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Interval Based Composite Indicators

Carlo Drago

Abstract Composite indicators are increasingly important in country comparisons
and in policy making. At the same time, the robustness of the results obtained and
in particular of the rankings and the conclusions obtained from the analysis it is
usually accepted with doubts. In this sense our proposal is to use interval data in
order to measure the uncertainty related to the different composite indicators based
on the different assumptions used as input. In this sense where composite indicators
can be considered as models, for this reason it could be necessary to assess the
uncertainties related to the different choices in the construction. The uncertainty
can be represented by the interval data. The intervals keep the information related
to the initial value of the composite indicator, but at the same time give information
on the range of the results.

Key words: Composite Indicators, Interval Data, Robustness, Sensitivity Analysis,
Uncertainty Analysis

1 Why Composite Indicators are important

Composite indicators are becoming more and more important in regional or in coun-
try comparison on various topics with aim of decision makingand in policy-making
[17, 3]. Composite indicators can be defined as the aggregation of multiple individ-
ual indicators in order to obtain an aggreate measure [19]. Various points in favour
and contrary are considered in literature on the construction of the composite indi-
cators [14]. In particular the main point in favour is the capacity to convoy complex
information in a unique measure which can be used in decisionmaking. Today, ex-
ist many different types of composite indicators (say on competitiveness, innovation
and so on) which are used in order to enhance the public debateon important issues

Carlo Drago
Universita degli Studi ”Niccolo Cusano”, Via Don Carlo Gnocchi, e-mail: c.drago@mclink.it

1



2 Carlo Drago

and the policy-making related to these problems [14]. The composite indicators are
considered very useful in policy analysis and in policy communication [14] in or-
der allow them to synthetize quickly complex concepts. In particular the composite
indicators are considered useful in order to measure multidimensional and complex
phenomena and comparing different statistical units as countries, regions and so on.
It is important to note that is more simple in various fields toconsider the compos-
ite indicators than analyzing the data structure of the different indicators in order
to make decisions [19, 14]. At the same time there is a risk to misinterprate the
composite indicators. In general a composite indicator start from different measures
on a single area (the statistical unit) [14]. In this sense these measures can derive
another one which can be used on benchmarking and in monitoring the different
performances of the statistical units (for example the regions or countries). The use-
fulness of a composite indicator as statistical construct is on the fact that ideally the
composite indicator needs to measure different and more complex concepts than the
simple indicators [14, 1]. In fact the general aim of the composite indicators is mea-
suring phenomena which are not simple to be measured. In thisway we consider
different indicators in order to measure the phenomenon. A composite indicator at
the end can be seen as a model in a sense of mathematical model where different
inputs can participates to the outputs sometimes in a nonlinear way [13, 14]. In this
context we need explicitly to consider a sensitivity analysis for our model [19, 18].
In particular we have many possible outputs where a typical problem in the com-
posite indicator construction is the subjectivity of the operation. In fact there are
many choices in general. These choices that must be performed can lead to dif-
ferent results [14, 3, 19]. However there is a problem of robustness, accuracy and
reliability related to the composite indicators [18, 4]. Inthis sense the actual use of
the composite indicators and the proliferation of different measures used in policy
making call for new approaches in order to improve accuracy and reliability of the
composite indicators.

2 Composite indicator construction

Various phases can be considered in building composite indicators. A review of the
techniques used on building composite indicators is on [14,19, 4]. A theoretical
framework on the statistical and mathematical properties on the construction of the
composite indicators is also proposed by [1]. These different analyses need to be
well documented and explained when a composite indicator isconstructed. In this
sense it is important to document the different assumptionswhich are done in the
construction of the composite indicators [19]. These assumptions can have a relevant
impact on the outputs [14]. In this sense the construction ofa composite indicator is
very similar to a model construction therefore the different assumptions made need
to be considered in a clear way [14, 17]. However it is very important to consider
the different phases on the construction of a composite indicator. These phases can
be defined in this way [14, 19, 4, 1]:
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• Theoretical framework
• Data selection
• Treatment of the missing data
• Multivariate Analysis
• Normalization
• Weighting and aggregation
• Robustness and sensitivity
• Repeatibility of the composite indicators (”back to the initial data” [14])
• Analysis of the linkages with other variables
• Visualization and presentation

These steps are useful in order to obtain a set of outputs (or scores) as composite
indicators [14, 13, 1]. In particular the authors [14] emphasize the role of the mul-
tivariate analysis to avoid the lack of information in a construction of a composite
indicator with variables. The adequacy of the constructs obtained [1] can be consid-
ered in this sense in order to avoid structures with variables are redundant. In this
sense the multivariate techniques are used to explore the data structure. A strategy
which is considered is to apply a principal component analysis (in order to detect
the relevant variables) and then a clustering procedure sequentially in order to detect
significant groups of the data [14, 6]. Now we see in practice the construction of a
composite indicator. Following [17, 1], in order to obtain the composite indicator
Yu for a given statistical unitu where the aggregation can be done by considering
the normalized subindicatorsIq,u with at the same time the defined weightswq. The
weights define the importance of each subindicator. As well we have chosen ak
specific combination between the set of the possible different assumptions in the
construction of the composite indicatorY c. So we have in most of cases [14, 17, 4]:

Y c
u =

Q

∑
q=1

Iq,uwq (1)

With c = 1. . .C and 0≤ wq ≤ 1 and∑Q
q=1wq = 1. There are relevant cases in

which can be considered a different aggregation function [14], the geometric one:

Y c
u =

Q

∏
q=1

(wqIq,u)
1/Q (2)

where as well in this casec = 1. . .C and 0≤ wq ≤ 1 and∑Q
q=1 wq = 1

In this sense various authors [14, 1, 4] discuss the different aggregation func-
tion which can be used in building composite indicators. Fora complete review of
the different methodologies used in literature see [14]. Two used procedures in the
normalization process of the variables can be the distance from the best and worst
performers [17, 4]:

Iq,u =
xq,u −min(xq)

range(xq)
(3)
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wherexq,u means that each countryu is characterized by the subindicatorxq. It
is possible to consider also the standard deviation from themean [4, 17]:

Iq,u =
xq,u −mean(xq)

std(xq)
(4)

The rationale in using these normalizations is to uniforming the different scale of
measure of the different variables used in the constructionof the composite indicator
[14, 17, 4]. Then it is necessary to decide the weighting of the indicators which is the
most critical point to solve [17, 14]. In fact the different weighting can have a strong
impact on the final outcomes [4]. Various ways of deciding theweights are proposed
in literature and can be performed differently [14, 4]. The most simple approach is to
weight equally all the different indicators. In this sense in the indicator we typically
have:

w0 = w1 = · · ·= wq (5)

Weighting scheme chosen can be related to the importance of each indicator to
consider. Different procedures in order to decide the different weights to adopt was
proposed [14, 16].

3 Checking robustness of the composite indicators

Every composite indicator can be obtained by considering different choices related
for example to the aggregation considered or the weighting scheme. Sometimes
these choices are subjective, require attention and can be discussed [14, 19]. How-
ever there is required usually a phase in which alternative approaches are considered
in order to assess the different uncertainties which are occurred in the construction
of the composite indicator. At the same time are assessed thesubjective choices
and analyzed the impact of these choices as well [14]. In particular there are two ap-
proaches: uncertainty analysis and sensitivity analysis [14]. There are differences on
the uncertainty analysis and the sensitivity analysis which are described on [14, 17].
Here we consider explicitly the uncertainty analysis because it is the most used
approach in this context [17]. Following [17] it is possibleto use the difference
between two composite indicators on two statistical unitsA andB:

DA,B =
Q

∑
q=1

(Iq,A − Iq,B)wq. (6)

In particular the ranks are used in order to analyze the differences between differ-
ent assumptions considered. The interval is related to the different results in ranking
and is possible to obtain. Following as well [17] we can have:
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RS =
1
M

U

∑
u=1

|rankre f (Yu)− rank(Yu)| (7)

The results of the equations 6 and 7 can confirm the results related to the single
composite indicators and their ranks. On the contrary wherethere are big differ-
ences and results it could be necessary to reconsider the analysis [14]. In this sense
we want to investigate aboutY c

u in order to assess the differences related to the dif-
ferent assumptionsk. The idea is that we build interval data [10] by considering the
different assumptionsk in order to test the robustness of the results [14]. This idea
is based on the concept of sensitivity analysis [20].

4 Using Interval Composite Indicators

The motivations to use intervals and interval data in the analysis of the composite
indicators can be the close relationship between intervalsand sensitivity analysis
[20]. In particular in this sense interval statistics can beused in the case the data
can have a specific point estimate and can be characterized byrelevant and reliable
ranges [10]. So we start from the use of the different assumptions onk and we apply
different variations to obtain a different value for the same composite indicatorY c,k

u .
Then we collect the data by a different statistical unit and we obtain the interval. The
interval allows to take into account the different variations which could happen by
considering different assumptionsk. If we consider only a data for the interval (for
example a mean of the different observations we can have a loss of information due
to the data aggregation [2]). In this sense we are able to compare the different data
obtained and the different intervals by considering the centre, the range, the minima
and the maxima. For the computation related to the centre andthe radius [5].

4.1 Building Interval Composite Indicators

There are relevant cases which data show relevant problems as uncertainty and im-
precise measuring and they are particularly complex in thissense and it is usually
necessary to consider some alternative measures. In this sense we use the interval
data. Interval data are particularly useful to represent these data by considering the
different assumptions. A relevant problem is the robustness of the composite indica-
tors in this sense and we have to do some types of sensitivity analysis. We can have
different results from different methods which give different composites indicators,
so we can have a set of different composite by condering different k assumptions
with k = 1,2, . . .K [15, 5]:

Y c
k ,Y

c
k , . . . ,Y

c
K (8)
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By considering all the assumptions of the composite indicatorsY c
k , we can define

the obtained interval composite indicatorc in this way:

I[Y ]c = [Y c
k,Y

c
k] (9)

Where we have different composite indicatorsc = 1. . .C. So we can have for
each different intervals one for each different composite indicatorc:

[Y 1
k ,Y

1
k ], [Y

2
k ,Y

2
k ], . . . , [Y

C
k ,YC

k ] (10)

wherec = 1. . .C. The original composite indicator (that we have computed orig-
inally and can be the starting point of the robustness analysis) can be denotedY c

k∗.
At the same timeYk denote the lower bound where as well theYk denote the upper
bound. The intervals can be defined as:

I[Y ] = [Y ,Y ] = {Y ∈R : Y ≤ Y ≤ Y} (11)

.
In this case the case in whichY = Y correspond to a real number also defined

a scalar [10]. HoweverI[Y ] is defined a tiny interval [15] givenI[Y ] ⊂ R if Y = Y .
Two intervalsI[Y ]c

′
and alsoI[Y ]c

′′
in R are equals if:I[Y ]c

′
and I[Y ]c

′′
→ {Y c′ =

Y c′′ ,Y c′ =Y c′′} [15, 5]. The intervals shows some relevant characteristicswhich can
be considered in applications: the radii and the midpoints.

4.2 Interval Radii and Midpoints

In order to analyze the different results we can compare the different interval data
which are obtained. In particular the interval data show relevant features which can
be considered. Following [15] these features are the center(also defined midpoint)
and the radii of the interval. We can obtain the center:

Y c
center,k =

1
2
(Y c

k +Y
c
k) (12)

And the radius of the interval:

Y c
radius,k =

1
2
(Y

c
k −Y c

k) (13)

The center correspond to a location measure considering allthe different com-
posite indicators computed by considering different set ofassumptions. The radius
as well can be interpreted in this way, where the length span (the difference be-
tween upper and lower bound) represent a variability measure between the different
composite indicators based on the various assumptions.
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4.3 Applying Interval Arithmetic

We can consider some relevant operations between the identified intervals. Alge-
braic operations are possible comprehending the sum, the subtraction, the multi-

plication and the division [9, 15]. In particular we have:I[Y ]c
′

k = {Y c′
k ,Y c′

k } and

I[Y ]c
′′

k = {Y c′′
k ,Y c′′

k } then:

I[Y ]c
′

k op I[Y ]c
′′

k = {Y c′
k opY c′′

k |Y c′
k ∈ I[Y ]c

′

k andY c′′
k ∈ I[Y ]c

′′

k } (14)

The symbol op denote the for operations:op ∈ {+,−,×, :}. We can have as
arithmetical rules between different intervals [10]:

I[Y ]c
′

k + I[Y ]c
′′

k = [Y c′
k ,Y c′

k ]+ [Y c′′
k ,Y c′′

k = [Y c′
k +Y c′′

k ,Y c′
k +Y c′′

k ]

I[Y ]c
′

k − I[Y ]c
′′

k = [Y c′
k ,Y c′

k ]− [Y c′′
k ,Y c′′

k = [Y c′
k −Y c′′

k ,Y c′
k −Y c′′

k ]

I[Y ]c
′

k × I[Y ]c
′′

k = [Y c′
k ,Y c′

k ]× [Y c′′
k ,Y c′′

k ] = min(Y c′
k Y c′′

k ,Y c′
k Y c′′

k ,Y c′
k Y c′′

k ,Y c′
k ,Y c′′

k ),

max(Y c′
k Y c′′

k ,Y c′
k Y c′′

k ,Y c′
k Y c′′

k ,Y c′
k ,Y c′′

k )

I[Y ]c
′

k ÷ I[Y ]c
′′

k = [Y c′
k ,Y c′

k ]÷ [Y c′′
k ,Y c′′

k ] = [Y c′
k ,Y c′

k ]× [1/Yc′′
k , 1/Y c′′

k ], where 0/∈ Y c′′
k ]

(15)

In this sense we can analyze statistically the different intervals obtained [10, 5].
Particularly relevant in applications is to consider the mean of the intervals [15, 5].
In this sense we can have:

I[Y ]ck =
1
N

N

∑
i=1

I[Y ]ck (16)

where we can have:I[Y ]ck ⊂ R c ∀ ∈ {1, . . . ,N}
Now we consider the way to compare different composite indicators.

4.4 Comparing Interval Composite Indicators

Ordering intervals is a relevant problem in decision making. There can be considered
various alternatives in order to compare the different intervals. For a review of the
methodologies related to the ordering of intervals see [8].Following [12] we can
have two distinct cases: disjoint intervals and no disjointintervals. In the first case
of the disjoint intervals we have an example on figure 1.

The case of the disjoint intervals is straightforward and can be considered if the
second intervalI[Y ]c

′′

k is higher than the first one based onI[Y ]c
′

k [12]. In fact the
I[Y ]c

′

k can be considered strictly lower thanI[Y ]c
′′

k . In the second case we can have
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Y c′
k Y c′

k
Y c′′

k Y c′′
k

Fig. 1 Disjoint Intervals

disjoint intervals and we can see as well an example in the fig.2. We have to consider
three different situations:

Y c′
k Y c′′

k Y c′
k Y c′′

k

Fig. 2 No Disjoint Intervals

In particular we can consider the two cases of disjoint and nodisjoint intervals.
In the case of disjoint intervals we can order the different intervals in this way:

• The upper boundY c
k

• The lower boundY c
k

• The centre (equation 12) or the mean (equation 16)
• The span lengthY c

k −Y c
k

In this sense the interval data related to the different assumptionsk of the com-
posite indicators can be ranked by considering their centre[12, 11, 7] and also [8].
In particular the centre can be used in order to compare the different intervals by a
location measure where the span length can be used in order tocompare the vari-
ability of two or more intervals. Clearly it is possible to consider the original value
for the composite indicator obtained at the start of the analysisY c

k∗ and considering
this measure for the ranking (and this measure is normally used on all the actual
comparison and rankings and is subjected to uncertainty analysis and sensitivity
analysis). An important case defined in [8] is the case of equal centers and different
radii for two intervals. For example we can have:I[Y ]c

′

k = [0,7] andI[Y ]c
′′

k = [3,4].
In this case we can observe that the two interval composite indicators have the same
centre and a different midpoint or radius. We can have in thissense [7, 8]:

I[Y ]c
′

k ≺= I[Y ]c
′′

k

{

Y c′
center,k < Y c′′

center,k whereY c′
center,k 6= Y c′′

center,k

Y c′
radius,k ≥ Y c′′

radius,k whereY c′
radius,k = Y c′′

radius,k

(17)

Now we consider the correct way to interpreting the different results which can
be obtained.
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5 Explaining and interpreting the Intervals

We have performed a simulated example in building a composite indicator in which
we have considered a single source of uncertainty by considering different sub-
indicators [17] in a composite indicator. We obtain a ranking of the intervals and
we can order the same intervals by considering the centers. The algorithms for the
methods and for the simulation was written on R language. We consider here the
way in which can be interpreted the outputs of the interval composite indicators. In
this sense we can start from the original value of the composite indicatorY c

k∗ this
can be considered the baseline scenario (in particular it could be considered [4] in
order to give an example of composite indicator construction in practice). A ranking
on the different statistical units consideredu can be performed directly consider-
ing the baseline scenario considered then in order to perform uncertainty analysis
we build the different composite indicators using other assumptions and we obtain
different composite indicators which are part of the interval as well. Finally we are
able to compute the centers, the mid points and the the lengthspan (defining the
uncertainty). In this sense we are able to compare the rankings related to the differ-
ent results we can obtain for the interval based composite indicator. It is possible to
follow [21] in order to interpret correctly the results we can obtain from the inter-
val analysis. In particular there are two interpretations of the intervals which could
be used [21, 10]: the equiprobability model and the uncertainty on the data. In all
cases the centre of the interval give us the expected values of the composite indi-
cator considering the different assumptions where the length span is related to the
uncertainty of the different results which can be obtained.In order to consider the
different features of the intervals as the upper, the lower bounds, the centers or the
length span it is possible to construct the rankings of the intervals.

6 Conclusions

In this work we have proposed a new different approach in the construction of the
composite indicators. In particular this new approach is based on the uncertainty
analysis with the aim of analysing the robustness of the different results making it
possible to obtain from changing the intial assumptions on the construction of the
composite indicator. The results seem to be interesting because the intervals tend to
endogenize directly the differences in values of the built composite indicators. In
this case it is possible to improve the communication because it is possible to show
directly on the final results how results change in scores by considering different
assumptions. It is clearly possible as well to keep the original information (the base-
line value of the composite indicator) because it is possible to consider the original
values of the composite indicators and also the centres of the intervals. Future de-
velopment can be addressed to propose applications of theseapproaches in various
fields.
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