_i + et

17. 20 0.000 0.000 0.000 0.000
100 0.005 0.004 0.004 0.004

107. 20 0.003 0.000 0.000 0.000
100 0.041 0.037 0.034 0.034

x
2t
=t

1% 20 0.010 0.066 0.009 0.006
100 0.080 0.044 0.265 0.208

107. 20 0.131 0.263 0.087 0.131
100 0.331 0.248 0.608 0.527
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TABLE 3(a): ARCH(1) REJECTION PROBABILITIES

(Not Size-Corrected)

Nominal Size = 1%; n = 100; 0 = 0.8

x2t 
= 0.1x2t_i + ct x

2t 
= t

A
a
1

0 10 50 10 50

z(nR2) Test

0 0.013 0.012 0.009 0.016 0.085
0.3 0.410 0.287 0.102 0.301 0.221
0.6 0.718 0.631 0.386 0.625 0.474
0.9 0.838 0.797 0.650 0.795 0.681

nR2 Test

0 0.010 0.008 0.006 0.012 0.057
0.3 0.341 0.239 0.078 0.250 0.175
0.6 0.670 0.573 0.333 0.572 0.418
0.9 0.795 0.758 0.606 0.751 0.635

z(LM) Test

0 0.013 0.012 0.009 0.015 0.058
0.3 0.426 0.300 0.111 0.318 0.201
0.6 0.780 0.690 0.423 0.689 0.501
0.9 0.917 0.878 0.732 0.884 0.763

LM Test

0 0.009 0.009 0.005 0.008 0.039
0.3 0.370 0.256 0.090 0.266 0.160
0.6 0.738 0.645 0.382 0.641 0.449
0.9 0.899 0.855 0.696 0.856 0.725
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TABLE 3(b): ARCH(1) REJECTION PROBABILITIES

(Not Size-Corrected)

Nominal Size = 10%; n = 100; 0 = 0.8

a
1

x
2t 

= 0.1x
2t-1 4. et

x
2t 

= t

0 10 50
A

10 50

z(nR2) Test

0 0.080 0.082 0.068 0.094 0.301
0.3 0.679 0.553 0.285 0.566 0.494
0.6 0.905 0.844 0.615 0.848 0.717
0.9 0.963 0.937 0.835 0.941 0.868

nR
2 
Test

0 0.079 0.079 0.069 0.082 0.214
0.3 0.588 0.455 0.215 0.472 0.395
0.6 0.853 0.780 0.532 0.781 0.632
0.9 0.928 0.894 0.771 0.901 0.811

z(LM) Test

0 0.073 0.075 0.064 0.086 0.255
0.3 0.681 0.557 0.282 0.567 0.467
0.6 0.920 0.859 0.631 0.863 0.728
0.9 * 0.978 0.957 0.863 0.959 0.893

LM Test

0 0.072 0.071 0.060 0.072 0.167
0.3 0.595 0.462 0.211 0.478 0.366
0.6 0.879 0.806 0.556 0.810 0.644
0.9 0.963 0.934 0.817 0.939 0.850
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TABLE 4: ARCH(2) REJECTION PROBABILITIES

(Not Size-Corrected)

n = 100; 0 = 0.8

a
1 2

= 0.1x2t_i + ctx2t x
2t 

= t

0 10
A

50 10 50

Nominal Size = 1%

nR
2 
Test

0.0 0.0 0.009 0.010 0.008 0.012 0.060
0.2 0.2 0.306 0.221 0.090 0.234 0.174
0.2 0.4 0.530 0.433 0.248 0.445 0.320
0.2 0.6 0.690 0.618 0.439 0.626 0.500

LM Test

0.0 0.0 0.010 0.010 0.006 0.011 0.036
0.2 0.2 0.337 0.251 0.105 0.261 0.169
0.2 0.4 0.590 0.494 0.291 0.504 0.346
0.2 0.6 0.778 0.718 0.520 0.716 0.566

LBS Test

0.0 0.0 0.009 0.010 0.004 0.008 0.044
0.2 0.2 0.393 0.299 0.117 0.308 0.191
0.2 0.4 0.649 0.549 0.310 0.556 0.376
0.2 0.6 0.812 0.745 0.551 0.752 0.591

Nominal Size = 10%

nR2 Test

0.0 0.0 0.081 0.076 0.062 0.080 0.225
0.2 0.2 0.538 0.436 0.234 0.448 0.391
0.2 0.4 0.762 0.670 0.434 0.682 0.553
0.2 0.6 0.866 0.818 0.643 0.822 0.706

LM Test

0.0 0.0 0.072 0.065 0.049 0.068 0.152
0.2 0.2 0.556 0.446 0.235 0.458 0.359
0.2 0.4 0.785 0.697 0.449 0.707 0.544
0.2 0.6 0.897 0.849 0.681 0.855 0.736

LBS Test

0.0 0.0 0.069 0.062 0.037 0.062 0.248
0.2 0.2 0.673 0.552 0.294 0.563 0.456
0.2 0.4 0.859 0.783 0.529 0.793 0.641
0.2 0.6 0.939 0.901 0.741 0.903 0.802
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TABLE 5(a): GARCH(1,1) REJECTION PROBABILITIES

(Not Size-Corrected)

Nominal Size = 1%; n = 100; 0 = 0.8

x
2t 

= 0.1x
2t-1 

+ e
t

x
2t 

= t

a
1 gl

0 10 50 10 50

z(nR2) Test

0.0 0.0 0.013 0.012 0.009 0.016 0.085
0.2 0.0 0.233 0.159 0.054 0.169 0.158
0.2 0.2 0.242 0.183 0.073 0.188 0.147
0.2 0.4 0.253 0.210 0.105 0.212 0.156
0.2 0.6 0.272 0.243 0.166 0.243 0.188

nR
2 
Test

0.0 0.0 0.010 0.008 0.006 0.012 0.057
0.2 0.0 0.189 0.122 0.038 0.130 0.121
0.2 0.2 0.197 0.146 0.052 0.148 0.112
0.2 0.4 0.202 0.167 0.081 0.169 0.128
0.2 0.6 0.221 0.197 0.133 0.200 0.151

z(LM) Test

0.0 0.0 0.013 0.012 0.009 0.015 0.058
0.2 0.0 0.245 0.166 0.053 0.172 0.132
0.2 0.2 0.251 0.189 0.075 0.197 0.134
0.2 0.4 0.268 0.216 0.112 0.221 0.152
0.2 0.6 0.292 0.266 0.182 0.262 0.198

LM Test

0.0 0.0 0.009 0.009 0.005 0.008 0.039
0.2 0.0 0.200 0.133 0.041 0.138 0.102
0.2 0.2 0.209 0.153 0.059 0.158 0.104
0.2 0.4 0.223 0.184 0.092 0.184 0.117
0.2 0.6 0.248 0.222 0.148 0.223 0.166
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TABLE 5(b): GARCH(1,1) REJECTION PROBABILITIES

(Not Size-Corrected)

Nominal Size = 10%; n = 100; 0 = 0.8

x
2t 

= 0.1x
2t-1 et 

x
2t 

= t

A

a1
(31

0 10 50 10 50

z(nR2) Test

0.0 0.0 0.080 0.082 0.068 0.094 0.301
0.2 0.0 0.520 0.396 0.189 0.418 0.417
0.2 0.2 0.526 0.425 0.227 0.438 0.389
0.2 0.4 0.531 0.459 0.291 0.459 0.387
0.2 0.6 0.546 0.504 0.392 0.499 0.424

nR2 Test

0.0 0.0 0.079 0.079 0.069 0.082 0.214
0.2 0.0 0.418 0.303 0.133 0.319 0.318
0.2 0.2 0.423 0.335 0.168 0.343 0.290
0.2 0.4 0.425 0.368 0.216 0.370 0.316
0.2 0.6 0.437 0.409 0.303 0.403 0.327

z(LM) Test _

0.0 0.0 0.073 0.075 0.064 0.086 0.255
0.2 0.0 0.515 0.394 0.182 0.415 0.382
0.2 0.2 0.518 0.425 0.224 0.434 0.363
0.2 0.4 0.523 0.461 0.287 0.456 0.370
0.2 0.6 0.550 0.507 0.393 0.507 0.417

LM Test

0.0 0.0 0.072 0.071 0.060 0.072 0.167
0.2 0.0 0.415 0.295 0.127 0.318 0.277
0.2 0.2 0.419 0.327 0.160 0.343 0.264
0.2 0.4 0.428 0.364 0.211 0.368 0.272
0.2 0.6 0.450 0.418 0.305 0.411 0.324
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TABLE 6: GARCH(1,2) REJECTION PROBABILITIES

(Not Size-Corrected)

n = 100; 0 = 0.8

a
1 

a
2

= 0.1x2t_1 + ct = t

0 10 50 10 50

Nominal Size = 1%

nR
2 
Test

0.0 0.0 0.0 0.009 0.010 0.008 0.012 0.060
0.1 0.1 0.2 0.157 0.116 0.046 0.121 0.096
0.1 0.1 0.4 0.190 0.155 0.076 0.157 0.113
0.1 0.1 0.7 0.271 0.255 0.213 0.255 0.219

LM Test

0.0 0.0 0.0 0.010 0.010 0.006 0.011 0.036
0.1 0.1 0.2 0.176 0.132 0.052 0.137 0.095
0.1 0.1 0.4 0.212 0.181 0.094 0.179 0.124
0.1 0.1 0.7 0.331 0.321 0.270 0.316 0.270

LBS Test

0.0 0.0 0.0 0.009 0.010 0.004 0.008 0.044
0.1 0.1 0.2 0.216 0.160 0.061 0.159 0.106
0.1 0.1 0.4 0.263 0.213 0.108 0.214 0.138
0.1 0.1 0.7 0.400 0.379 0.322 0.381 0.321

Nominal Size = 10%
2

nR Test

0.0 0.0 0.0 0.081 0.076 0.062 0.080 0.225
0.1 0.1 0.2 0.359 0.284 0.162 0.292 0.274
0.1 0.1 0.4 0.400 0.340 0.224 0.347 0.286
0.1 0.1 0.7 0.495 0.475 0.421 0.476 0.420

LM Test

0.0 0.0 0.0 0.072 0.065 0.049 0.068 0.152
0.1 0.1 0.2 0.356 0.281 0.154 0.295 0.243
0.1 0.1 0.4 0.402 0.345 0.219 0.348 0.270
0.1 0.1 0.7 0.523 0.505 0.440 0.513 0.445

LBS Test

0.0 0.0 0.0 0.069 0.062 0.037 0.062 0.248
0.1 0.1 0.2 0.464 0.374 0.192 0.379 0.330
0.1 0.1 0.4 0.511 0.444 0.278 0.444 ' 0.347
0.1 0.1 0.7 0.644 0.622 0.554 0.626 0.552
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TABLE 7(a): ARCH(1) POWERS

(Size-Corrected)

Size = 1%; n = 100; 0 = 0.8

x
2t 

= 0.1x
2t-1 Et 

x
2t 

= t

a
1 10 50 10 50

z(nR2) Test

0 0.010 0.009 0.007 0.012 0.067
0.3 0.370 0.260 0.088 0.268 0.194
0.6 0.690 0.597 0.354 0.597 0.440
0.9 0.814 0.774 0.623 0.769 0.654

nR2 Test

0 0.010 0.008 0.006 0.012 0.058
0.3 0.345 0.241 0.079 0.252 0.177
0.6 0.672 0.575 0.335 0.574 0.420
0.9 0.796 0.760 0.608 0.752 0.637

z(LM) Test

0 0.010 0.010 0.006 0.010 0.045
0.3 0.391 0.274 0.098 0.283 0.174
0.6 0.753 0.663 0.394 0.659 0.468
0.9 0.907 0.864 0.711 0.867 0.740

LM Test

0 0.010 0.009 0.006 0.011 0.044
0.3 0.389 0.272 0.098 0.281 0.172
0.6 0.751 0.660 0.394 0.656 0.465
0.9 0.905 0.862 0.708 0.865 0.737
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TABLE 7(b): ARCH(1) POWERS

. (Size-Corrected)

Size = 10%; n = 100; 0 = 0.8

= 0.1x
2t-1 

e
t

x
2t 

= t

A

a
1

0 10 50 10 50

z(nR2) Test

0 .0.100 0.102 0.083 0.113 0.339
0.3 0.712 0.589 0.320 0.603 0.534
0.6 0.924 0.866 0.649 0.869 0.746
0.9 0.973 0.948 0.855 0.949 0.886

nR
2 
Test

0 0.100 0.104 0.092 0.110 0.241
0.3 0.622 0.491 0.247 0.504 0.427
0.6 0.873 0.802 0.561 0.806 0.660
0.9 0.941 0.912 0.794 0.916 0.830

z(LM) Test

0 0.100 0.102 0.083 0.116 0.314
0.3 0.725 0.605 0.328 0.614 0.526
0.6 0.935 0.883 0.672 0.888 0.762
0.9 0.984 0.965 0.883 0.965 0.910

LM Test

0 0.100 0.103 0.090 0.106 0.204
0.3 0.634 0.506 0.247 0.517 0.409
0.6 0.899 0.833 0.589 0.836 0.680
0.9 • 0.970 0.945 0.838 0.951 0.868
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TABLE 8: ARCH(2) POWERS

(Size-Corrected)

n = 100; 0 = 0.8

x t = 0.1x2t_i + ct x
2t 

= t

A

a
1

a
2 0 10 50 10 50

Size = 1%

nR
2 
Test

0.0 0.0 0.010 0.012 0:009 0.013 0.066
0.2 0.2 0.320 0.235 0.098 0.248 0.185
0.2 0.4 0.544 0.449 0.261 0.462 0.335
0.2 0.6 0.701 0.635 0.456 0.638 0.514

LM Test

0.0 0.0 0.010 0.011 0.006 0.011 0.036
0.2 0.2 0.339 0.252 0.106 0.262 0.170
0.2 0.4 0.591 0.495 0.292 0.507 0.347
0.2 0.6 0.780 0.719 0.522 0.718 0.567

LBS Test

0.0 0.0 0.010 0.011 0.004 0.009 0.048
0.2 0.2 0.406 0.309 0.125 0.317 0.202
0.2 0.4 0.665 0.561 0.319 0.567 0.386
0.2 0.6 0.823 0.753 0.559 0.762 0.602

Size = 10%

nR2 Test

0.0 0.0 0.100 0.095 0.077 0.097 0.250
0.2 0.2 0.567 0.462 0.259 0.477 0.423
0.2 0.4 0.779 0.690 0.456 0.705 0.581
0.2 0.6 0.877 0.834 0.663 0.840 0.729

LM Test

0.0 0.0 0.100 0.098 0.077 0.095 0.197
0.2 0.2 0.595 0.486 0.270 0.494 0.401
0.2 0.4 0.809 0.728 0.487 0.739 0.584
0.2 0.6 0.911 0.869 0.705 0.875 0.764

LBS Test

0.0 0.0 0.100 0.091 0.062 0.092 0.329
0.2 0.2 0.734 0.621 0.356 0.635 0.535
0.2 0.4 0.892 0.829 0.590 0.836 0.710
0.2 0.6 0.958 0.925 0.786 0.927 0.844
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TABLE 9(a): GARCH(1,1) POWERS

(Size-Corrected)

Size = 1%; n = 100; 0 = 0.8

= 0.1x
2t-1 et 

x
2t 

= t

0 10 50 10 50

z(nR2) Test

0.0 0.0 0.010 0.009 0.007 0.012 0.067
0.2 0.0 0.205 0.137 0045 0.148 0.136
0.2 0.2 0.213 0.160 0.060 0.161 0.128
0.2 0.4 0.224 0.185 0.092 0.186 0.130
0.2 0.6 0.240 0.217 0.145 0.217 0.165

nR
2 
Test

0.0 0.0 0.010 0.008 0.006 0.012 0.058
0.2 0.0 0.190 0.123 0.039 0.132 0.122
0.2 0.2 0.197 0.147 0.053 0.149 0.113
0.2 0.4 0.203 0.167 0.081 0.170 0.116
0.2 0.6 0.224 0.199 0.133 0.201 0.151

z(LM) Test

0.0 0.0 0.010 0.010 0.006 0.010 0.045
0.2 0.0 0.215 0.144 0.044 0.152 0.113
0.2 0.2 0.226 0.168 0.063 • 0.173 0.113
0.2 0.4 0.239 0.198 0.098 0.198 0.126
0.2 0.6 0.265 0.239 0.161 0.235 0.178

LM Test

0.0 0.0 0.010 0.009 0.006 0.011 0.044
0.2 0.0 0.214 0.142 0.044 0.150 0.111
0.2 0.2 0.224 0.165 0.063 0.170 0.111
0.2 0.4 0.237 0.195 0.097 0.195 0.125
0.2 0.6 0.263 0.236 0.159 0.234 0.176
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TABLE 9(b): GARCH(1,1) POWERS

(Size-Corrected)

Size = 10%; n = 100; 0 = 0.8

x
2t 

= 0.1x
2t-1 4' et 

x
2t 

= t

a
1

0 10 50 10 50

z(nR2) Test

0.0 0.0 0.100 0.102 0.083 0.113 0.339
0.2 0.0 0.562 0.439 0.218 0.456 0.461
0.2 0.2 0.564 0.467 0.265 0.472 0.430
0.2 0.4 0.567 0.496 0.331 0.499 0.424
0.2 0.6 0.584 0.542 0.430 0.540 0.456 .

nR2 Test

0.0 0.0 0.100 0.104 0.092 0.110 0.241
0.2 0.0 0.456 0.336 0.160 0.356 0.354
0.2 0.2 0.460 0.364 0.197 0.376 0.330
0.2 0.4 0.463 0.402 0.246 0.399 0.326
0.2 0.6 0.476 0.446 0.335 0.438 0.361

z(LM) Test

0.0 0.0 0.100 0.102 0.083 0.116 0.314
0.2 0.0 0.567 0.451 0.220 0.466 0.442
0.2 0.2 0.574 0.479 0.268 0.484 0.416
0.2 0.4 0.575 0.509 0.338 0.510 0.424
0.2 0.6 0.596 0.556 0.445 0.557 0.467

LM Test

0.0 0.0 0.100 0.103 0.090 0.106 0.204
0.2 0.0 0.460 0.338 0.161 0.360 0.323
0.2 0.2 0.466 0.367 0.196 0.381 0.312
0.2 0.4 0.476 0.412 0.247 0.409 0.320
0.2 0.6 0.490 0.457 0.351 0.454 0.366
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TABLE 10: GARCH(1,2) POWERS

(Size-Corrected)

n = 100; 0 = 0.8

= 0.1x
2t-1 et 

x
2t 

= t

A
a
1

a
2 gl 

10 50 10 50

Size = 1%

nR
2 
Test

0.0 0.0 0.0 0.010 0.012 0.009 0.013 0.066
0.1 0.1 0.2 0.168 0.123 0.050 0.128 0.106
0.1 0.1 0.4 0.200 0.165 0.083 0.166 0.122
0.1 0.1 0.7 0.287 0.270 0.226 0.269 0.231

LM Test

0.0 0.0 0.0 0.010 0.010 0.006 0.011 0.036
0.1 0.1 0.2 0.178 0.133 0.052 0.138 0.095
0.1 0.1 0.4 0.214 0.181 0.095 0.180 0.125
0.1 0.1 0.7 0.331 0.323 0.272 0.317 0.271

LBS Test

0.0 0.0 0.0 0.010 0.011 0.004 0.009 0.048
0.1 0.1 0.2 0.227 0.170 0.064 0.166 0.111
0.1 0.1 0.4 0.275 0.222 0.114 0.225 0.146
0.1 0.1 0.7 0.412 0.392 0.333 0.392 0.330

Size = 10%

nR
2 
Test

0.0 0.0 0.0 0.100 0.095 0.077 0.097 0.250
0.1 0.1 0.2 0.384 0.314 0.181 0.319 0.300
0.1 0.1 0.4 0.423 0.370 0.244 0.373 0.311
0.1 0.1 0.7 0.517 0.503 0.445 0.499 0.446

LM Test

0.0 0.0 0.0 0.100 0.098 0.077 0.095 0.197
0.1 0.1 0.2 0.397 0.326 0.185 0.331 0.283
0.1 0.1 0.4 0.441 0.384 0.254 0.384 0.307
0.1 0.1 0.7 0.562 0.547 0.475 0.545 0.481

LBS Test

0.0 0.0 0.0 0.100 0.091 0.062 0.092 0.329
0.1 0.1 0.2 0.538 0.443 0.247 0.446 0.406
0.1 0.1 0.4 0.580 0.513 0.342 0.518 0.419
0.1 0.1 0.7 0.703 0.681 0.613 0.687 .0.620
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