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A Spatial Dynamic Panel Analysis

ABSTRACT

We estimate the speed of income convergence for a sample of 196 European NUTS 2
regions over the period 1985-1999. So far there is no direct estimator available for dy-
namic panels with strong spatial dependencies. We propose a two-step procedure, which
involves first spatial filtering of the variables to remove the spatia correlation, and ap-
plication of standard GMM estimators for dynamic panels in a second step. Our results
show that ignorance of the spatial correlation leads to potentially misleading results.
Applying a system GMM estimator on the filtered variables, we obtain a speed of con-
vergence of 6.9 per cent and a capital elasticity of 0.43.
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1. Introduction

The issue of whether European regions show convergence in income levels has been a
major concern in the EU during the last decades and thus has geared a considerable
amount of research work in the field. From a methodological point of view, a number
of related econometric concepts were applied and developed. Nevertheless, critical
arguments can be brought forward even against the most recently applied econometric
frameworks, namely dynamic panel data models and spatial models as such. The aim of
this paper is to reconcile the critical points raised in the current debate and to propose a
new method of estimating convergence which combines spatial and panel data
econometrics.

Convergence studies were originally based on cross-sections and estimated using
OLS. Following the seminal paper by Barro (1991), such analyses were carried out for a
large set of countries (e.g Barro and Sala-i-Martin 1991, Levine and Renelt 1992) as
well as regions (see Neven and Gouyette 1995, Armstrong 1995, Fagerberg and
Verspagen 1996, Tondl 1999, Martin 1999, Vanhoudt et a. 2000, Martin 2000 for
regiona convergence in the EU, Herz and Roger 1995, Hofer and Woérgotter 1997, Paci
and Pigliaru 1995, de la Fuente 1996 etc. for regiona convergence in EU member
states). These studies concluded that convergence between EU regions took place,
however, at a fairly slow pace, reaching 2-3 per cent in the 1960s and 1970s and
slowing down to 1.7 per cent after 1975.

The framework of cross-section studies for the estimation of conditional
convergence was soon critiszed for econometric reasons. The initial level of
technology, which should be included in a conditional convergence specification, is not
observed. Since it is aso correlated with another regressor (initial income), all cross-
section studies suffer from an omitted variable bias. Islam (1995) proposed to set up
convergence analyses in a panel data framework where it is possible to control for
individual—specific, time invariant characteristics of countries (like the initial level of
technology) using fixed effects. Panel data convergence studies using the least squares
dummy variable (LSDV) procedure (for countries Knight et a 1993, Islam 1995, for
regions de la Fuente 1996, Cuadrado-Roura et a. 1999, Tondl 1999) found extremely
fast convergence rates of up to 20 per cent. More recent studies account for the fact
dynamic panel data models — as panel convergence models inevitably are - require a



different estimation technique than the LSDV estimator. From the different procedures
suggested in the literature for dynamic panel data models (see e.g. Baltagi 1996), most
studies (Caselli et al. 1996, Henderson 2000, Dowrick and Rogers 2001, Tondl 2001,
Panizza 2002) employ the GMM estimator in first differences suggested by Arellano
and Bond (1991); most of them find equally high convergence rates as studies using the
LSDV estimator. The most recent convergence studies (Yudong and Weeks 2000,
Deininger and Olinto 2000, Bond et al. 2001) pick up new results from dynamic panel
data econometrics, which suggest the use of system GMM estimators as proposed by
Arellano and Bover (1995) and Blundell and Bond (1998) to overcome the problem of
weak instruments, which is likely to be encountered in convergence studies using the
first differences estimator. These studies find more modest rates of convergence,
ranging from 2 to 4 per cent per annum. Comparing these studies, it is evident that no
single estimator for dynamic panels appears to be superior in all circumstances.

The second substantial criticism of the original OLS cross-section convergence
studies was raised by regiona economists, who argued that regions could not be treated
as isolated economies (see e.g. Fingleton 1999, Rey and Montouri 1999, but the point
was also made by Quah 1996). Rather it had to be assumed that the growth of fairly
small territories which are close to each other is linked. Therefore, convergence
analyses would have to account for spatial dependence of regional growth. Leaving this
aspect aside would lead to a serious model misspecification. The spatial econometric
literature (Anselin 1988, Anselin and Florax 1995, Anselin and Bera 1998, Kelgjian and
Prucha 1998) offers econometric models which account for spatial autocorrelation of
the endogenous variable and in the error term. Thus in these models regional growth is
also specified as dependent of other regions growth by including a spatia lag
(substantial spatial dependence). Alternatively, or in addition, systematic spatia
dependence may be reflected in the error term (nuisance dependence). Spatia
dependence is the outcome of a number of linkages between regions such as trade
(demand linkages), interacting labour markets, technology spillovers, etc. Note,
however, that spatial econometric analysis so far is constrained to cross-sections and
static panels. There is yet no estimation procedure for dynamic spatial panels as

required for convergence regressions.



Using the Moran's | dtatistic as a test for spatia dependence (Anselin 1988,
Anselin and Florax 1995) several studies found that growth of European regions
exhibits spatial correlation (Fingleton and McCombie 1998, Vaya et al 2000, Ertur et al.
2002, Badinger and Tondl 2002). There are a few studies which have used the spatia
econometric framework for investigating regional convergence in a cross-section
analysis. Rey and Montouri (1999) investigated convergence of US states over the
period 1929-1994 and find that their growth rates exhibit spatial correlation. Estimating
convergence with a spatial error model, resultsin aslightly lower rate of convergence of
1.4 per cent for 1946-94 against 1.7 per cent obtained with the OLS estimation. For
Europe Vaya et a. (2000) estimate regional convergence of 108 EU regions for the
period 1975-1992 in a spatial model, where growth is dependent on the own initial
income position as well as the neighbour regions” growth and their initial income. The
study suggests that the neighbour’s growth is an important determinant of regional
growth in the EU. A one per cent increase in growth in the neighbour region translates
into a 0.63 per cent increase in growth of the region considered. Surprisingly, the rate of
convergence does seem to be unaffected by the inclusion of spatial dependence in their
study. It amounts to about 2 per cent, both with the simple cross-section model
estimated with OLS as well as with the spatial model estimated using ML. The same
spatial model with spatialy lagged growth is also estimated by Carrington (2002) for
110 EU regions for the more recent period 1989-98, where she finds that convergenceis
reduced in the spatial specification dropping from 3.6 per cent to 1.8 per cent. On the
member state level, a thorough spatial convergence analysis for German regions is
provided by Niebuhr (2001). Her study shows that also within Germany regional growth
is clustered. If considering this fact in a spatia lag model, the convergence speed drops
from one per cent to 0.6 per cent. A different conjecture is made by Baumol et al.
(2002). Looking at growth of 135 EU regions in the period 1985-95, they find that in
the spatial model estimated by ML the convergence coefficient rises to 1.2 per cent
compared with 0.85 per cent of the basic model estimated with OLS. Accounting for the
fact that regional incomes — and not only regional growth — show a high spatial
correlation in the EU, they then estimate a model with two spatial regimes where the
convergence speed differs between northern and southern regions. The results indicate a

convergence rate of the South of 2.9 per cent while the North does not show any



convergence. From the above studies it follows that regional growth in Europe is
evidently characterized by spatial dependence which must be taken into account in a
correctly specified convergence model. The effect is a change in the speed of
convergence compared with the standard cross-section OLS model. The extent of this
changeisnot clear apriori since it depends on the strength of spatial dependence, which
varies across samples and over time.

Given the two recent developments in convergence analysis, the dynamic panel
data model on the one hand, the spatial model on the other hand, the straightforward
wish appears to combine both viewpoints in a spatial dynamic panel data model in order
to meet the underlying arguments of both approaches. However, so far no suitable
estimator addressing both issues simultaneoudly is available. To overcome this deficit,
we propose to employ a two step procedure in order to estimate a dynamic spatial panel
data convergence model for EU regions. First, a filtering technique as proposed in Getis
and Griffith (2002) is applied to remove the spatial correlation from the data. Then
standard GMM estimators are used to make inference on convergence. We shall show
that the estimated speed of convergence changes significantly with respect to the
estimation method. Ignoring the presence of spatial dependence may lead to seriously
misleading results. As in recent studies, we also find that the GMM estimator in first
differences performs relatively poor, suggesting the use of the system estimator. In our
preferred specification, the speed of convergence amounts to some 7 percent.

The rest of the paper is organized as follows. Section 2 presents the empirical
convergence model. Section 3 discusses the estimation issues and describes the spatial
filtering technique and the estimation procedure for dynamic panels. Section 4 presents

the results of our convergence estimation and section 5 concludes.

2. Theempirical model

Following Mankiw et a. (1992) we assume a Cobb-Douglas production function with

labour-augmenting technological progress and constant returns to scale

Y = K9 (AL)*™

2.1)



where Y = output, K = capital, L = labour, and a and (1-a) denote output elasticities.*
Factor accumulation is described by the following equation:

K =sY -kK (2.1a)
where s is the investment-ratio and « the depreciation rate of the stock of physical
capital. Finally, technological progress (A) and labour (L) grow at the exogenousy
given rates g and n. Solving for the steady-state output per capita (y* = Y/L), we havein
log-form:

9 Ins+- 2 In(n+ g + k) (2.2
l1-a -a

The standard convergence specification is then obtained by a Taylor series

Iny*=InA,+gt+

approximation around the steady state, which yields ultimately

e " _
Iny =(1-e")——Ins-(1-e)——In(n+g+k)-1-e")Iny,._
Y, = ( )1—a ( )1—a (n+g+k)—( )Iny._, 23)

+1-e™)A +g(t-e™ (t- 1))

where 1 refers to the time period, to which equation (2.3) applies and A is the
convergence rate. This cross-section specification was extended to the panel case by
Islam (1995), which has several advantages. Most importantly, it allows to control for
differencesin theinitial level of technology (Ao), which is reflected in the country (here:
region) specific fixed effects. Also, the assumptions that n and s are constant over the
period 7 are more redlistic, when applied to shorter periods. Finally, using a panel
approach yields amuch larger number of observations.
Using the conventional notation of the panel data literature, equation (2.3) can be
rewritten as

Iny, =yIny, . +BIns + B, In(n+ g +K), + 4 +n, +U;

(2.9

with y=e’, f=fp=(1-e")"—, B,=-f
l1-a
u=01- eI n(A,) = region-specific effect (time invariant)

n, =g(t, —e’t,) = time specific effect (region invariant)

U, = error term usually assumed 11D(0,0%), T =5 years,

Y In their extended model, Mankiw et al. also included human capital as production factor. We had to omit



i=1..,N, t=1..T

Imposing the restriction on 5, in (2.4) gives us our final empirical model:
Iny, =ylny, , +BInx, +u +n, +u,,
(2.5)

where the regressor variable is denoted by xi; = si¢/(n+g+K);t .

3. Estimation | ssues

Two important characteristics distinguish the parameter estimation problem in this
paper from standard panel data approaches (as for instance surveyed in Hsiao 1986 and
Baltagi 1995). First, due to the potential spatial effects there is much reason to believe
that the assumption of uncorrelated errors is invalid and that we face a substantial
amount of spatial dependence. A typical model for this phenomenon would express a
part of the region specific effects (or to an equal effect the errors) as a so-called spatialy
autoregressive (SAR) process U = pWU + & with € ~ [ID(0,0%) and v=(u,..., W)
where Wis aN x N given weighting matrix (with N denoting the number of regions)
describing the genera structure of the regional dependence and o is a scalar parameter
related to its intensity, which usually has to be estimated. In this setting standard panel
estimation procedures (such as the least square dummy variable estimator — LSDV —
that uses mean centred variables) yield unbiased but inefficient parameter estimates and
biased estimates of the standard errors.

The second problem is the dynamic nature of our model given in (2.5). It iswell known,
that in this case standard panel estimators yield biased coefficients for short panels
(Nickel 1981). In the treatment of each of these problems the generalized method of
moments (GMM) estimation technique gained popularity (see Kelgjian and Prucha
1999 for the spatial cross-section, Arellano and Bond 1991 for the dynamic panel
variant). A unified GMM approach, however, that addresses both issues under fairly
general assumptions, considering the restricting necessary assumptions and the resulting
highly complex moment conditions, seems out of sight. To overcome these problems,

we propose a two-step procedure, which involves

human capital as no data are available for our sample for the whole period of investigation.



 filtering of the datato remove spatial effects and subsequently

» theapplication of astandard estimator for dynamic panels.
The first step provides a transformation of the data so that it fulfils the assumptions
(spatia independence) required in the second stage, which in turn will yield consistent
parameter estimates of a “spaceless’ version of model (2.5). Note that such a procedure
is justified by having ruled out any interspatio-temporal correlations (i.e. Cov(Ui,Ujs) =
Ofori4 andt=s).

3.1 Spatial Filtering

The am of the spatia filtering techniques is to rid the data of regional
interdependencies as imposed by — say — a SAR, thus alowing an analyst in the second
step to use conventional statistical techniques that are based on the assumption of
spatially uncorrelated errors (such as OLS or, as is more relevant here, dynamic panel
GMM). Recently, two well established spatial filtering methods have been reviewed and
compared by Getis and Griffith (2002), one based on the local spatial autocorrelation
statistic G; by Getis and Ord (1992), the other on an eigenfunction decomposition
related to the global spatial autocorrelation statistic, the Moran’s |. In the following we
briefly describe and eventually employ the first technique, which is equally effective but
more intuitive and computationally simpler.

The G; dtatistic, which is the defining element of the filtering device, was
originally developed as a diagnostic to revea local spatial dependencies that are not
properly captured by global measures as the Moran’s I. It is defined as a distance-

weighted and normalized average of observations (xy,...,Xn) from arelevant variable:

Gi(9 = 2jwij(d %/ 2%, 1 #]. (3.1)
Here, wij(d) denotes the elements of the spatial weight matrix W, which is
conventionally row-standardized and usually depends upon a distance parameter o
(observations which are geographically further distant are downweighted).
Consequently, the G; statistic varies with this parameter too and a proper choice of dis

required for practical applications. Moreover, from (3.2) the difference to Moran's I,

which can be written as similarly defined from centred variables

1(9) = 2% wiy(d) (6 =X) (6 =X) /5 (x=%X)* 1#]. (32)



as a global characteristic becomes evident. Both statistics can be standardized to
corresponding approximately Normal(0,1) distributed z-scores zg; and z, which can be
directly compared with the well-known critical values (e.g. 1.96 for 95% significance). >
Since the expected value of (3.2) (over al random permutations of the remaining
N-1 observations) E[Gi(J)] = 2j w;(J) / (N-1) represents the realization at location i
when no autocorrelation occurs, its ratio to the observed value will indicate the local
magnitude of spatial dependence. It isthen natura to filter the observations by

%= %[5 wi(d)/ (N-1)] / G(9), (33)
such that (x —X ) represents the purely spatial and X the filtered or “spaceless’

component of the observation. Getis and Griffith (2002) demonstrate that if dis chosen
properly the z corresponding to the filtered values X will be insignificant. Thus by
applying this filter to al variables in a regression model (dependent and explanatory
variables) we can assume to effectively remove the undesired spatial dependencies,
which can eventually be checked by calculating the z corresponding to the residuals of
thisregression.

The remaining practical problems are the choices of the structure of W and the
locality parameter O the regional weighting scheme. As most researchers in a similar
context, e.g. Niebuhr (2001), we model the distance decay by a negative exponential

function, i.e.

wij(J) = exp(=ad;), 0<I<oo, (3.4)
with d;; denoting the geographical distance between the centres of the regionsi and j. It
turns out that while the choice of the structure does not have decisive impact on the
outcomes, the choice of 0 is more delicate. Getis (1995) discusses several methods to
determine 6, anongst them the value that corresponds to the maximum absolute sum

over all locationsi of the z-scores of the G; related to a specific variable, i.e.

5 = Argmaxs 3 |z (). (35)
This also proved to be the most appropriate criterion for our problem. Note, that rather

than comparing different J, the scaling of which is rather meaningless, we will compare

2 The exact distribution of Moran’s | - depending upon a variety of assumptions - may possess a rather
complicated form and we thus refrain from using it here; for a detailed elaboration of the issue refer to
Tiefelsdorf (2000).



localities by the so-called half-life distance diy, = dmin + In(2)/J, which is the
(approximate) distance after which the spatial effects are reduced to 50% (dni, denotes
the average distance between centres of neighbouring regions).

Although so far only applied in a cross-section setting, the extension of the spatial
filtering technique to a panel data model is straightforward. For every separate point of

timet al relevant variables are filtered according to a predetermined W(Si), i.e. we will

allow variation with respect to locality over variables and time but not structure of the

spatia weighting scheme.

3.2 Estimation in dynamic panels

As shown by Nickell (1981), the LSDV estimator yields biased estimates in the case of
dynamic panels. Although this bias tends to zero as T approaches infinity, it cannot be
ignored in small samples. Using Monte Carlo studies, Judson et al. (1996) find that the
bias can be as large as 20 per cent even for fairly long panels with T=30.

The most commonly used estimator for dynamic panels with fixed effects in the
literature is the GMM estimator by Arellano and Bond (1991). Thereby, the fixed
effects are first eiminated using first differences. Then an instrumental variable
estimation of the differenced equation is performed. As instruments for the lagged
difference of the endogenous variable — or other variables which are correlated with the
differenced error term — all lagged levels of the variable in question are used, starting
with lag two and potentially going back to the beginning of the sample. Consistency of
the GMM estimator requires a lack of second order serial correlation in the residuals of
the differenced specification. The overall validity of instruments can be checked by a
Sargan test of over-identifying restrictions (see Arellano and Bond, 1991). In growth
analyses, the GMM estimator was first applied in the influential paper of Caselli et al.
(1996).

Applying the procedure to (2.5) we have

Alny, = )Alny, , + fAInx, + Ay, +An +Av,  fort=3,..T,andi=1, .., N
(3.6)
where y;,_, and al previous lags are used as instruments for Ay, assuming that

E[v,u,]=0for i=1,.N and s#tand exploiting the moment conditions that



Elyi,_sAv; |=0for t=3..,Tand s> 2. Of course, differencing cancels out the fixed

effect (A = 0).

The GMM estimator in first differences has been critisized recently in the
literature, as Blundell and Bond (1998) argue that in the case of persistent data and a y
close to one, the lagged levels are likely to be poor instruments for first differences. As
shown by Bond et al. (2001) an indication for weak instruments might be that the
coefficient obtained with the GMM estimator in first differences is close to the
coefficient from the within estimator, which tends to show a downward bias in the
dynamic panel (Nickel 1981). An upper bound for the coefficient of the lagged
endogenous variable is provided by the simple pooled OLS-estimator of a panel data
model, which is seriously biased upwards in the presence of fixed effects. A reasonable
parameter estimate should thus lie within this range. Blundell and Bond (1998) suggest
a system GMM estimator, where a system of equations is estimated in first differences
and in levels. The (T-2) differences equations, given by (3.6) are supplemented by the
following (T-1) levels equations

Iny, =yIny,,+BInx, +y, +n, +u,, fort=2,...,T,andi=1, .., N,
(3.7
where lagged first differences are used as instruments® for the additional equations,

based on the assumption that E(y;Ay,,) =0 fori = 1,...,N, which (together with the

standard assumptions for (3.6)) yields the additional moment conditions
E(u,ly; ) =0fori=1..,Nandt=34,.., T, u, =4 +u;.* Again, the vaidity of

instruments can be checked by the Sargan test and the validity of additional instruments
by the Difference Sargan test.

Using Monte Carlo studies, Blundell and Bond (1998) showed for the AR(1)
model that the finite sample bias of the difference GMM estimator can be reduced
dramatically with the system GMM estimator. Similar results were obtained for a model
with additional right-hand side variables by Blundell et a. (2000). In an application to
growth empirics, Bond et a. (2001) re-estimated the model by Caselli et a. (1996), who

% Note that there are no instruments for the first observation y;, available.

* Note that this requires the first moment of y; to be stationary. Including time dummies in the estimation
is equivalent to transforming the series into deviations from time means. Thus any pattern in the time
means is consistent with a constant mean of the transformed series of each country (Bond et al. 2000).
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obtained a convergence rate of 12.9 per cent using the Arellano-Bond estimator. Bond
et a. (2001) expect that this high rate is due to the downward bias of the coefficient of
lagged income, appearing with the GMM estimator in first differences in the case of
weak instruments, as the coefficient is below the value of the LSDV estimator. Using
the system GMM estimator, they arrive at a speed of convergence of 2.4 per cent, which
issurprisingly close to the results of many cross-section studies. These studies clearly
show that it will be important to check the sensitivity of the results with respect to this

potential weak instruments problem.

4. Results of estimation

Before presenting the results of the estimation we discuss the spatial properties of the
data. Since the regions in our sample are no closed economies and thus maintain a
number of interactions with each other, we expect strong spatial correlation in our data.
Table 1 shows the results of a Moran’s | test on our dependent variable (y) and the
regressor (X) in equation (2.5), performed on each of the 6 cross-sections with 194
regions (1975, 1980, 1985, 1990, 1995, 1999), which comprise our total panel data
sample. As expected the results show very strong spatial correlation; the standard
normally distributed Moran’s | values range from 25 to 26 with income (y) and 13 to 21
with the regressor (x). Thus, we go on to filter our variables as outlined in section 3.1

(see equation (3.3)) to obtain X and y.; overal, the results show that the filtering

procedure removes successfully the spatial correlation from the variables. The

significant joint test for . is due to the cumulation of negative values and should not be

overstressed, given that the cross-section tests indicate no spatial correlation. After all,
the huge Moran’s | values of the original variables are reduced dramatically. Table 1
aso indicates the resulting half life distance (di), after which interactions have
decreased by 50 per cent. Note that dy/, isimplied by the value of J, which is alowed to
vary over variables and time and chosen according to criterion (3.5). These results show
that the half life distance for both variables is approximately 130 kilometres (95 per cent
within 600 kilometres). Given the average size of Nuts 2 regions the conclusion is that
most of the economic interactions take place within the neighbouring regions. That
(technology) spillovers are geographically rather limited because of the importance of

11



face-to face contacts was suggested by Audretsch and Feldman (1996) and Krugman
(1991). Empirically, Paci and Pigliaru (2001) found that productivity growth of an EU
region is highly correlated with those of its neighbouring regions when estimating
spatial lag models. Paci and Usai (2000) detect R& D spillovers between Italian adjacent
regions. Funke and Niebuhr (2000) investigate R& D spillovers with spatial interaction
models for West German regions and find a significant contribution of R&D spillovers
to productivity growth which decay fairly fast with distance. Bottazzi and Peri (1999)
regard EU regions and similarly find that local clustering, i.e. spillovers, isimportant for
R&D results, while R& D spillovers quickly fade with distance.

Table 1 —Test for spatial correlation of the variablesin (2.5)

o~ ~

X X y Yi
z (75) 2571 dyp = 135 -1.09
z (g0) 21.68™ di, = 127 1.24 26.30"" dy, = 133 -1.14
z (gs) 15.99" dyp = 122 -1.27 2485 dy, = 133 -1.81°
Z (o0) 15.99™ dy, = 118 -0.81 2359 dyp = 136 -1.47
2 (o5 13.32"" dyp= 119 -2.017 26.34" dyp = 133 -1.58
Z (99) 13.66 dyp= 117 1.74 26.17" dyp = 133 -1.27
z (joint) 16.13" -0.22 2550 -1.39™

" indicate significance at the 1, 5 and 10 per cent level. — z-values are standardised Moran's | values
(see equation (3.2)), which are assumed to be standard normally distributed under the null of no seria
correlation (standardization based on expectation and variance as given in Tiefelsdorf (2000), joint
statistic is based on average of individual values and is distributed with a mean of zero and a standard
deviation of 1/V5 (x), respectively 1/V6 (y). —dy, is expressed in kilometres and refers to both the original
and the filtered variables.

Tables 2 and 3 present the results of our estimation for equation (2.5) using different
estimators for both the original data and the spaceless models with the filtered variables.
Our sample comprises 194 cross-section units; the data refer to 5 year intervals over the
time period 1975 to 1999.° A detailed description of the data used in the estimation of
(2.5) isgiven in the Appendix.

®> As we have no data on the year 2000, the last time period covers only four years. This implies an
average 1 of 4.75, which we use to recover the structural parameters of our model.
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Table 2 — Results of estimation of model (2.5) (unfiltered variables)

dependent variable: yi;

oLs? LSDV? GMM-FD? GMM-SYS?
constant” 0.002""" 5.048 5.614 -0.691
(14.69)
Vi1 1.007"" 0474 0.353" 1.092""
(138.13) (13.07) (4.44) (20.24)
Xit 0.035 " 0.151"" 0.213™ 0321
(3.05) (9.42) (6.44) (10.37)
implied structural coefficients
A - 0.157 0.219 -
a - 0.223 0.248 -

Instruments diagnostics
Sargan® 7.76 (4) 27.897 (8)
Diff-Sargan® 20.13™" (4)

Moran's | tests of residuals”

Z (ess) 526" 1295 13.44°" 567
Z (es0) 1155 452" 536 973"
Z (egs) 6.74" 11.98™ 16.50 " 14.05"
7 (ego) 21.93" 16.30" 15.27"" 19.39"
z (joint) 11377 1144 12.65 " 12217
R 0.965 0.983 0.960 0.944
obs. 776 776 776 970

*k K

Numbers in parentheses are t-values, respectively degrees of freedom of the test statistics. —
indicate significance at the 1, 5 and 10 per cent level. — All models estimated including time-specific
effects. — Y OLS-estimation of pooled data gcommon intercept) — 2 Least squares dummy variable
estimation, based on mean centred data — ¥ two-step GMM estimator, based on first differences
(Arellano and Bond 1991); the third and fourth lags (Vi «.3, Yit.4) Were used as instruments for Ay, (sSmilar
as in the case of the levels equations in the system estimator, there are no instruments for the first
observation; the third lag was chosen because the use of lag two resulted in a significant Sargan test). — ¥
two-step GMM system estimator, based on first differences and levels equations (Blundell and Bond,
1998), the first lagged difference (Ay; 1) was used as instruments for v, (starting with lag two leads to no
improvement in the Sargan test).— The variable x is treated as exogenous; no improvement in the Sargan-
test is attainable, if x isinstrumented, too. — t-statistics refer to two —step estimates; significance levels do
not change, if two step or one step robust estimates are used. —  constant (in OLS), respectively average
of fixed effects 14 — ® Sargan validity of instruments test: under H, of valid instruments distributed x*
with p-k degrees of freedom, where p is the number of columns in the instrument matrix and k is the
number of variables; Differences-Sargan test of the validity of the additional instruments in the levels
equations of the system, calculated as difference between Sargan (system) and Sargan (first differences).
— 7 Moran's |; see Table 2; half life distances of endogenous variable were used. — R? calculated as
squared correlation between y;; and ¥, . — GMM estimators were calculated using the DPD98 Software for

GAUSS (Arellano and Bond 1998).
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Let usfirst look at the results, if spatial dependence is not taken into account (table 2).
The coefficient of lagged income varies considerably according to the estimation
procedure. The OLS coefficient is dightly larger than one indicating an absence of
convergence. It goes down to 0.47 with the LSDV (within groups) estimator and still
further to 0.35 with the difference GMM estimator. The coefficient varies in the
expected way. The OLS coefficient is expected to suffer from an upward bias in the
presence of fixed effects (Hsiao 1986), the within groups estimator from a serious
downward bias in adynamic panel (Nickell 1981, Judson et al. 1999). The coefficient of
the difference GMM estimator may even be more downward biased than the LSDV in
the case of weak instruments (Bond et al. 2001). A plausible parameter estimate should
lie between the LSDV and the OLS estimate (Bond et a. 2001, Blundell and Bond
1995), aresult which has been obtained by using the system GMM estimator (Y udong
and Weeks 2000, Bond et a. 2001). However, note that in our case we obtain the
surprising result that the coefficient exceeds that of the OLS estimation, which may be
due to a misspecification of the model in the presence of spatia effects and invalid
instruments (see below). The coefficient of net investment is implausibly low with the
OLS estimator and increases with the LSDV and the dynamic panel estimators. The
implied capital elasticity ranges from 0.22 to 0.24.

Looking at the Sargan tests and the Difference Sargan test, we have to note that
the instruments employed with the system GMM estimator are invalid. The test would
rather suggest that the difference GMM estimation operates with correct instruments
although there remain some doubts on their quality, because the coefficient is even
below the LSDV estimate. If the difference GMM was our "preferred" specification, we
would conclude from this estimation that the convergence speed is 21.9 per cent and
capital elasticity 0.25.

This convergence coefficient from the first differences GMM estimate is even
higher than the results reported by other panel data convergence studies. With the
difference GMM estimator, Caselli et al. (1996) obtain a convergence rate of 12.9 per
cent, Tondl (2001) of 21 per cent, Panizza (2002) of 14.4 per cent. (Also with LSDV
our results resemble those of other studies, for example, de la Fuente (1996) finds a
convergence rate of about 10 per cent, Deininger and Olinto (2000) of 16.3 per cent,
Yudong and Weeks (2000) of 19.3 per cent.) If we did not care about spatial
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dependence, that would probably be the (unfortunate) end of our estimation exercise.
However, if we look at the Moran's | statistic of the residuals which indicates serious
gpatial correlation, it is evident that the above results are potentially misleading due to a

model misspecification and that we have to take spatial dependencies into account.

Table 3 — Results of estimation of model (2.5) (based on spatialy filtered variables)

dependent variable: y,

oLsY LSDV? GMM-FD? GMM-SYS?
constant 0.718™ 6.692 5.614 2.712
(5.78)

Vs 0.932"" 0.305 0416 0720
’ (71.75) (7.80) (3.56) (13.73)

X, 0.1217" 0.156 0.228"" 0.214""
' (8.92) (8.47) (5.93) (8.92)

implied structural coefficients

A 0.015 0.250 0.184 0.069
a 0.640 0.183 0.281 0.433

Instruments diagnostics
Sargan® 3.85 (4) 11.32 (8)
Diff-Sargan® 7.48 (4)

Moran's | tests of residuals®

2 (€ss) 3217 -1.19 -1.54 216"
z (ex) -1.37 -1.22 -1.04 -1.38
Z (€os) 0.55 1.93" 340 325
Z (€90) 231" 1.74 1.29 0.39
z (joint) -0.43 0.32 0.53 0.03
R 0.932 0.941 0.917 0.928
obs. 776 776 776 970

Notes: see Table 2 and Table 1 (for Moran's 1). R? calculated as squared correlation between y
and[y +(y - ).

Therefore we re-estimate model (2.5) with the spatialy filtered variables ¥ and X . The

results are reported in table 3. If we compare the size of the coefficients of lagged
income, the consideration of spatial dependence obviously has a significant impact on

convergence. The coefficients of lagged income change considerably. With OLS it is
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now below one, the other estimates follow the expected pattern where the LSDV
coefficient is heavily downward biased. Both the coefficients of the difference GMM
and of the system GMM now lie within the bound given by the OLS and LSDV
coefficient. The Sargan test statistics suggest that both estimators use valid instruments
and that the additiona instruments of the syssem GMM are correct. The difference
GMM estimates are close to the LSDV results which is considered to indicate a weak
instruments problem. We therefore give preference to the results from the system GMM
specification which indicates a rate of convergence of 6.9 per cent and a capital
elasticity of 0.43. Our results are similar to the coefficients found with these estimators
in the convergence studies of Yudong and Weeks (2000) and Bond et al. (2001), both
with respect to the size of the coefficients and their relative magnitude. In line with
these authors, our findings cast further doubt on the high convergence rates obtained in
previous panel data studies.

The effectiveness of the spatial filtering procedure becomes evident from the
Moran's | statistics of the new residuals. Spatial correlation has practically disappeared,
although there still seems to be a small rest of spatial correlation for the observation
1995. From this analysis we can point to two important findings. First, we see that
correct treatment of spatial dependence is essential in regional convergence analyses
and that this can be effectively done with a spatia filter. Using this filter, one can
continue to use a dynamic panel data framework. Second, we have seen how sensitive
the results from panel data analysis can be with respect to the chosen estimator.
According to our results we have to rgect the extremely high rates of convergence
reported by previous panel data studies. Our estimated convergence rate of 6.9 per cent
gives a more plausible case. This convergence speed corresponds to a half-life time of
10 years, after which regions would reach their individual steady state income, which is
determined by region specific factors.

5. Conclusions

In this paper, we estimated the speed of convergence for a broad set of EU NUTS 2
level regions over the period 1985-1999. The objective of this study was to address a

major econometric problem in regional convergence analysis. How to account for
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spatial effects in a dynamic panel data model? This estimation problem departs from
two important issues. First, regions are no closed economies but show intensive
economic interactions with each other. Therefore, one has to expect spatial dependence
in the observations. Second, making inference on convergence in a panel data model
means that one has to chose a consistent estimator for a dynamic panel data model.
Since there exists no dynamic panel data estimator which accounts for spatial
dependence we propose a two-step procedure, which involves filtering of the data to
remove spatial effects (step 1) and the application of a standard GMM estimators for
dynamic panels (step 2).

Our analysis shows that EU regional data at the NUTS 2 level exhibits a large degree of
spatial correlation. Our variables, regional income and investment are highly dependent
on that of other regions as shown by the Moran’s | statistic. Our first regression analysis
that does not account for this fact yields regression residuals with a high degree of
gpatia correlation. This indicates that a common model that neglects spatial factors is
misspecified and yields misleading results.

We show that the estimation of our convergence model with the spatially filtered
observations removes successfully spatial correlation and that it changes our results on
convergence substantially. We now found evidence for convergence with al relevant
estimators as opposed to the model with the unfiltered data. The parameter estimates
with different panel data estimators now lie within a range and in relationship as
proposed by panel data econometrics.

As severa recent studies in the empirical growth literature, we found that the
system GMM estimator performs best. With this estimator we obtain a convergence
speed of about 7 per cent and an output elasticity of capital of 0.4. Thisindicates a more
modest and more plausible convergence process than proposed by previous panel data
convergence analyses for EU regions.
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Appendix

Data

Iny, = GVA/POP gross value added per capitain million ECU at timet (1990 prices,
1990 exchangerate) (t =1, ..., 6).

S, = investment-ratio = INV;/GVA, average of the (five year) period (t = 2, ..., 6).

ni; = growth of population over the (5 year) period t to t-1, calculated as differencesin
natural logs (t=2, ..., 6).

git = growth of technological progress, « i; = depreciation rate of capital stock; (g + «)
isassumed to be equal to 25 per cent for al regions over the 5 year period t to t-1 (t = 2,
vy B).

INV;; = investment expenditures (including public investment) in million ECU (1990
prices, 1990 exchange rate)

GVA;; = gross value added in million ECU (1990 prices, 1990 exchange rate)
POP;; = population in 1000 persons.

i =1, ..., 194 European regions (all NUTS2 regions of the EU-15 countries as
available in the Cambridge Econometrics dataset, part of the regions had to be
eliminated due to missing data or because they turned out as obvious ouliers****), t = 1,
..., 6 (1975, 1980, 1985, 1990, 1995, 1999). All data were taken from the Cambridge
Econometrics Dataset (2001). Distances between capitals of the NUTS2 districts were
kindly provided by Eurostat.

original data set: 212 regions (Cambridge econometrics)
**** of the originally 212 regions we had to exclude the following 18 regions:
BE34 Luxembourg

DE4 Brandenburg

DE8 Mecklenburg-Vorpomm.

DED1 Chemnitz

DED2 Dresden

DED3 Leipzig

DEE1 Dessau

DEE2 Hadle

DEE3 Magdeburg

DEG Thuringen

ES63 Ceutay Mdilla

FR91 Guadeloupe

FR92 Martinique

FR93 Guyane

FR94 Reunion

PT15 Algarve

PT2  Acores

PT3 Madera
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INCLUDED REGIONS (194)

ATI11
AT12
AT13
AT21
AT22
AT31
AT32
AT33
AT34
BE1
BE21
BE22
BE23
BE24
BE25
BE31
BE32
BE33
BE35
DE11
DE12
DE13
DE14
DE21
DE22
DE23
DE24
DE25
DE26
DE27
DE3
DES
DE6
DE71
DE72
DE73
DE91
DE92
DE93
DE%4
DEA1
DEA2
DEA3
DEA4
DEA5
DEB1
DEB2
DEB3
DEC
DEF
DKO1

24

Burgenland
Niederosterreich
Wien

Karnten
Steiermark
Oberosterreich
Salzburg

Tirol

Vorarlberg
Bruxelles-Brussel
Antwerpen
Limburg
Oost-Vlaanderen
Vlaams Brabant
West-Vlaanderen
Brabant Wallon
Hainaut

Liege

Namur

Stuttgart
Karlsruhe
Freiburg
Tubingen
Oberbayern
Niederbayern
Oberpfalz
Oberfranken
Mittelfranken
Unterfranken
Schwaben
Berlin

Bremen
Hamburg
Darmstadt
Giessen

Kassd
Braunschweig
Hannover
Luneburg
Weser-Ems
Dusseldorf

Koln

Munster
Detmold
Arnsberg
Koblenz

Trier
Rheinhessen-Pfalz
Saarland
Schleswig-Holstein
Hovedstadsreg.

GR11
GR12
GR13
GR14
GR21
GR22
GR23
GR24
GR25
GR3
GR41
GR42
GR43
[EO1
[EO2
IT11
IT12
IT13
IT2
IT31
IT32
IT33
IT4
IT51
IT52
IT53
IT6
IT71
IT72
IT8
IT91
IT92
IT93
ITA
ITB
NL11
NL12
NL13
NL21
NL22
NL23
NL31
NL32
NL33
NL34
NL41
NL42
PT11
PT12
PT13
PT14

Anat.Mak.

Kent. Makedonia.
Dytiki Makedonia
Thessdia

Ipeiros
loniaNisia
Dytiki Ellada
Sterea Ellada

Pel oponnisos
Attiki

Voreio Aigaio
Notio Aigaio
Kriti

Border

Southern and Eastern

Piemonte
VdledAosta
Liguria
Lombardia
Trentino-Alto Adige
Veneto
Fr.-VeneziaGiulia
EmiliaRomagna
Toscana

Umbria

Marche

Lazio

Abruzzi

Molise

Campania

Puglia

Basilicata
Calabria

Sicilia

Sardegna
Groningen
Friesland

Drenthe

Overijssel
Gelderland
Flevoland

Utrecht
Noord-Holland
Zuid-Holland
Zeeland
Noord-Brabant
Limburg

Norte

Centro
LisboaeV.do Tgo
Alentgo



DKO02
DKO03
ES11
ES12
ES13
ES21
ES22
ES23
ES24
ES3
EXL
ES42
ESA3
ES51
ES52
ES53
ES61
ES62
FI13
Fl14
FI15
FI16
Fl17
FI2
FR1
FR21
FR22
FR23
FR24
FR25
FR26
FR3
FR41
FR42
FR43
FR51
FR52
FR53
FR61
FR62
FR63
FR71
FR72
FR81
FR82
FR83

O. for Storebadlt
V. for Storebaelt
Gdlicia

Asturias
Cantabria

Pais Vasco
Navarra

Rioja

Aragon

Madrid
Cadtilla-Leon
CadtillarlaMancha
Extremadura
Cataluna

Com. Valenciana
Baleares
Andalucia
Murcia

[ta-Suomi
Vali-Suomi
Pohjois-Suomi
Uusimaa
Etela-Suomi
Aland

Ile de France
Champagne-Ard.
Picardie
Haute-Normandie
Centre
Basse-Normandie
Bourgogne
Nord-Pas de Calais
Lorraine

Alsace
Franche-Comte
Paysdelaloire
Bretagne
Poitou-Charentes
Aquitaine
Midi-Pyrenees
Limousin
Rhone-Alpes
Auvergne
Languedoc-Rouss.
Prov-Alpes-Cote d'Azur
Corse

PT15
SEO1
SEO02
SEO4
SEO06
SEO7
SEO08
SEO09
SEOA
UKC1
UKC2
UKD1
UKD2
UKD3
UKD4
UKD5
UKE1
UKE2
UKE3
UKE4
UKF1
UKF2
UKF3
UKG1
UKG2
UKG3
UKH1
UKH2
UKH3
UKI1
UKI2
UKJ1
UKJ2
UKJ3
UKJH4
UKK1
UKK2
UKK3
UKK4
UKL1
UKL2
UKM1
UKM2
UKM3
UKM4
UKN

Algarve

Stockholm
OstraMélansverige
Sydsverige

Norra Médlansverige
Mellersta Norrland
Ovre Norrland
Smaland med oarna
Vastsverige
TeesValley and Durham
Northumb. et al.
Cumbria

Cheshire

Greater Manchester
Lancashire
Merseyside

East Riding

North Y orkshire
South Y orkshire
West Y orkshire
Derbyshire

Leics.

Lincolnshire
Hereford et al.
Shrops.

West Midlands (county)
East Anglia
Bedfordshire

Essex

Inner London

Outer London
Berkshire et al.
Surrey

Hants.

Kent

Avon et al.

Dorset

Cornwall

Devon

West Wales

East Wales

North East Scot.
Eastern Scotland
South West Scot.
Highlands and Islands
Northern Ireland
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