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Abstract

Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate
change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing
can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and
implications of this divergence—both among GGCMs and between GGCMs and historical observations. We
examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact
Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981-2004 hindcast yields over the
coterminous United States (U.S.) against U.S. Dept. of Agriculture (USDA) time series for about 1,000 counties.
Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop
yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to
60% of the variance in both simulated and observed yields is attributable to weather variation. Majority of the
GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate
responses that show yields to be more weather-sensitive than in the observational record over the predominant range
of temperature and precipitation conditions. This disparity is largely attributable to heterogeneity in GGCMs’
responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts

of climate on future crop yields.
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1. Introduction

Agriculture, particularly cultivation of field crops, is weather dependent and exposed to meteorological
shifts (Gornall et al 2010, Moore and Lobell 2015), making it especially vulnerable to adverse effects of
climate change (IPCC 2014). The specter of declining yields of maize, wheat, soybeans and other food
staples with exposure to high temperature and low precipitation extremes arises from two lines of
evidence (Moore and Lobell 2015, Lobell et al 2011, Porter et al 2014, Miller et al 2015, Lobell and
Asseng 2017). First, the empirical climate change economics literature estimates reduced-form responses
of yields to weather shocks using historically observed production, harvested area, temperature and
precipitation in many locations across multiple years (e.g. Lobell et al 2011, Porter et al 2014, Schlenker
and Lobell 2010, Tack et al 2015). Second, process-based crop models simulate the detailed influences on
plant growth of a wide array of weather variables, plant genotypes, environmental factors such as the
carbon dioxide (CO,) fertilization effect (CFE), soil quality or pests, and agronomic adaptations such as
irrigation, fertilizer application, and the timing of planting and harvesting (Elliott et al 2015, Bassu et al
2014, Rosenzweig et al 2014). Whereas the geographic domain of empirical studies is often limited to
individual countries or regions with a sufficient number of historical observations,* global gridded crop
models (GGCMs) simulate the growth of field crops worldwide under different climatic conditions
projected by earth system models (ESMs) (see Deryng et al 2011, Rosenzweig et al 2014 and Elliott et al
2015 for further discussion), resulting in a comprehensive picture of the effects of climate change on crop

yields.

Confidence in GGCMs’ simulated agricultural impacts turns on the ability of models to accurately capture
the myriad interacting meteorologically-driven processes that determine yields (Bassu et al 2014).

GGCMs’ representations of plant growth dynamics rely on numerous parameters that must be calibrated,

! For examples, see Iglesias et al 2000 for Spain, Lobell and Burke 2010 for U.S. counties, Lobell et al 2012 for
India, Schlenker and Lobell 2010 for Sub-Saharan Africa.



but whose values are uncertain and may vary geographically in ways that are poorly constrained
(Rosenzweig et al 2014, Jones et al 2016). Validation typically involves statistical evaluation of GGCMs’
ability to reproduce point estimates of yields at different locations, for example at field trial sites or over
spatially aggregated production regions under year-to-year variation in weather conditions (for excellent
recent examples, see Morell et al 2016, Mdller et al 2017). However, comparatively little attention has
been paid to how the response of GGCMs-simulated yields to meteorological forcings compare with the
weather sensitivity of yields observed in observed agricultural systems. Early studies focused on a single
crop model (Lobell and Burke 2010; Watson et al 2015), and recent availability of extensive multi-model
cross-section/time-series crop yields datasets generated by GGCM intercomparison exercises have
facilitated reduced-form statistical emulation of single (Oyebamiji et al 2015) or multiple-GGCM (Blanc
and Sultan 2015, Blanc 2017) simulations, for one or more crops (Blanc 2017). However, except for
Lobell and Asseng 2017 and Schauberger et al 2017, such emulators do not appear to have been used for
diagnostic purposes. It is this gap that we address here,?> by comparing the responses of process
simulations with those of econometric models trained on observations. Our strategy is to elucidate and
compare the aggregate responses of observed and GGCM-simulated yields to observed and ESM-

simulated temperature and precipitation under current climatic conditions. We pose six key questions:
Q. How well do the outputs of GGCM hindcast simulations match historically observed yields?

Q.Il Do GGCMs reproduce the correlations between yields and adverse (i.e., high temperature and

low precipitation) weather extremes seen in the observational record?

Q.lIl How similar are GGCM-simulated and observed yield responses, under not only adverse

extremes, but the full range of weather conditions over crops’ growing seasons?

2 Whereas Lobell and Asseng 2017 focus on identifying systematic differences between process-based and statistical
methods, Schauberger et al 2017 address the yield losses in maize, soybeans and winter wheat (rainfed and irrigated)
attributable to high-temperature induced mechanisms.



Q.IV Do differences between GGCMSs and observations in the weather-responsive component of yields
originate in divergent meteorological forcings (i.e., differences in temperature and precipitation
exposures between weather observations and ESM historical simulations), versus divergence in

GGCMs’ simulated responses and observed crop responses to these forcings?

Q.V  To which characteristics of GGCMs can the divergence between simulated and observed

responses be attributed?

Q.VI What do simulated and observed response functions imply for the impacts of climate change-

driven shifts in temperature and precipitation on future United States (U.S.) crop yields?

To provide answers we statistically extract and compare the responses of yield to weather shocks for two
sets of data that span the same temporal and spatial domain: rainfed maize, wheat and soybeans in the
coterminous U.S. over the period 1981-2004. For crop models we use the outputs of runs of six GGCMs
fielded by the Inter-Sectoral Impact Model Intercomparison Project Fast-Track (ISIMIP-FT) exercise
(Warszawski et al 2013, Rosenzweig et al 2014, Frieler et al 2015), together with their ESM-simulated
meteorological forcings (Hempel et al 2013). For historical observations, we use U.S. Dept. of
Agriculture (USDA) multi-decadal time series of production and harvested area for about 1,000
predominantly rainfed counties (whose areal extents are comparable to GGCMs’ grid cells across U.S.
farm states), matched to high-frequency temperature and precipitation exposures from a historical weather

dataset.

The rest of the paper is organized as follows. Section 2 discusses our data and elaborates the methods we
use to answer questions I-VI. A discussion of the results is provided in section 3. We summarize our

findings with the associated caveats and recommendations for future research in section 4.



2. Methods

Our data consist of m unbalanced panel datasets of maize, wheat and soybean yields (Y) that are either
observed or modeled at i areal units over t years, matched with observed or simulated daily temperature
(T) and precipitation (P) over the growing season for the same locations and periods. Historical crop
yields were computed from 1981-2004 county production and harvested area records from the USDA
National Agricultural Statistics Service’s Quickstats 2.0 database, which provides survey data.® Historical
weather exposures are calculated from the Parameter-elevation Regressions on Independent Slopes Model
(PRISM)* forcing files, which are daily meteorological fields on a 2.5 arcmin (~4 km) grid that we
spatially interpolate to county boundaries. Simulated 1981-2004 yields on a 0.5° grid were taken from the
ISMIP-FT ESGF node® for six GGCMs: GEPIC (Liu et al 2007), GAEZ-IMAGE (Bouwman et al 2006),
LPJ-GUESS (Sitch et al 2003), LPJmL (BONDEAU et al 2007, Sitch et al 2003), pDSSAT (Elliott et al
2013, Jones et al 2003) and PEGASUS (Deryng et al 2011). Model runs are forced by historical bias-
corrected meteorology simulated by the HadGEM2-ES climate model (Jones et al 2011) at the same

resolution. Further details of the data and models are given in the Supplementary Information (SI).

Several factors complicate assessment of GGCMSs’ skill in reproducing the spatial and temporal patterns
of observed yields (Q.1). GAEZ-IMAGE and LPJ-GUESS simulate potential yields while the remaining
models simulate actual yields,® and models are calibrated using historical yields from different sources,
whereas others are not calibrated (see Rosenzweig et al 2014 Sl for further details). For consistency, we
characterize the distribution of the differences between the cross-section/time-series yield anomalies of

GGCMs (m = g) and observations (m = USDA), "Y;¢ceems—Yituspa- Anomalies are defined as

fractional deviations from the de-trended long-run mean yield in each location, *Y;., = i,t,g/Yi,g - 1.

® http://quickstats.nass.usda.gov/ (accessed on 13 February 2017)
* PRISM daily data (1981~2004) accessed from http://www.ocs.orst.edu/prism/ on 13 February 2017

5 https://esq.pik-potsdam.de/search/isimip-ft/

® Rosenzweig et al. 2014 define potential yields as “unlimited by nutrient or management constraints and without
calibration of growth parameter to reproduce historical yields”.
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If "Y;rg and "Y;.yspa are similar, then we would expect the probability density function (PDF) of the

anomaly difference to be sharply peaked at zero mean.

Our computed anomalies facilitate comparison of the covariation between yields and adverse weather
(Q.11). Using a fixed annual growing season,” we calculate the days of each GGCM (USDA) grid cell’s
(county’s) exposure to j intervals of temperature, ij, and k intervals of precipitation, £ (see Section S4).
We then group grid cells by county, and for both simulations and observational datasets compute the
county-level temporal correlations between de-trended yield, *Y;, and the extreme temperature and

precipitation bins (j: T >30°C, k: P <5mm).

Taking this analysis one step further, we quantify the potentially nonlinear influence of climate on yields
(Q.1) using a semi-parametric cross-section/time-series regression model, following the empirical
climate-change impacts literature (Schlenker and Roberts 2006, 2009, Deschénes and Greenstone 2007,
2012, Lobell et al 2011, Ortiz-Bobea 2013, Wing et al 2015, Burke and Emerick 2016, Schauberger et al
2017). For each dataset we specify the dependent variable as the natural logarithm of annual yield (y),
and the explanatory variables as a vector of location-specific effects (i, which capture the influence of
unobserved time-invariant local characteristics such as topography and soils), a time-varying function,

f(t), which captures the influence of unobserved time-varying shocks, and the vectors of weather

exposure covariates ij and &P described above, and append a random disturbance term, &:

Vieon = Mi + f®) + ZiB] & i e + ZiBimhic + Eiem 1)

We estimate eq. (1) via ordinary least squares on the observational dataset of USDA vyield and PRISM

weather, the six datasets of GGCM vyield outputs and ESM weather inputs, and multi-model panel

" For both simulated and historical datasets, we define the growing season as April-August (AMJJA) for wheat and
May-August (MJJA) for maize and soybeans. See Sl for details.



consisting of the combined inputs and outputs of the six GGCMs.? Specifying the function £(-) involves
tradeoffs in temporal and spatial flexibility: time effects (f (t) = t;) capture the secular influence of year-
to-year shocks common to all counties, while geographic variation in trending influences (e.g., input

prices, technology adoption, management practices) can be captured by state-specific linear time trends

() = At).°

Of interest in eq. (1) are the estimated parameters BT, and B%,, vectors of semi-elasticities that capture the
average percentage shift in county-level (m = USDA) and grid-level (g € m) yields relative to their
conditional mean quantities in response to an additional day in a given interval of temperature or
precipitation. Each element of these vectors captures the marginal effect of an additional day of exposure
within the corresponding interval (e.g., the average effect of one more day with 25 — 27°C versus
> 30°C average temperature). Together, the elements flexibly trace out the aggregate response of yields
to temperature and precipitation as piecewise linear splines. The latter are statistically identified from the
contemporaneous covariation between observed yields and meteorology within each interval, as well as

the distribution of temperature and precipitation exposures across intervals in our transformed datasets.

Empirically-derived yield responses from the GGCM-ESM and USDA-PRISM datasets are not directly

comparable because they are based on different meteorological inputs with distinct exposure distributions:

ESM-simulated ;"% and &;"®5" versus observed ;%" and &;"*M. This raises the question of

whether differences between the fitted GGCM-ESM and USDA-PRISM semi-elasticities (ﬁg —Blspa

and E;—ﬁﬁsm) are simply the product of differences in the distributions of temperature and

. . . . —T —P .
& The multi-model econometric specification generates multi-model average responses, B8 and B , controlling for
variation among GGCMs via a model-specific indicator, y:

—T —P
Yitg =Hi+Vg + (&) +ZiB, &0 + By Skie + Eitg-

® The specification estimated using USDA data uses a state-specific time trend. While the ISIMIP-FT protocol
requires management practices and technology to be held constant at year 2000 levels, different GGCMs include a
variety of endogenous adaptation mechanisms (see Section 3.5). We therefore consider a model with time effects
more appropriate. For comparability, we also tested a specification for GGCMs using state-specific time trends as
opposed to time effects (results available upon request). Results hold across different specifications.



precipitation inputs to yields (Q.I1V). From (1), the weather-responsive component of log yield is defined
as:

Y (T, P;) = Zj.éfmij,i + e Bhméni 2
and the difference between the weather-responsive components of GGCM and USDA vyield is thus

Mpg =Yg (Ti, Pi) = Yuspa(Ti, P) = 5Bl o5 " + BBl oG ™™

—(ZBluspadii " + ZiBluspasis ) )

Adding and subtracting cross-terms on the right-hand side of eq. (3) and evaluating the weather exposure
covariates at their 1981-2004 climatic means facilitates decomposition of Ay into two terms, one
capturing the effect of differences in climate forcing and the other capturing the effect of differing
responses to meteorology:

— AT FT,ESM zT,PRISM AP zP,ESM zP,PRISM
Mg =%iB] (&7 =& )+ ZeBig(Si T — &kl )

Climate component (AyClimate)

AT _ pT ST,PRISM 5 5 =P,PRISM
+%; (,Bj,g - ,Bj,USDA)fj,i + Zk(ﬁf;g - ﬁIIcJ,USDA)fk,i (4)

Response component (AypResponse)

The relative importance of AypClimate and AypResPonse can then be assessed by comparing their

distributions across locations.

Eqg. (1)’s estimated parameters enable us to investigate another key question: how do the characteristics of
models drive the divergence between GGCM yield responses and those of historical yields to observed
weather (Q.V). Drawing on documentation for each of our six GGCMs (Rosenzweig et al 2014, Elliott et
al 2015), we construct binary indicator variables for five sets of characteristics likely to affect the yield
response: (i) type of yield simulated (actual versus potential); (ii) endogenous cultivar change; (iii) heat
stress; (iv) endogenous sowing date; (v) and whether the model was calibrated using site-specific or FAO
country observations (Table S6). We assemble characteristics (i)-(v) into a matrix, Z. Then, using the

stacked vector of temperature and precipitation semi-elasticities ({,, = [f?%,f?ﬁl]) we compute the



difference in the response from the USDA benchmark, A{; = {; — {yspa, Which we employ as the
dependent variable in the meta-analysis regression:*°

A(=Zn+v (5)
The estimated parameters, n, indicate how strongly the shift in GGCM-ESM responses relative to the

USDA-PRISM response is associated with each model attribute.

Finally, the implications of our estimated responses for future climate change impacts (Q.VI) are
indicated by the yield changes that result from forcing our fitted empirical response functions with the
distributions of temperature and precipitation under future climate warming. Log yield response functions
from eq. (2) are combined with meteorological exposures from bias-corrected HadGEM2-ES model
simulations for our hindcast period (current climate), as well as mid-21* century (2033-2065) and late
century (2067-2099) future climate under the RCP 8.5 (Moss et al 2010) high-warming scenario. In each
epoch HadGEM2-ES daily temperature and precipitation (T; and P;) fields are binned into the j and k
intervals, respectively, to construct analogues of the weather exposure covariates, £ and &, for current
and future years. Because climate simulations do not reproduce observed high-frequency weather
extremes, and may exhibit biases relative to current climate (Vavrus et al 2015, Schoof and Robeson
2016), we do not directly compare simulated future exposures against their observed counterparts, but
instead employ the “delta” change method of computing differences in exposure between ESM-simulated
current and future climates.** Specifically, we time-average the temperature and precipitation bins to
generate the mean meteorological exposure for the hindcast period (current climate), calculate the

difference between the resulting average and simulated exposure under future climate, and finally

% This model is estimated with no constant. We test additional specifications to investigate both the impacts of
model characteristics on the differences in responses to temperature and precipitation alone (¢, = B%, and ¢, =
BP. respectively), as well as the effects of interactions between characteristics and indicators of extreme high
temperature and low precipitation.

1 First studies using this method include Arnell (1996) and Gleick (1986). For application of this method in the
context of agriculture see (Roberts et al 2013).



multiply the result by the estimated semi-elasticities to generate meteorological shocks to log yields. We
use the latter to compute a normalized multi-decadal index of climate impact, given by the ratio of each
location’s average yield under a future climate to its average yield under the present climate. Using E to

denote the expected value over each epoch, the index is:
Future Future Current  Current
— FClimate PpClimat FClimate PClimat
Lpi,m — ]E [exp {lpm <Tl ma €’ PL' ma €> _ lpm <TL ma e'PL' ma €>}:| (6)

We note that W; diverges from fractional changes in future yields from the current climate projected by
GGCMs, as eq. (6) omits both the CFE and endogenous adaptation mechanisms into GGCMs models,
particularly endogenous or unrecorded prescribed future changes in fertilizer application rates, crop

calendars, or crop genotypes.*

3. Results

3.1. GGCMs’ ability to reproduce recorded yields

Fig. 1 summarizes the distributions of the differences in percentage yield anomalies between GGCMs and
USDA records for our three crops over the 1981-2004 period. The wide support of the distribution
suggests that the ISIMIP-FT GGCMs struggle to reproduce the PDF of historical U.S. yield anomalies.
For counties within the interquartile range the GGCM-observation divergence is -/+30%, while in the
majority of remaining locations simulated yields can dramatically overstate or understate the

observations.

While this pattern persists across crops, GGCMs’ performance—as indicated by the variance of the
distributions—is generally better for wheat and especially maize compared to soybeans. The modes of the
individual annual cross-county PDFs (shown in light colors) exhibit positive and negative interannual

fluctuations, but do not follow any easily discernible pattern that suggests systematic bias. The differences

12 For instance, see Rosenzweig et al 2014 Sl for details on adaptations accounted for by the GGCMs, and Elliott et
al 2015 for revised protocols in the next phase of GGCMs' simulations to introduce harmonization in GGCMs'
simulation runs.



across models and among crops in the annual and aggregate PDFs also suggest that no single GGCM has
a clear advantage in modeling all crops.”® A certain GGCM may exhibit skill in modeling a particular
crop (e.g., LPJmL wheat), while some GGCMs outperform others in simulating a certain crop (e.g.,

GAEZ-IMAGE versus GEPIC for maize).

3 GAEZ-IMAGE appears to be an exception, perhaps due to its unique temporal scale relative to other GGCMs—
interpolating monthly meteorology to a daily time-step, while simulating annual yields every 5th year and
interpolating yields for the intervening years (Rosenzweig et al 2014: Table S4).
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3.2. Yield correlations with adverse weather extremes: simulations vs. observations

A more nuanced way to evaluate GGCMSs’ performance is to examine how well they reproduce historical
correlations between annual yield anomalies and exposure to extreme high temperature and low
precipitation. We do this in Fig. 2 by presenting the correlations between de-trended yields and annual
growing season exposures to extreme high temperature and extreme low precipitation bins as a bivariate
PDF. Relative to our comparison of yield anomalies (Section 3.1), there is more agreement in correlations
between ESM-simulated meteorological extremes and GGCM-simulated yields, and the correlations
between PRISM meteorological extremes and observed yields. Both correlations are negative in 50-75%
of counties (with the exception of GAEZ-IMAGE), and the magnitudes of the correlations differ both
across models and among crops. Simulated maize and soybean responses are for the most part
qualitatively similar to observations, with GEPIC, LPJ-GUESS, LPJmL showing tight clustering of
negative correlations across counties. Even so, simulated wheat responses vary markedly relative to one
another, and diverge from observations. This result may arise from GGCMs simulating different types of
wheat (e.g., GGCMs decide internally the type of wheat to be grown) while our observational data are

spring durum wheat only.
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3.3. Simulated and observed yield responses to weather

In a refinement of the analysis in Section 3.2 we statistically model additional factors that affect yield.
One is management practices, whose sub-national and interannual variation is unfortunately not available
in either the GGCM-ESM or USDA-PRISM datasets. Another is non-extreme weather: negative yield
impacts of more frequent extreme low precipitation and/or high temperature days might be offset by near-
optimal growing conditions throughout the remainder of the growing season, while yields may be lower
in counties and years that experience fewer extreme adverse days, but more frequent non-extreme but

nonetheless sub-optimal weather.

Eqg. (1) accounts for both sets of factors by partitioning the variance in yields into influences associated
with unobservables (1; and f(t)) and the mean deterministic effects of the distribution of temperature and
precipitation conditions experienced by crops. Fig. 3 illustrates the splines tracing out the responses of log
yield to the distribution of temperature and precipitation. All covariates explain 75% of the cross-
section/time-series yield variation (Table S4), and the weather responses account for between 0% and
60% (Table S5). GGCM and USDA vyield responses are both consistent with empirical findings on the
negative effects of exposure to high daily temperatures and (aside from GEPIC maize and pDSSAT
soybean simulations) as well as smaller magnitude responses to low precipitation (cf. Schlenker and

Roberts 2009, Tack et al 2015).

Whether the responses of different GGCMs to both extreme and non-extreme weather vary can be said to
diverge from one another (panels A-C and G-1), and from the USDA-PRISM benchmark (panels D-F and
J-L) depends on the specification of the variance-covariance matrix of the error term in eq. (1). Our
default standard errors are clustered at the level of cross-sectional units (counties in the case of USDA-
PRISM and grid-cells in the case of GGCMSs) and are robust to temporal autocorrelation. They suggest
differences in responses among individual GGCMs, and between GGCMs and USDA-PRISM that are

statistically significant (Table S8). However, in empirical models of crop yields, residual spatial
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autocorrelation can substantially inflate the standard errors of the coefficients (Yun et al, 2015). Adjusting
for joint residual temporal and spatial autocorrelation using Cameron-Gelbach-Miller (2011) clustering of
the standard errors by county/cell and year increases their values by factors of 2-3 (Table S4), weakening
the conclusion that the GGCM and USDA-PRISM responses significantly diverge—especially in the case
of extreme high-temperatures (cf. Schauberger et al, 2017), but less so for extreme low precipitation
(Table S8). Even so, for either specification of the variance-covariance matrix, no GGCM exhibits a

consistent positive or negative bias relative to the USDA-PRISM response.
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Fig. 3. Mean responses (solid lines) and confidence intervals (95%) (shaded areas) of log yield to temperature and
precipitation exposure for maize, soybeans and wheat (eq. 1). Responses are normalized relative to the number of
days with temperatures 22.5 — 25°C and precipitation 10 — 15 mm/day, represented by the heavy horizontal axis.
Shaded confidence intervals are computed from robust standard errors clustered at the county/grid cell level.
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The USDA-PRISM response suggests that exposure to an additional day >30°C reduces annual maize and
soybean vyields by 1.5% but generates wheat yield losses six times as large. For GGCMs, the
corresponding response varies between 0.2-3% for maize, 0.5-3.6% for soybeans, and 0.1-6.5% for
wheat, and the observed responses fall within the range of simulated responses, except for wheat.
Exposure to an additional day with precipitation <5 mm reduces maize and soybean yields by about 0.5%
and wheat by about 1.5% in the observational dataset. GGCMs exhibit larger losses for maize and
soybeans (with the exception of PEGASUS), between 0 and 4.5% (1% at the multi-model average
response), whereas wheat’s response to dry days in the observational dataset is understated by most

models (with the exception of GEPIC and LPJmL).*

3.4.Decomposition of the divergence between GGCM and USDA yield responses

We focus on two factors that likely drive the GGCM-observation divergence in Fig. 3. The first is
differences between the aggregate responses to weather shocks implied by process models’ internal
representation of crop growth and the responses of observed agricultural systems. The second is
differences in the exposures implied by the PRISM data for the observations as opposed to HddGEM2-ES
for the GGCMSs. We use the decomposition technique illustrated in eq. (4) to establish their relative

magnitudes. Fig. 4 shows the results of this calculation.

The horizontal axis rank-orders counties from the largest negative to the largest positive values of the
difference between the weather-responsive portion of each GGCM’s historical run and the observations,
A, whose magnitude is measured on the vertical axis and whose county values are indicated by black

dots. For each county the corresponding light- and dark-colored bars indicate the response and climatic

 The econometric models for simulated wheat generally have a lower explanatory power compared to maize and
soybeans (see table S5). This might be due to differences in the type of wheat chosen by models compared to the
variety observed, spring durum wheat) and to the fact that those varieties might be grown outside the growing
season (April-August), see also section S5 in S.

15 A potential third issue is omitted variable bias, in the form of contaminating effects on the estimated parameters of
management practices that are correlated with weather and unrecorded in the observational dataset, but omitted from
GGCM simulations.
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components of the divergence ( A ResPonse and AqpClimate respectively). For the majority of GGCM x
crop combinations, cross-county trends in the total divergence and A ypRésPonse closely track one another,
while AyClimate tends to add either noise or an offset. This result demonstrates that the differences in the
splines in Fig. 3 are mostly attributable to GGCMs’ internal responses, not differences in meteorological

inputs.
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Fig. 4. Decomposition of predicted weather component of GGCM yield - predicted weather com-
ponent of observed yield for counties (about 730 for maize, 670 for soybeans, 88 for wheat) showing
the total difference (black line), climate component (dark bars), and response component (light
bars).
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3.5. Correlates of the GGCM-USDA yield response divergence

Finally, Table 1 summarizes our meta-analytic results that associate model attributes with the gaps
between GGCMSs’ responses and those derived from historical observations. To conserve space we report
results for maize only, and consign results for wheat and soybeans to the Sl (Table S7). The largest
magnitude coefficient is on heat stress, whose overall impact is to make the divergence in responses the
more negative, suggesting that in panels A and G of Fig. 3, the responses of the sole model incorporating
this mechanism (PEGASUS) exhibits a smaller change in yield (i.e., a downward shift) for an additional
day of exposure over their entire range of weather variation. Simultaneously, the positive effect of heat
stress interacted with high-temperature (low-precipitation) intervals indicates that in panel A (G) the right
(left) tails of the corresponding splines are shifted upward, resulting in a less weather sensitive—i.e.,
flatter—response profile. Cultivar adaptation, the second largest influence, acts in the opposite way:
inducing an upward shift in the response profiles over their entire range that is outweighed by the
negative impact of interactions with extreme high temperature and low precipitation exposures, resulting
in a more weather sensitive—i.e., steeper—profile for models that include this mechanism (GEPIC, and
less evident for LPJ-GUESS, PEGASUS). Other characteristics, such as endogenous selection of sowing
dates and model calibration based on site-specific studies—which respectively flatten and steepen the
response profiles, have a smaller overall influence and are not uniformly significant across all crops. The
major implication is that with a flatter response profile, shifts in the distributions of temperature and
precipitation inputs translate into smaller simulated yield changes, while a steeper response profile can

result in excess sensitivity that translates modest weather shocks into large yield changes.
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Table 1: Effects of model characteristics on GGCM-USDA divergence in maize vyield response. Model
specifications are discussed in the SI. Robust standard errors in parentheses. Table S7 summarizes results for
soybeans and wheat.

(1) (2) (3) “) (5 (6)
Dependent variable ~ A¢[B".8"] A¢B']  A¢B”] a¢B”.B] AB'] A¢B)
Potential yield -0.007 -0.011 0.004 -0.024***  -0.028*** -0.015***
(0.008) (0.009) (0.010) (0.008) (0.008) (0.004)
Endog. cultivar 0.013 0.017* -0.001 0.033***  0.036*** 0.021
(0.008) (0.010) (0.010) (0.008) (0.008)
Endog. sowing date -0.0003 -0.0004 -0.005***  -0.005**
(0.002) (0.002) (0.002) (0.002)
Heat stress -0.017** -0.023** 0.001 -0.0357%*  -0.040%** -0.025
(0.008) (0.009) (0.010) (0.008) (0.008)
Site calibration 0.004** 0.005*** 0.007***  0.005***
(0.002) (0.001) (0.001) (0.002)
T > 30°C
% Potential yield 0.051**  0.059***
(0.009) (0.009)
x Endog. cultivar -0.056™*  -0.063**
(0.009) (0.009)
x Endog. sowing date 0.015*** 0.015***
(0.004) (0.004)
x Heat stress 0.048*** 0.056™**
(0.009) (0.009)
% Site calibration -0.006"*
(0.003)
P < 5mm
» Potential yield 0.035*** 0.028***
(0.008) (0.005)
x Endog. cultivar -0.044** -0.033***
(0.008) (0.002)
x Endog. sowing date 0.010%**
(0.003)
x Heat stress 0.044*** 0.039***
(0.008) (0.002)
» Site calibration -0.012***
(0.002)
F Adj. 4,289~ 4,885 1.553 42,577 24.052%** 2,325
(df =4:77) (df =4;59) (df =2:;17) (df = 14;77) (df =8;59) (df =5;17)
Obs. 78 60 18 78 60 18
Adj. R Sq. 0.211 0.308 -0.153 0.593 0.624 0.336

*p < 0.1;**p < 0.05; ***p < 0.01

We obtain broadly similar results for soybeans, but equivocal estimates for wheat (table S7), whose
response is positively affected by heat stress interacted with low precipitation intervals, capturing the

PEGASUS model’s flatter response to precipitation relative to the other GGCMs.
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While the source of this disparity is not clear cut, we speculate that it emanates from inter-model variation
in the type of wheat being grown, and emphasize that our meta-analytic approach will likely prove more
beneficial in imminent intercomparison exercises with comprehensive records (e.g., ISI-MIP2 and Global

Gridded Crop Model Intercomparison, Elliott et al 2015).

4. Discussion and Conclusions

Using cross-section/time-series datasets of simulated and observed rainfed yields of maize, wheat and
soybeans for about1,000 U.S. counties over 24 years, we have characterized the heterogeneous responses
of crop models to ESM-simulated temperature and precipitation, and compared them with empirically
derived responses to observed weather series. The six GGCM simulations we examined do not reproduce
the cross-county, inter-annual distributions of yield. Notwithstanding this, our econometric analyses
indicate that GGCM broadly capture the major stylized facts of weather impacts on crop yields that have
been identified by the empirical climate change economics literature. Yet the responses of individual
GGCMs differ substantially from one another and relative to their observationally-derived counterpart.
Simulated yields are generally more temperature sensitive than observed yields, but can more or less
sensitive to high temperature or low precipitation extremes, depending on the particular model and crop.
We show that such behavior is attributable to differences in how models simulate heat stress and cultivar
adaptation. GGCMs incorporating the latter (former) mechanism tend to be more (less) sensitive to

weather shocks.

The consequences of these details for the impacts of climate change on U.S. crops are summarized in Fig.
5. The yield changes therein are calculated not by running GGCMs with meteorological inputs projected
by ESMs, but by forcing their response functions derived in Fig. 3 with changes in future temperature and
precipitation exposures from the historical period simulated by HadGEMZ2-ES. They therefore do not
account for the potential benefits of the CFE, or future management changes and other adaptations either
endogenously computed by, or exogenously imposed upon, GGCMs simulations as part of the ISIMIP-FT
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exercise. Notwithstanding the overlap in the confidence intervals of the GGCMSs’ responses, under
vigorous warming, late-century (2067~2099) projections of production changes based on the coefficient
point estimates diverge widely; ranging from -96% to +6%—and -71% at the multi-model mean
response—for maize, -90% to +21% with a mean of -70% for soybeans, -91% to -1% with a mean of -
70% for wheat. The responses of GGCMs that are most sensitive to extreme high temperatures (GEPIC,
LPJ-GUESS and LPJmL) are associated with the largest losses, in excess of 40% of maize and wheat
production, and 60% of soybean production by mid-century (2033~2065), while only GAEZ-IMAGE
predicts production gains. Relative to the GGCM responses, our USDA-PRISM response generates
smaller losses (-58% for maize, -60% for soybeans, -90% for wheat) for late-century, but its predicted
production declines due to more frequent days > 30°C closely track those reported by Schauberger et al
(2017)*° for the 30°C — 36°C temperature range (-54% for maize, -60% for soybeans and -73% for

wheat—see Table S9) which gives us confidence in the reliability of our approach®’.

18 While a direct comparison with results of Schauberger et al (2017) is difficult to make for maize and soybeans
(due to a larger number of counties utilized in their study), results for wheat are not comparable due to winter wheat
used in their study.

7 By contrast, GGCMSs’ late century (2067~2099) losses due to extreme high temperature days (> 30°C), range
from -72% to +3%—and -53% at the multi-model mean—for maize, -86% to +7% with a mean of -56% for
soybeans, and -66% to -4% with a mean of -42% for wheat.
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Fig. 5. Mid- and end-century % change in rainfed yields under RCP 8.5 warming scenario simulated by HadGEM2-
ES. The % change numbers accompanying each map depict the projected % change in aggregated production across
the sample of counties, under the assumption of same harvested area in future periods, as in historical.
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By relying solely on meteorological inputs, and ignoring confounding factors such as the CFE, exogenous
future adaptations or additional endogenous adjustments such as shifts in cultivars and crop calendars
represented within models, our projections provide insights into how GGCMs’ characteristics can amplify
or moderate climatically-driven yield declines. For example, a key feature of Fig. 5 is the lack of spatial
(particularly latitudinal) variation in GGCM vyield shocks compared to the USDA projections. The
exception is the PEGASUS model, whose flatter response profiles generate smaller losses than the USDA
benchmark. For most of the remaining GGCM responses the converse is true: excess sensitivity generates
yield changes—and, without compensating adaptation mechanisms, production losses—that are
uniformly large. Heat stress at anthesis (and, secondarily, endogenous sowing) may therefore be
important for bringing models' overall sensitivity into better agreement with the responses exhibited by
observed agricultural systems. But this also raises the question of what model attributes might drive
GGCMs’ excess sensitivity. Our findings hint at endogenous cultivar selection as a potential candidate, as
it amplifies negative yield responses to low precipitation in soybeans, high temperature in wheat, and both
types of weather shocks in maize. Another may be the use of site-specific data for calibrating maize and

soybean simulations, but the potential mechanisms are unclear.

Such interpretation challenges highlight four important caveats to our analysis. The first is the small
number of observations on which our meta-analysis results are based, especially relative to the number of
dimensions along which GGCMs can potentially vary. Without a larger sample of models, little can be
done to increase the statistical power of our assessment. A second, related issue is that because the
ISIMIP-FT protocol did not mandate standardization of GGCMSs’ characteristics, or harmonization and
recording of the corresponding detailed inputs across models and scenarios, our own coding of model
attributes could conceivably introduce errors. Third, the aforementioned paucity of data required us to use
all of the parameters of the GGCM and USDA-PRISM estimated responses, as opposed to zeroing out
differences that were not statistically significant. With the latter approach, the substantial reduction in the

divergence between GGCM- and observationally-based responses when residual spatial autocorrelation is
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accounted for can potentially weaken our inferences in Table 1. Finally, because the GGCM simulations
employed here are not specifically optimized for US counties, it is not clear how well our results

extrapolate beyond the specific spatial domain of the eastern US.

All of these limitations are already being addressed by the current generation of crop model inter-
comparison exercises (ISI-MIP2, the Global Gridded Crop Model Intercomparison (Elliott et al 2015)),
which are in the process of fielding larger numbers of GGCMSs running more controlled experiments with
considerable efforts being made to harmonize and record key inputs such as management practices, and
evaluate model outputs against a common set of recently-developed global historical data benchmarks
(Ray et al 2012, lizumi et al 2014). Our hope is that the inter-method comparison techniques developed
here can contribute to improving the evaluation of the results of these exercises (cf Muller et al 2017),
with the goals of more rigorously pinpointing the origins of GGCMs’ emergent crop yield responses, and
thereby strengthening the empirical basis of global-scale assessment of future climate change impacts on

agriculture.
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S1. Global Gridded Crop Models (GGCMs) from ISIMIP-Fastrack used in this study along

with the contact details of the modelling groups

()
(i)
(i)
(iv)
v)

(vi)

Geographic Information System (GIS)-based Environmental Policy Integrated Climate
(GEPIC) (Liu et al 2007)

Global Agro-Ecological Zone model in the Integrated Model to Assess the Global
Environment (GAEZ-IMAGE) (Van Vuuren et al 2006)

Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Bondeau et al 2007)

Lund Potsdam-Jena managed Land (LPJmL) (Bondeau et al 2007, Sitch et al 2003)

parallel Decision Support System for Agro-technology Transfer ()DSSAT) (Elliott et al 2013,
Jones et al 2003)

Predicting Ecosystem Goods And Services Using Scenarios (PEGASUS) (Deryng et al 2011)
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Table S1. GGCMs used in this study, with the home institution and contact details.

Model

Institution

Contact Person/Web address

GEPIC

GAEZ-
IMAGE

LPJ-GUESS

LPImL

pDSSAT

PEGASUS

EAWAG (Switzerland)

Netherland Environmental Assessment Agency, PBL
(Netherland)

Lund University (Sweden),
IMK-IFU, Karlsruhe Institute of Technology (Germany)

PIK (Germany)

University of Chicago (USA)

Tyndall Centre, University of East Anglia (UK)
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Elke Stehfest/Kathleen
Neumann
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Stefan Olin/Thomas Pugh
stefan.olin@nateko.lu.se
thomas.pugh@imk.fzk.de

Christoph Muller
christoph.mueller@pik-
potsdam.de

Joshua Elliott,
jelliott@ci.uchicago.edu

Delphine Deryng
d.deryng@uea.ac.uk
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S2. Data
S2.1 GGCMs’ simulated crop yields

We utilize the annual gridded rainfed crop yields from the six GGCMs of ISI-MIP Fastrack (Hempel et al
2013, Rosenzweig et al 2014) listed in table S1, over the GGCMSs’ historical simulation period spanning
1981-2004 (24 years)™®. The number of grid-cells, counties and observations used in each crop~GGCM

combination regression are summarized in table S3.

S2.2 USDA historical observed data

For comparison of the GGCMs’ annual yields with the factual yields, we employed historical observed
annual county level production (bushel, bu) and harvested areas (acre, a), made available by the U.S.
Department of Agriculture (USDA)-National Agricultural Statistics Service (NASS): Quickstats 2.0
database™. The total (irrigated + rainfed) production and harvested area data utilized in this study covers
~90-1200 counties in the U.S. over the period 1981-2004 (24 years). Crop yields (bu/a) for each county
are calculated as the ratio of production to harvested area. The conversion from bu/a to tons/hectare
(t/ha) for each crop (for consistency with GGCMSs’ yield units in t/ha) is described as below in table
S2.

Table S2. Conversion from bu/ato t/ha

Crop bu/a t/ha
Maize 1 0.0628
Wheat 1 0.0673
Soybeans 1 0.0673

To ensure comparability with the rainfed GGCMs’ crop yields, we need to formulate a methodology to
differentiate between the irrigated and rainfed crop production by county for the USDA crop yields. We
utilized crop harvested area data from the 2012 USDA census of agriculture®®, and define rainfed counties

for each of the three crops meeting the below criteria.
County (for crop type) is deemed as ‘rainfed’ county if

the share of crop harvested area is > 10 %, AND < 10 % of that harvested area is irrigated.

18 Each GGCM panel is unbalanced. However, the time period (1981-2004) is consistent with USDA panel.
19 http://quickstats.nass.usda.gov/ (accessed on 13 February 2017)

Zhttps://www.agcensus.usda.gov/Publications/2012/Online_Resources/Ag_Census Web Maps/Data_download/ind
ex.php (accessed on 13 February 2017)
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The final counties retained in regression analyses for each crop are shown in fig, S1 (USDA panel). The
result is an unbalanced panel spanning years 1981-2004 (see details of observations and number of
counties in table S3 under USDA).
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Fig. S1. Maps of USDA and GGCMs’ rainfed counties used in this study for (i) maize (ii) wheat and (iii)

soybeans.
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Fig. S2. Maps of USDA and GGCMs’ historical (1981~2004) mean rainfed county yields (t/ha) for (i)

maize (ii) wheat and (iii) soybeans.
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Table S3. Number of observations, counties (in braces) and total grid-cells (in square braces) used in
GGCMs and USDA regressions. The grid-cells and counties were retained for analyses if they reported
yields in at least 10 of the total 24 years.

GGCM Maize Soybeans Wheat
21,453 18,123 4,645
GEPIC (728) (667) (88)
[910] [777] [196]

21,939 14,789 4,800
GAEZ-IMAGE (733) (670) (88)
[919] [777] [200]

21,924 18,672 4,800
LPJ-GUESS (730) (669) (88)
[914] [778] [200]

21,851 18,702 4,800
LPJmL (733) (786) (88)
[919] [673] [200]

20,926 17,677 4,773
pDSSAT (725) (771) (88)
[912] [663] [200]

21,819 17,724 4,799
PEGASUS (726) (772) (88)
[910] [664] [200]

129,912 105,687 28,617
Multi-GGCM (733) (786) (88)
[919] [673] [200]

USDA, rainfed 27,370 24,606 1,855
panel (1,187) (1,103) (102)

S2.3 Crop growing seasons

In ISIMIP-FT simulations, the crops growing season (CGS) varies marginally not only for each crop-
GGCM combination historical simulation, but also in the historical and future periods of GGCMs’
simulated data (e.g. LPJ-GUESS and LPJmL mimic planting dates according to climatic conditions, see
Rosenzweig et al 2014 Sl for further details). To keep our analyses tractable, we subsume this
heterogeneity and adopt the key simplification of a common fixed, four-month CGS as May-August
(MjjJA) for both USDA and GGCMs’ crop panels; except for crop wheat for which April-August
(AM]JJA) was adopted.
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Our definition of CGS by and large encapsulates the broader CGS across the GGCMs and crops.
Moreover, by adopting a common CGS, we avoid the potential endogeneity problem with crop modellers’
definition of when planting and harvesting begin in each year. Nevertheless, it is important to highlight
that the definition of CGS may not likely be consistent with the actual CGS for the USDA data (e.g.
‘spring + durum’ wheat in some individual years of analyses could be partly grown outside the CGS
(AM]JJ]A) in our study area). The overall results of wheat could therefore be marginally influenced by this
assumption (for e.g., see Lobell and Field 2007, Schauberger et al 2017)where in the results are fairly

insensitive to the choice of CGS months for multiple crops examined in their study)

S3. Historical weather exposure for empirical analyses.

S3.1 GGCMs

All GGCM historical (1981-2004) crop yield simulation runs are forced with bias-corrected climate
inputs (Hempel et al 2013) from HadGEM2-ES (Jones et al 2011). Here we matched the bias-corrected
HadGEM2-ES frequency of days (bins) in the CGS, for daily mean temperature (°C) and total
precipitation (mm) to GGCMs’ generated realizations of yield in each year of the historical period. For
consistency, we used the identical CGS truncations across the different GGCMs (i.e. MJJA for crops

maize and soybeans, and AMJJA for wheat).

S3.2 USDA

Historical weather exposures (bins of daily mean temperature and total precipitation) for our empirical
model are calculated from the 2.5 arcmin scale (~4 km) gridded Parameter-elevation Regressions on
Independent Slopes Model (PRISM)** forcing files, spatially interpolated to county boundaries®. The
PRISM model has been well documented in Daly et al (2008), has been widely used in earlier studies
focusing on U.S. (such as Schlenker and Roberts 2006b, 2009, Roberts et al 2013, Auffhammer et al
2013), and more recently in Heft-Neal et al (2017). It is developed using climate observations from a

wide range of monitoring networks, accounts for climate and elevation, and has highlighted by Schlenker

2 PRISM daily mean temperature and total precipitation (1981~2004) were downloaded from
http://www.ocs.orst.edu/prism/ (accessed on 13 February 2017)

22 https://www.census.gov/geo/maps-data/data/cbf/cbf counties.html (accessed on 13 February 2017)
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and Roberts 200643, is widely regarded as one of the best geographic interpolation procedures.

S4. Binning structure of temperature and precipitation in regressions

For our base specifications (eg. 1 in main text), our meteorological covariates are defined as the
cumulative exposure to intervals (“bins) of T and P during the annual CGS in both USDA and GGCMs’

regression specifications.

The bins {T;, ..., T, Ps, ..., P } are counts of number of days in the CGS at each GGCM grid-cell (county
for USDA regression) spent in j intervals® of T(Degree Celcius,°C) and k intervals of

P(millimiter per day, mm/d), where:

j=1{<75,75~10,10~12.5,12.5~15,15~17.5,17.5~20, 20~22.5, 22.5~25, 25~27.5,27.5~30, > 30}
and
k={<5,5~10,10~15,> 15}

The bins j = 22.5~25°C and k = 10~15mm/d were omitted in regressions as reference category.
Thus with reference to eq. (1) in main text, each coefficient of T (P) indicates the impact on log yield of
an additional day in the jt"* (k") interval, relative to a day in the dropped T (P) bin. All our regression
specifications were run in R package Linear Fixed Effects (LFE) (Gaure 2013), which can handle
arbitrary number of factors (fixed effects) and is tailored for fixed effect estimation on large panel data.
To account for heteroscedasticity and autocorrelation in the error term &; ;,, (eq. 1 in main text), we use

robust standard errors (S.E.)** clustered by grid-cells.

% For each T and P bin except the extreme lower and upper values, the lower range is included in the count. The
extreme bins are open-ended.

** The S.E.s calculated by R LFE are adjusted for the reduced degrees of freedom (DOF) coming from the dummies
which are implicitly present. They are also small-sample corrected.
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Table S4: Regression summary with Clustered Robust S.E. (in parenthesis, S.E. clustered by cross-sectional
unit; in square braces clustered by cross-sectional unit and time): (i) maize, (ii) soybeans, (iii) wheat.
Because two S.E.s are provided for each estimate, the stars denoting significance level are marked on the

S.E. instead of on the estimates

(i) Dependent variable: log yield (Maize)

USDA GEPIC GAEZ-IMAGE LPI-GUESS LPJmL pDSSAT PEGASUS Multi-GGCM
(1) 2) (3) 4) (3) (6) (7 (8)
T < 15°C ~0.006 0.076 0.005 0.003 0.024 0.007 ~0.0124 0.017
(0001 (0003 (0.001)=** 0.001)*" (0.002)** (0.002)"** (0.002)"* (0.001)"**
[0.005] [0.025]*** [0.004] [0.006] [0.018] [0.007] [0.007]* [0.008]**
(1.5-10°C) ~0.006 0.030 ~0.005 0.001 0.011 0.004 ~0.025 0.002
(0.001)*** (0.003)"** (0.001)*** (0.001) (0.002)*** (0.001)*** (0.002)%** 0.001)**
[0.004] [0.022] [0.003] [0.005] [0.007] [0.007] [0.006]*** [0.006]
(10-12.5°C) ~0.007 0.031 0.000 0.006 0.009 0.002 ~0.020 0.005
(0.001)*** (0.003)*** (0.001) (0.001)*** (0.002)*** (0.001)** (0.001)*** (0.001)***
[0.003]* [0.011]*** [0.002] [0.002]*** [0.007) [0.004] [0.005]** [0.003]
(12.5-15°C) ~0.006 0.023 ~0.002 0.004 0.004 0.001 ~0.016 0.002
(0.001)*** (0.002)*** (0.001)*** (0.001)y*** (0.001)*** (0.001) (0.001)"** (0.001)***
[0.002]*** [0.008)*** [0.001] [0.002)* [0.005] [0.003] [0.004]°** [0.002]
(15-17.5°C) —0.002 0.025 —0.002 0.005 0.014 —0.001 —0.008 0.0069
(0.000)*** (0.002)*** (0.000)*** (0.001)*** (0.001)*** (0.001) (0.001)%** (0.001)***
[0.002] [0.009]*** [0.002] [0.002]*** [0.003]*** [0.003] [0.004]** [0.003]**
(17-20°C) —0.001 0.027 0.000 0.006 0.014 0.005 —0.003 0.008
(0.0000*** (0.001)*** (0.000) (0.001)*** (0.001)*** 0.001)*** (0.001)%** (0.001)***
[0.001] [0.008]*** [0.001] [o.001]*** [0.005]*** [0.003]** [0.003] [0.002]***
(20-22.5°C) 0.002 0.019 0.000 0.005 0.008 0.005 0.002 0.007
(0.0000*** (0.001)*** (0.000)*** (0.001)*** (0.001)*** (0.001)*** (0.001)%** (0.001)***
[0.0017** [0.005]*** [0.001] [0.001]*** [0.002]*** [0.001]*** [0.002] [0.001]***
(25-27.5°C) —0.006 —0.021 0.000 —0.007 —0.009 —0.009 —0.009 —0.009
(0.000)*** (0.001)*** (0.000)*** (0.000)*** (0.001)*** (0.001)*** (0.001)y*** (0.000)***
[0.001]*** [0.004]*** [0.001] [0.001]*** [0.003]*** [0.001]*** [0.002]*** [0.001]***
(27.5-30°C) —0.016 —0.025 0.000 —0.009 —0.016 —0.010 —0.010 —0.012
(0.000)* = (0.002)%** (0.000) 0.001)*** 0.001)*=* (0.001)=** (0.001)"** (0.001)***
[0.002]*%* [0.007])*** [0.001] [0.002]*** [0.003])*=* [0.003]*** [0.003]*** [0.002]*%*
T > 30°C —0.018 —0.030 0.001 —0.013 —0.020 —0.017 —0.022 —0.017
(0.001)*** (0.002)%** (0.000)7%* (0.001)*** (0.001)*=* (0.001)7** (0.001)*** (0.000)*%*
[0.003]*%* [0.009]*** [0.001] [0.002)*** [0.006]*** [0.003]*** [0.004] %% [0.004] %%
P < 5 mm/day ~0.006 ~0.020 0.000 ~0.005 ~0.015 ~0.012 ~0.002 ~0.009
(0.001)*** (00027 (0.000) (0001 (0.001)*7* (0.001)"** (0.001) (0.001)"%*
[0.003]* [0.007]*** [0.001] [0.002]%** [0.004)*=* [0.003]7** [0.003] [0.002]%**
(5-10 mm/day) ~0.001 ~0.010 0.000 ~0.003 ~0.007 ~0.005 0.000 ~0.004
(0.001) (0.003)*** (0.000) (0.001)*** (0.002)*** (0.001)*** (0.002) (0.001)***
[0.001] [0.006] [0.001] [0.001]*** [0.003]** [0.002]%* [0.003] [0.002]**
P>15 mm/day —0.001 0.020 0.001 0.010 0.017 0.008 —0.005 0.00G
(0.001) (0.003)*** (0.001)*** (0.001)*** (0.002)*** 0.001)*** (0.002)%** (0.001)***
[0.002] [0.0100** [0.002] [0.003]"** [0.0071** [0.004]* [0.004] [0.004]**
State time trends Yes No No No No No No No
Time dummies No Yes Yes Yes Yes Yes Yes Yes
Location FE County FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE
Observations 27,370 21,453 21,939 21,924 21,851 20,926 21,819 129.912
Adjusted R? 0.682 0.766 0.373 0.846 0.770 0.689 0.554 0.675

Residual SE 0.21 (df = 26134)  0.75 (df = 20507)

0.13 (df = 20984)  0.22 (df = 20974) 048 (df = 20896) 0.36 (df = 19979) 0.38 (df = 20873) 0.56 (df = 124393)
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(i1) Dependent vartable: log yield (Soybeans)

USDA GEPIC GAEZ-IMAGE LPJ-GUESS LPImL pDSSAT PEGASUS Mulii-GGCM
(1) (2) (3) 4) (5) (6) (7) (8)
T <175°C =0.004 0.031 0.004 0.018 0.047 0.008 —0.060 0.008
0.001)*** (0.001)*** (0.003) 0.001)*** (0.003)"** (0.005) (0.003)"** 0.001)***
[0.007] [0.006])*** [0.012] [0.008]** [0.013]*** [0.024] [0.025]** [0.008]
(7.5-10°C) —0.003 0.012 —0.011 001 0.007 0011 —0.024 0.002
(0.001)*** 0.001)"** (0.002)*** 0.001y*** (0.002)°** (0.004)* (0.003)"** 0.001)"*
[0.004] [0.006]** [0.009] [0.007] [0.012] [0.016] [0.011** [0.006]
(10-12.5°C) —0.008 0.015 —0.006 0.020 0,008 —0.003 —0.022 0.004
(0.001)y*** 0.001)*** (0.002)*** (0.001)y*** (0.002)*** (0.003) (0.002)*** (0.001)y***
[0.003]** [0.004]*** [0.008] [0.004]%%* [0.008] [0.010] [0.008]** [0.003])
(12.5-15°C) —0.007 0.006 —0.004 0.017 0.006 —0.015 —0.024 —0.001
(0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.002)*** (0.001)*** (0.001)**
0.002]%** [0.003]** [0.006] [0.003]7** (0.005] [0.010] [0.007]*** [0.003)
(15-17.5°C) —0.003 0.008 —0.003 0.015 0.017 —0.014 —0.009 0.005
(0.000)*** (0.001)*** 0.001)*** 0.001)*** (0.001)"** (0.002)*** 0.001)*** {0.001)***
[0.002] [0.003]*** [0.003] [0.003)*** [0.006]*** [0.010] [0.005]* [0.002]*
(17-20°C) —-0.001 0.009 —0.002 0.012 0.018 —0.003 -0.002 0.007
(0.000)*** (0.000)*** (0.007)** (0.001)*=* (0.001)*** (0.002) (0.001)*** (0.001)"=*
[0.002] [0.003)*** [0.003] [0.002)*** [0.006)*** [0.008) [0.003] [0.002]***
(20-22.5°C) 0.001 0.006 —0.002 0.008 0014 0,006 —0.001 0.006
(0.000) (0.001)*** (0.001)*** (0.001y*** (0.001)*** (0.001)*** (0.001)* (0.001y***
[0.001] [0.002]*** [0.002] [0.0017*** [0.003]*** [0.006] [0.002] (0,002
(25-27.5°C) —0.003 —0.011 —0.001 —0.010 —0.008 —0.023 —0.007 —0.010
(O{Im)u = (0‘000)*** (0.0(1))*&! (Olml)-l* (0.00”*** (0301)*&! (Olmnlu* (Omo)u L
[0.001]*** [0.001)*** [0.001] 0.002]*** [0.003)** [0.004]*** [0.002]*** [0.001]***
(27.5-30°C) —0.010 ~0.016 0,002 —0.013 —0.018 —0.0223 —0.008 —0.012
(nmm)w ok (n‘mn)tww ([].ﬂﬂﬂ]”" (ﬂﬂﬂl)' ok (n‘m”www (ﬂ.ﬂﬂl)”" (nlml}utw (nmm)w ok
0.002]%** [0.003]*** [0.002] 0.002]7* [0.004]** [0.005]%** [0.003]** [0.002]7**
T >30°C —0.019 -0.017 0,001 —0.021 -0.015 —0.045 —0.020 —0.017
0.000y*** (0.000)*** (0.001)*** 0.000)*** (0.000)*** (0.002)*** 0.000)*** (0.000)***
(0.003]%** [0.003]*** [0.003] [0.004]%** [0.009]* [0.015]*** [0.003]** [0.003)***
P <5 mmy/day —(0.006 ~0.006 —0.002 —(.006 —0.004 —0.060 0.008 ~0.011
0.001)** (0.001)*** 0.001)* 0.001)*** (0.002)** 0.003)*** 0,002)** 0.001)***
[0.002]%** [0.002]** [0.003] [0.003]* [0.004] [0.008)*** [0.004]* [0.003]%**
(5-10 mm/day) =0.001 —-0.003 0.000 =0.002 —-0.005 —0.015 0.009 -0.003
(0.001) (0.001)*** (0.001) (0.001)* (0.002)*** (0.003)* (0.001)** 0.001)***
[0.001] [0.001]* [01.003] [0.002) (0.003] [0.008]* [0.003]%** [0.002)
P>15 mm/day 0.000 0.005 0,000 0.016 0.014 0.014 0.003 0.009
(0.001) (0.001)*** (0.001) 0.001)*** (0.002)*** (0.003)*** (0.002) 0.001)***
[0.002] [0.003]* [0.003] [0.005]%** [0.008] [0.009] [0.005]) (0,003
State time trends Yes No No No No No No No
Time dummies No Yes Yes Yes Yes Yes Yes Yes
Location FE County FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE
Observations 24,606 18,123 14,789 18,672 18,702 17,677 17,724 105,687
Adjusted R2 0.653 0.851 0.325 0.845 0,654 0,672 0.478 0.586

Residual Std. Error 0.19 (df =23459) 021 (df = 17310) 0.28 (df = 14083) 0.26 (df = 17858) 0.51 (df = 17880) 0.80 (df = 16870) 0.41 (df = 16916) 0.59 (df = 101097)
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(ii1) Dependent variable: log yield (Wheat)

USDA GEPIC GAEZ-IMAGE  LPJ-GUESS LPImL pDSSAT PEGASUS Multi-GGCM
(1) (2) (3) 4 (5) (6} (7) (8}
T < 75°C 0.003 0.003 —0.001 0014 0.041 0.003 —0.014 0.008
(0.002)** (0.002) (0.001)*** (0.001)*** (0.005)*** (0.003) (0.002)%** (0.002)***
[0.006] [0.011] [0.002] [0.005]*** [0.017)** [0.006] [0.013] [0.005]
(7.5-10°C) 0.004 0.025 —0.002 0.014 0,040 0.018 —0.008 0.014
(0.003) (0.002)*** (0.000)*** 0.001)*=* (0.004)*=* (0.002)*** (0.002)""* (0.001)***
[0.007] [0.009]*** [0.002] [0.004]*** [0.012)*** [0.004]*** [0.010] [0.004)***
(10-12.5°C) —0.006 0.026 0.000 0.015 0.026 0.009 0.004 0.013
(0.002)%** (0.001)*** (0.001) (0.001)*** (0.002)*** (0.002)*** (0.001)*** (0.001)***
[0.006] [0.007]** [0.001] [0.003]*** [0.008]*** [0.005]** [0.006] [0.003]***
(12.5-15°C) 0.003 0.019 0.000 0.013 0.011 0.005 0.001 0.008
(0.002) (0.001)*** (0.000) (0.001)*** (0.002)*** (0.001)*** 0.002) (0.001)***
[0.004] [0.005]*** [0.001] [0.002]** [0.009] [0.004) [0.004] [0.002)**
(15-17.5°0) —0.003 0.019 0.000 0013 0n.012 0.007 0.005 0.009
(0.002)* (0.001)*** (0.000) 0.001)*** 0.002)*** 0.001)*** (0.002)*** 0.001)***
[0.004] [0.004]** [0.001] [0.002]*=* [0.006]* [0.004]* [0.006] [0.002]%=*
(17-20°C) —0.006 0.011 —0.001 0.006 0.000 0.000 0.003 0.003
(0.002)*** (0.001)*** (0.000) (0.001)*** (0.002) (0.001) (0.002)* (0.000)***
[0.004] [0.004]*** [0.001] [0.002]*=* [0.008) [0.003) [0.006] [0.002)
(20-22.5°C) —0.009 0.003 —(.001 —0.001 —0.009 —0.004 0.000 —0.002
(0,002)**= (0.001)*** (0.000)*** (0.001) (0.002)"** (0.001)"** (0.001) (0.001)"**
[0.004]** [0.003] [0.001] [0.002] [0.005]* [0.004] [0.004] [0.002)
(25-27.5°C) —0.026 0.004 —(0.001 —0.002 —0.011 0.002 —0.004 —0.002
(0.003)*** (0.002)"* (0.000y** (0.001)* (0.002)" " (0.002) (0.002)"™ 0.001)**
[0.009]*** [0.006] [0.001] [0.002) [0.006]* [0.005] [0.006] [0.002)
(27.5-30°C) —0.037 —0.022 0.001 —0.009 —0.011 —0.016 —0.040 —0.016
(0.005)"** (0.003)*** (0.000)*** (0.001y*=* (0.003)*=* (0.003)** (0.002)"** (0.001)**
[0.013]*** [0.009]** [0.001] [0.004]** [0.008] [0.008]* [0.012]*** [0.003]***
T > 30°C —0.075 —0.004 —0.002 —0.003 —0.059 —0.017 —0.028 —0.019
(0.017)*** (0.006) (0.001)** (0.003) (0.011)*** (0.007)** (0.007)*** (0.003)***
[0.026]*** [0.009] [0.002] [0.008] [0.014]*** [0.006]*** e [0,004]***
P < 5 mm/day =0.016 =0.017 0.001 =0.019 =0.011 =0.006 =0.006 =0.010
(0.003)*** (0.002)*** (0.001)* (0.001)*** (0.004)*** (0.002)*** (0.002)%** (0.001)***
[0.007]** [0.006]*** [0.001] [0.004]*** [0.012] [0.005) [0.007) (0.003]***
(5-10 mm/day) —0.010 —0.005 0.001 —0.008 0.008 0.007 —0.007 —0.001
(0.004)** (0.002)** (0.001)** (0.001)*** (0.004)** (0.002)*** (0.002)*** (0.001)
[0.006]* [0.003]* [0.001] [0.002]"** [0.009] [0.004]* [0.003] [0.002)
P > 15 mmiday —0.015 0.010 0.001 0010 —0.016 0.001 0.000 0.001
(0.005)*** (0.003)*** (0.001)* (0.001)*=* (0.004)*** (0.002) (0.002) (0.001)
10.0077* [0.010] [0.001] [0.004]"** [0.008]%* [0.004] [0.010] [0.004]
State time trends Yes No No No No No No No
Time dummies No Yes Yes Yes Yes Yes Yes Yes
Location FE County FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE Grid-cell FE
Observations 1,855 4,645 4,800 4,800 4,800 4773 4,799 28,617
Adjusted R? 0.431 0.752 1.3706 0.829 0.620 .580 0.695 0,734

Residual Std. Error  0.28 (df = 1736) 0.24 (df = 4413) 0.07 (df =4564) 0.13 (df =4564) 0.34 (df =4564) 0.22(df =4537) 0.23 (df =4563) 0.32 (df = 27385)
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S5. Variation in historical observed (USDA) and simulated (GGCMs) yields empirically attributed
to weather (T and P bins)

The adjusted R? (in table S4) derived from our regression specifications track how much of the cross-
section/time-series variation in yields is explained by not only the predictors® (T and P), but also by the
grid-cell fixed effects (u;) and the time effects (f(t) = 7;), or the county fixed effects (u;) and the state
specific time trend (f (t) = Ast).

To gauge how much on average the weather variables (T and P) explain the cross-section/time-series
variation in yields, table S5 summarizes the adjusted R? by stripping out the influencing effects of the
idiosyncratic unobserved shocks (y; and f(t)) in eq. 1. These are obtained directly from R LFE package
‘Projected Model adj — R%’

Table S5. Percentage of variation explained by the covariates (T and P), for base specification with time effects,
and with state specific time trend in lieu of time effects (in braces)

GGCM Maize Wheat Soybeans
30% 29% 53%
2% 0% 0%

GAEZ-IMAGE (4%) (1%) (11%)
39% 43% 53%

LPJ-GUESS (58%)  (63%)  (74%)
31% 15% 22%

LPImL (49%) (24%) (43%)
27% 9% 32%
20% 22% 17%

PEGASUS (35%) (49%) (32%)

Multi-Model (19%) (7%) (22%)
16% 13% 15%

USDA (46%) (30%) (32%)

Focusing on GGCMs (table S5), GAEZ-IMAGE is not well captured by the regression specifications (eq.
1 in main text). This could be partly attributed to the low inter-annual variation in crop yields as GAEZ-
IMAGE simulates yields at 5-yearly time step in contrast to the yield simulated annually by other

GGCMs™. It then interpolates the crop yields for the missing years. This results in lower inter-annual

% There are total 13 weather response parameters (10 temperature bins and 3 precipitation bins) in our regressions
model (eqs.1 of main text). See table S4 for details on number of fixed effects, time effects and state specific time
trends.

%% https://www.isimip.org/outputdata/caveats-fast-track/
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variation of yields vis-a-vis other GGCMs, thereby resulting in low residual variation for the weather

variables to capture.

Compared to the adj — R? for maize and soybean, the adj — R? for wheat is generally low across all
GGCMs, except for LPJ-GUESS and PEGASUS. GGCMs in ISIMIP-FT decide internally on the type of
wheat to simulate. Preference to grow spring or winter wheat in GGCMs depend on temperature
thresholds etc. (with some exceptions, e.g. LPIJmL has preference for winter wheat, and PEGASUS
simulates only spring wheat). Therefore, it is plausible that some variation in GGCMs’ wheat yields can
be attributed to weather exposure outside the choice of our growing season months (AMJJA).
Nevertheless, by and large our specification (eg. 1 in main text) explain between one-fifth to half of the
variance in each of the three crops and six GGCMs, and slightly lower in the multi-model regression

specification.

47



Maize Soyeans Wheat
A. Temporal Correlation by County

[ == L —
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B. Spatial Correlation by Year
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GEPIC GAEZ-IMAGE LPJ-GUESS LPJmL pDSSAT PEGASUS

Fig. S3: Correlations between GGCM simulated and USDA recorded percentage anomalies in de-trended yields for
maize, soybeans and wheat. Anomalies are calculated as the % deviation of each county’s de-trended yield from its
own 1981-2004 mean.
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S6. Sensitivity checks using different regression specifications

To ensure that the estimate coefficient responses of GGCMs summarized in fig. 3 of main text did not
depend on an overly specific choice of regression specification, and in line with common practice in
statistical modelling (e.g. Urban et al 2015, Schlenker and Roberts 2009, Baylis et al 2011, Lobell et al

2011, Blanc 2016, Schauberger et al 2017), we consider two further suites of regression specifications.
S6.1 Mean responses of simulated yield using state time-trend specification for all GGCMs

Fig. S4 shows the mean responses of GGCMs’ log yields to temperature and precipitation exposure,
using a specification with state specific time trend in lieu of time dummies. As highlighted in main text,
GGCMs hold management practices and technology parameter constant to the year 2000 (although some
GGCMs do include some endogenous form of adaptation (see table S6 for details), and therefore time
effects are considered more appropriate for GGCMs. Nevertheless, for comparability with the empirical
specification for USDA, we re-examine the GGCMSs’ estimated coefficient responses using state-specific

time trends.
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GEPIC GAEZ-IMAGE LPJ-GUESS LPJmlL pDSSAT PEGASUS USDA Multi-Model

Fig. S4. Mean responses (solid lines) and confidence intervals (95%) (shaded areas) of log yield to temperature and
precipitation exposure for maize, soybeans and wheat, with state time trends. Responses are normalized relative to
the number of days with temperatures 22.5 — 25°C and precipitation 10 — 15 mm/day, represented by the heavy
horizontal axis. Shaded confidence intervals are computed from robust standard errors clustered at the cross-
sectional units. For USDA, the mean responses are from the same specification as in fig. 3 of main text.
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As noted by other studies (e.g. Schlenker and Roberts 2009, Lobell et al 2011, Schauberger et al 2017);
comparing figures 3 (main text) and S4, the responses of GGCMSs’ crop yields are robust to modification

in econometric specifications.

S6.2 Mean responses of simulated yield using mean growing season temperature and precipitation

A similar pattern of nonlinear effects of temperature and precipitation remain if a commonly used
parsimonious specification is utilized, instead of our semi-parametric binning approach. The use of mean
growing season temperature (T), mean (or total) growing season precipitation (P) (eg. S1*’), show that
the generally heterogeneous responses of GGCMSs’ log yield responses to the weather variables used in

our study, generally disagree both in magnitude and response thresholds (figure S5) with the observed.

Yiem = Ui + (&) + BiTiem + IBZTi,Zt,m + B3P tm + ,34P5t,m + BsTitm * Pitm + €itm (S1)

where T is the mean growing season (MJJA for maize and soybeans, AMJJA for wheat) temperature
(°C), P is mean growing season precipitation (rmm), and the remaining terms as per the nomenclature
used in eg. 1 of main text. In lieu of mean growing season precipitation, total growing season

precipitation was also examined (results are near similar and available upon request).

%" For instance, see Lobell and Burke 2010, Lobell et al 2011, Blanc 2017 for a good discussion on the underlying
reasons of choosing specifications with mean growing season variables and their quadratic terms, along with
interactions between T and P.
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(a) Maize
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(c) Wheat
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GEPIC GAEZ-IMAGE LPJ-GUESS LPIJmL pDSSAT PEGASUS USDA

Fig. S5. Mean log yields responses (solid lines) and confidence intervals (95%) (shaded areas) to mean growing
season temperature (°C) and precipitation (mm) exposure for (a) maize, (b) soybeans and (c) wheat (eq. S1).
Horizontal dashed line (at y=0) shown for reference. Shaded confidence intervals are computed from robust standard
errors clustered at the cross-sectional units. Growing seasons are defined as in main text (May-August for maize and
soybeans, and April-August for wheat)
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S7. Meta-Analyses

Using the five sets of characteristics (illustrated in bold in table S6), we construct binary variables for explanatory variables in the meta-analysis regression (eq. 5 in main text).

Table S6: Heterogeneity in GGCMs used in this study, adapted from Rosenzweig et al (2014).

Parameters GEPIC GAEZ-IMAGE LPJ-GUESS LPImL pDSSAT PEGASUS
Model Type Site-based Agro-ec((')AI(é%: al zone Agro-ecosystem Agro-ecosystem Site-based Agro-ecosystem
Crop Yield Actual Potential Potential Actual Actual Actual
Crop Cultivars Yes Yes Yes No No? Yes
Dynamic - . Fixed (by taking the Dynamic
Planting window ITCF;::g:tE?dn;r:gtg)?fs Fixed" Fixed planting date historical average, for ) _
(climate adaptation) P all years in future) (climate adaptation)
. d
Nltrqg_en (N) Yes No No No Yes Yes
fertilization
e Wi Tl Hi 025 Ni Pi
Type of stress BD, Al W, T, BD W, T W, T W, T,H, O, N W, T,H,N, P, K
Light Utilization Radiation use RUE
(Photosynthesis) efficiency (RUE) RUE Leaf Leaf (Leaf for Soybeans) RUE
Yes
Model Calibration and es No No es _ o Yes
Type_SpatialResolution  gjte_gpecific_National Global_National S'te'SpZi';:g—F'eld' Global_Gridcell
Method used in
Evapotranspiration (ET) Penman-Monteith Priestly-Taylor Priestly-Taylor Priestly-Taylor Priestly-Taylor Priestly-Taylor

calculation

% For pDSSAT, cultivar choice, fertilizer application etc. are fixed by the historical average of all future years.
b Dynamic: Automatic adjustments of planting and harvesting dates due to annual weather conditions; an internal model process.
® Fixed: planting windows are determined using historical values based on literature. LPJ-GUESS allows planting dates adaptation within +/-15 days of calculated optimum

values, but planting window is fixed.
4 For GEPIC, fertilizer application rate is adjusted flexibly according to Nitroé@n (N) stress. pDSSAT and PEGASUS hold fertilizer application rates constant.

¢ Water (W), Temperature (T), Heat (H), Oxygen (O,), Phosphorous (P), Bulk Density (BD), Aluminum (Al), Potassium (K)



We regress the vector of differences in combined set of estimated semi-elasticities from GGCMs and

USDA, A{(BT, BP) = ¢(BT, BP)**"

dimensions as a vector of dummies (Specification 1)*®. We also test i) two additional models in which

- ((ET,[?P)USDA, using the set of parameters describing models’

only the vector of differences in temperature (Specification 2) and precipitation (Specification 3) semi-
elasticities are used as dependent variables® and ii) three additional models in which model parameter
dummies are interacted with the extreme high temperature (hi_t) and low precipitation (lo_p) bins,
namely as {25~27.5,27.5~30, > 30}°C and {< 5,5~10}mm/day (Specifications 4, 5, and 6).
Specifications (1) and (4) enable us to examine the influence of GGCMs key parameter dimensions
averaged across all temperature and precipitation bins. Specifications (4), (5), and (6) enable us to
attribute the key parameters that influence the divergence in GGCMSs’ responses to the extreme

temperature or precipitation bins.

%8 The dependent variable is the difference in the estimated coefficient of the 13 temperature and precipitation bins
from eq. 1 of main text, for each of the 6 GGCMs (thus totalling 72 observations using the parameters in bold from
table S6).

# gpecifications 2 and 3 have 60 and 18 observations for the six GGCMs for temperature and precipitation,
respectively.
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Table S7: Effects of model characteristics on GGCM-USDA divergence in (A) soybeans and (B) wheat log yield
responses. Robust standard errors (S.E.) are reported in parenthesis

A. Soybeans
(1) (2 3) C)) (5) (6)
~P ~T ~T ~P ~P =T ~T ~P
A(B B ] AB ] AB ] AdB B ] ACB ] A(B |
Potential yield -0.012* -0.011* 0.002 -0.011**  -0.020*** 0.003
(0.006) (0.006) (0.003) (0.005) (0.006) (0.007)
Endog. cultivar 0.022***  0.022"** 0.001 0.029***  0.038""" 0.005
(0.007) (0.007) (0.002) (0.006) (0.007)
Endog. sowing date -0.007* -0.008* -0.018"**  -0.018"**
(0.004) (0.005) (0.003) (0.003)
Heat stress -0.023***  -0.026***  0.008**  -0.025"**  -0.037**  -0.002
(0.008) (0.008) (0.003) (0.009) (0.009)
Site calibration -0.007 -0.004 0.004 -0.004
(0.005) (0.004) (0.004) (0.004)
T > 30°C
x Potential yield 0.007 0.031***
(0.009) (0.007)
x Endog. cultivar -0.028***  -0.053"**
(0.009) (0.008)
x Endog. sowing date 0.033***  0.033"**
(0.006) (0.006)
x Heat stress 0.008 0.035***
(0.010) (0.009)
x Site calibration -0.023%#*
(0.005)
P < 5mm
x Potential yield -0.020 -0.001
(0.017) (0.007)
x Endog. cultivar 0.002 -0.006""*
(0.017) (0.001)
x Endog. sowing date 0.020™**
(0.003)
x Heat stress 0.004 0.014**
(0.018) (0.002)
% Site calibration -0.037**
(0.016)
Adj. F 4.289*** 4885 1.553 42,577 24.052"*  2.325"
df=4;77) (df =4;59) (df =2;17) (df =14;77) (df =8;59) (df =5;17)
Obs. 78 60 18 78 60 18
Adj R Sq. 0.128 0.190 -0.110 0.390 0.319 -0.339

p<0.1;"p < 0.05 " p < 0.01
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B. Wheat

(L) . (2)T (3)P (‘}3 . (S)T (6)P
ACB B ] ACB T AL | A¢GB B ] AdB ]  AdB ]
Potential yield 0.010 0.007 0.002 -0.006 0.0003 -0.004
(0.009) (0.011) (0.008) (0.005) (0.007) (0.004)
Endog. cultivar 0.008 0.014 0.009 0.020"** 0.012 0.024***
(0.010) (0.013) (0.007) (0.005) (0.007) (0.000)
Endog. sowing date -0.003 -0.006 -0.011***  -0.011%**
(0.008) (0.010) (0.003) (0.003)
Heat stress 0.003 -0.0005 0.00004 -0.007 -0.0005  -0.010***
(0.008) (0.010) (0.007) (0.006) (0.008) (0.000)
Site calibration 0.015*** 0.016"** 0.008*** 0.016***
(0.004) (0.005) (0.002) (0.006)
T > 30°C
x Potential yield 0.049%* 0.023
(0.023) (0.020)
x Endog. cultivar -0.022 0.006
(0.027) (0.024)
x Endog. sowing date 0.015 0.015
(0.019) (0.019)
x Heat stress 0.027 -0.00002
(0.023) (0.020)
x Site calibration 0.027**
(0.011)
P < 5mm
x Potential yield 0.032%** 0.009
(0.006) (0.006)
x Endog. cultivar -0.046%** -0.023***
(0.007) (0.002)
x Endog. sowing date 0.025%**
(0.005)
x Heat stress 0.025*** 0.015%*~
(0.007) (0.004)
x Site calibration 0.005
(0.003)
Adj. F 4.289*** 4.885"** 1.553 42577 24,0527 2.325*
(df =4;77) (df =4:59) df =2:;17) (df =14:77) (df =8:59) (df =5:;17)
Obs. 78 60 18 78 60 18
Adj. R Sq. 0.350 0.342 0.283 0.564 0.530 0.401

p<0.1; " p < 0.05;""p < 0.01
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Table S8. Two-sided Welch t-test for significant difference in regression coefficients (GGCM — USDA), based on
robust standard errors clustered at the cross-sectional units. Test results in parenthesis are based on two-way
clustered robust standard errors (Cameron et al 2011), clustered by the cross-sectional units and time.

H,: Coefficients are not different

(@) GEPIC
T, P bins Maize ‘ Soybeans . Wheat .
(Coeff diff) (Coeff diff) (Coeff diff)

tas_7p5lo 0.081 (23514137(;: 0.035 (238?1719)’11 -0.001 (:8:(2)25)
awen e BT m o
ol T -
T I e
wame om D m SED S
won om BEL e SR e D
amme eSS ow o EET
wame S Ghm D
R . -
e T - -
P o oy oo 1005 o008 o0
PR

(b) GAEZ-IMAGE

R TR
tas_7p5_10 0.000 (8:(2)‘5‘1) -0.008 'i’_'g?;;* -0.006 (2028319;
T S SR
W T T
tas_15_17p5 0.000 (g:ggg) -0.005 (_'8_'.‘151‘;) 0.003 1(063;;
tas_17p5_20 0.001 2(02:2::; 0.000 (:g:gif) 0.005 3(.?13,3*;*;*
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(c) LPJ-GUESS

T, P bins Maize 5
(Coeff diff) t oybeans W
tas_7p5lo S osge (Coeff diff) t heat
- 0.009 258%** (Coeff diff) t
(1.109) 0.022 12.752%**
tas_7p5_10 0.007 4,997 (2.116) ** 0.011 5.037***
(1.005) 0.014 8.980%** (1.463)
tas_10_12p5 0.013 12.948*** (1.708) * 0.010 3.473%**
(3.266)*** 0.028 25.534%** (1.233)
tas_12p5_15 0.010 10.204*** (5.449) *** 0.021 9.453%**
(3.766)*** 0.024 27.641%** (3.297) **=*
tas_15_17p5 0.007 9.749%** (7.043) *** 0.011 5.767%**
(2.938)*** 0.018 24.705%** (2.245) **
tas_17p5_20 0.008 0.467%** (5.820) *** 0.015 8.865%**
(3.773y*** 0.014 21.745%** (3.513) ***
tas_20_22p5 0.003 4.644%** (5.468) *** 0.012 6.096%**
(1.946)** 0.008 12.542%** (2.421) **
tas_25_27p5 -0.001 2.240% (3.840) *** 0.008 4.337%%*
(-0.671) -0.007 -11.706%** (1.809) *
tas_27p5_30 0.006 9.137%%* (-3.129) *** 0.024 8.499***
(2.674)%** -0.003 -3.795%x* (2.761) ***
tas_g30 0.004 4.408*** (-0.890) 0.028 5.028***
(1.129) -0.002 -1.690%** (1.972) **
p_Slo 0.001 0.566*** (-0.317) 0.072 4,054
(0.161) 0.001 0.506 (2.684) ***
p-5_10 -0.003 2.372%% (0.149) -0.003 -0.827
(-1.613)* -0.001 -0.800 (-0.358)
p_15up 0.011 9.233*** (-0.495) 0.002 0510
(3.058)*** 0.016 12.330%** (0.342)
(2.961) *** 0.025 4.806%**
(2.925) ***
tas_7p5lo 0.029 11.194%** (d) LPImL
(1.562)* 0.051 17.244%**
tas_7p5_10 0.016 7.220%** (3.505) *** 0.038 6.950%**
(1.953)** 0.010 4.247%** (2.142) **
tas_10_12p5 0.015 9.835%** (0.810) 0.036 8.351%**
(2.027)** 0.016 8.577%** (2.662) ***
tas_12p5_15 0.010 8.498*** (1.792) ** 0.032 10.327%**
(1.992)** 0.013 10.827*** (3.295) ***
tas_15 17p5 0.017 17.117%** (2.653) *** 0.008 3.048%**
(4.636)*** 0.019 17.759%** (0.852)
tas_17p5_20 0.015 14.451%** (3.293) *** 0.014 6.301%**
(2.948)*** 0.019 18.798*** (2.026) **
tas_20_22p5 0.006 7.886™** (3.112) *** 0.005 2.202**
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(-1.827)** 0.003 1.458 (0.559)
p_5_10 -0.006 -3.526%% (0.554) 0.005 0.950
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p_15up 0.018 10.533*** (-1.119) 0.018 3.272%**
(2.601)*** 0.0144 6.593*** (1.656) *
(1.679) * -0.001 -0.192
(-0.109)

*p < 0.1;%xp < 0.05;#++p < 0.01
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(e) pDSSAT

. Maize Soybeans Wheat
T, P bins . T y . t . t
(Coeff diff) (Coeff diff) (Coeff diff)
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s 705 10 0.010 6.025%% 0.014 3.836%** 0.014 4.900%%
P (1.265) (0.884) (1.868) *
s 10 1205 0.009 7.405%% 0.004 1457 0.015 B.274%%x
—0-1eP (1.875)%* (0.422) (2.186) **
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-6.872%%% -6.202%% 3.509%%*
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tas_17p5_20 -0.001 (o.148) -0.001 (0.326) 0.008 L157)
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() Multi-GGCM

T, P bins Maize S
(Coeff diff) T oybeans e
ta (Coeff diff) t eat
s_7p5lo 0.022 15.798%** (Coeff diff) t
(2.291)** 0.012 7.301%**
tas_7p5_10 0.008 6.082*** (1.082) 0.004 2.013**
(1.084) 0.005 4,089*** (0.548)
tas_10_12p5 0.011 11.623*** (0.695) 0.010 4.062*%**
(2.374)** 0.012 10.623%** (1.327)
tas_12p5_15 0.008 11.104*** (2.373)** 0.019 9.122%**
(2.728)*** 0.005 7.000%** (3.156)**
tas_15_17p5 0.008 12.405*** (1.661)* 0.005 3.167***
(2.583)*** 0.007 10.719%** (1.199)
tas_17p5_20 0.009 16.146%* (2.490) % 0.012 7.014%%
(3.470)*** 0.007 13.917%%* (2.808)**
tas_20_22p5 0.004 7.808%** (3.008)*** 0.009 5.065%**
(2.964)*** 0.005 9.263*** (1.788)*
tas_25_27p5 -0.003 _5.794%** (2.560)*** 0.007 3.615%**
(-1.645)* -0.007 -13.102%** (1.490)
tas_27p5_30 0.003 6.133%** (-4.670)*** 0.024 8.455%**
(1.473) -0.003 -4.329%%* (2.703)***
tas_g30 0.001 0.673 (-0.831) 0.021 3.829%**
(0.161) 0.002 2.530%* (1.538)*
p_Slo -0.003 -3.15%% (0.686) 0.055 3.153%+
(-0.887) -0.004 -4.613%** (2.153)**
p_5_10 -0.003 -3.097*** (-1.381) 0.006 1.877*
(-1.557)* -0.002 -1.286 (0.794)
p_15up 0.010 7.916%** (-0.695) 0.009 2.263**
(2.113)** 0.009 7.337%** (1.484)
(2.692)*** 0.015 3.072%**
(1.760)*

xp < 0.1;%xp < 0.05; %+ p < 0.01
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Table S9. Mid (2033~2065)- and end-century (2067~2099) (in parenthesis) % change in aggregated production
under RCP 8.5 warming scenario simulated by HadGEM2-ES, due to extreme high temperature (T > 30 °C) days.
The projected % change in production is aggregated for the sample of counties shown in maps of Fig. 5 (main text).

GGCM Maize Soybeans Wheat
GEPIC (:;1;:2) (22:2) (-592060)
GAEZ-IMAGE (;Zﬁ) (;1(;:) (-ZZ/Z)
LPJ-GUESS (:ing;) (:2222) (-4720&)
i o oo
PDSSAT (:242122) (12222) (:ggz;j)
PEGASUS (:2222) (:2222) (jjzﬁ)
Multi-GGCM (:2222) (:2222) (jgzﬁ)
USDA (:gizz) (:2322) (ﬁgzﬁ)
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S8. Average change in exposure across HadGEM2-ES temperature and precipitation bins in RCP
8.5 scenario, relative to historical (1981-2004)
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Fig. S6. Change in distribution of HadGEM2-ES temperature and precipitation bins, for two mean future periods in
RCP 8.5 scenario.

The change in number of days is computed by first averaging the number of days (in each bin) in each
USDA crop county, for the historical and future periods. The average number of days (in each bin) are

then computed over all counties. The difference is calculated as future period — historical period.
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