

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

PROCEEDINGS

OF THE

CARIBBEAN FOOD CROPS SOCIETY

12th ANNUAL MEETING JAMAICA

1974

INPLUMNCE OF THE PART OF THE LEAF ABD LEAF RANS OP
 PLATIAINS ON II'S HOTRILNT CONTENT

G. Samuels \& A. Beale
Agric. Expt. Station, University of Puerto Rico
\section*{INTRODUCTION}

Fertilizer ranks as one of the lergeat direct cost a farmer has in growing high yielding crops. The correct recommendations of fertilizer for a given crop In a given soil can mean increased yields with no excessive fertilizer costs. The problem is one of deternining a practical method of evaluating the fertilizer needs of the crop in the soils where $1 t$ is growing.

Soil and plant anslyses are used to evaluate the fertilizer requirementa of the soil and ita crop. Foliar analyses has become a valuable guide in thia woric, eapecially because of $1 t s$ value for nitrogen recommendations and ita anaitivity to variablea which effect the growth of the crop. Foliar diegnosis is being used as a practical guide to Fertilizer usage for augarcane (Samuela, 1969) and pineapplea (Sanford, 1962).

Little information is avallabie as to use of foliar analyais as a guide for fertilizing plantaina (Musa paradigiaca) an important food crop in Puerto Rico. Reaearch work has been initiated at the Agronomy and Soila Department, Agricultural Experiment Station to determine the fertilizer requirementa of plantaina and how beat to evaluate these needs. This paper deals with the findings in the leaf tissue and its possible role in foliar diagnosis for plantains.

MATERIALS AND METHODS

Abstract

A fertilizer experiment with plantaina on a Corozal clay, a Ulisol, pH 5.2, In the humid mountain regions of Puerto Rico was utilized as a dource for material In this work, and consiated of N and $K_{2} O$ at 4 levels: $101,202,403$, and 605 Kg/ha (90, 180, 360 , and $540 \mathrm{lbg} / \mathrm{A}$) and $\mathrm{P}_{2} \mathrm{O} 5$ at 2 levela: 0 and $112 \mathrm{~kg} / \mathrm{ha}$ (100 1bs/A). When one element was varied, the other two fertilizer elements were held at constant level of N at $202 \mathrm{Kg} / \mathrm{ha}, \mathrm{P}_{2} \mathrm{O}_{5}$ at $112 \mathrm{Kg} / \mathrm{ha}$ and $\mathrm{K}_{2} \mathrm{O}$ at $404 \mathrm{Kg} / \mathrm{ha}$. All treatments received $202 \mathrm{Kg} / \mathrm{ha}$ of $\mathrm{MgO}(180 \mathrm{lbs} / \mathrm{A})$, and total fertilizer was applied in 3 applications: 1, 3, and 10 months after planting on June 6, 1973.

The experiment was replicated 6 times in rectangular-lattice design. The plot consisted of 9 trees total planted 1.82 mx 1.82 m in 3 rows $\mathrm{m}_{\mathrm{m}} \mathrm{m}$ a 2.13 m space between plots. Leaf samples were taken at 4,6 , and 9 months after planting. Leaf No. 1 Was designated as the first fully-opened leaf counting from the tope

RESULTS AND DISCUSSION Part of Leaf In very few cases 16 the entire plantain leaf taken at sampling used for chemical analysea. To aave apace and time in drying the leaf materiala, and in grinding, only a portion of the plantain leaf $1 s$ used. If the plaintain leaf were

rather uniform in its nutrient composition along its long axis, there would be no particular concern about a little variation as to what part of the lear was ued. However, this ia not $s o$, for there ia quite a large variation in nutrient composition for various aections of the lear as shown in Table 1.

Both in leaf blade and madrib, the m and Ca content increased from base to tip of the leaf. Leaf X, however, decreased from base to lear tip for both blade and midrib. Leaf P changed little from bage to tip with a trend to increase for midribmp only. There was no definite trend for change in leafmg from base to tip. The variations found in leat blade $N \mathrm{P}$ (and Mg for plantains were aimilar to those obtained by Twyord and Coulter (1964) for bananas in the windward Islands; however, they found that leaf-blade Ca decreased from base to tip. The variation in lear N P K composition in leaf lamina and midrib for plaintains was also similar to those For sugarcane (Samuele 1967).

The data indicates that plantain lear does not have a uniform nutrient composition along ita long exis. Therefore, to ingure aceuracy in foliar-diagnosis work it is neceseary that the leaf sample be taken from the sameportion of the leaf each time. The use of vigual estimates of the leaf center is not sufficiently accurate to ensure consistent and uniform sampling if a portion of the leaf is to be ubed. A simple measurement of folding the leaf in half is a rapidmeans of finding the center of the long axis of the leaf. A ruler or mark on the cutting table or board will ensure that the same length of aection is taken from the leaf each time for analysea.

Aside from variations in nutrient composition along the long axis of the leaf, there is a difference in nutrient, composition between - leaf blade or lamina and the midrib. The differences are showingin table 2 under averages. The lear blade has a higher N and P and lower K content than the midrib. The Ca and Mg content 1a rather bimilar in both leaf blade and midrib. The higher N and P in the leaf blade or lamina as compared to the midrib has alao been found in the augarcane leaf (Samuela 1967).

Legf Rank

The influence of the leaf rank or number on the nutrient content of the plaintain leaf is shown in table 2. The leaf blade and aidrib N and Ca increased from second to fifth leaf with the increase being more than double for Ca, but only about 12% for N. The variation $1 n$ leaf K differed between blade and midrib with a decrease in K from second to fifth leat in the blade and an increase in the midrib.

There was no appreciable change in leat P for blade or midrib for leaves nog. 2 to 5. The aame was true for leaf-blade Mg with a siight trend to increase in midrib Mg from second to fifth leaf.

Murray (1960) working in sand culture, found that the banana leaf-blade N increased from first to fourth leaf then a progressive fall with increasing age or leaf number. Leaf-blade P and Mg was rather constant for all leaf number, and leaf-blede K had only a little fall with increasing leaf number. Leaf bladeaca
increased rapidly from first to fifth leaf. These findinga were quite similer to thoee found for the plantain leaf.

The leaf number containing the highest amount of the nutrient element being studied does not necessarily serve as the best criteria for foliarmaiagnosis recommendations. The leaf rank or number most sensitive to changes in available nutrient level to the plantain will give a better picture of the fertilizer neede of the plant. Using the fertilizer treatmenta with low and high level of $N T K$ as a guide, table 3 shows the differences in uptake of the nutrient in the leaf blade by leaf number.

For N, the largeat differences between N fertilizer application was detected In leaf No. 2, and differences decreased thereafter to leaf No. 5. Differences in phosphate application was hardly detected, with only leaf No. 4 showing a slight difference in leaf P. Leaf No. 4 gave the greatest difference in leaf K with differential potash application to the soil.

Hewitt (1955) in his work with bananas in Jamaica suggested leaf No. 3 for the most general indication of the nutrition of the tree. However, hig decision was based moreso on the fact that the third leaf had the highest N level and next to highest P and K levels as compared to leaves Nos. 1, 5, and 7. Table 2 indicates that for the leaf blade of plantains, using a criteria of highest level of the nutrient, the aecond leaf is best for N and $C a$ while $\theta_{n} y$ leaf from second to fifth was suitable for P and M. Yet, if we use the criteria of the leaf number showing greates eensitivity to differences in fertilizer levels (table 3), we obtain an entirely different picture with the second leaf best for N and the firth for K.

CONCLUSIONS

For foliar diagnosis with plantains this etudy auggests that the third. or fourth leaf gives the most general indicetion for $N P K$. The leaf blade or lamina is suggested as the most. general indicator for $N P K$ as compared to the leaf midrib. The use of a constant aection near the center of the leaf is indicated to avoid variation in sampling along the long axis of the leaf. The preliminary findings of this study with plantains does not differ greatiy with those obtained for benamas in choice of leaf-analysis tissue.

RERERENCES

Hewitt, C.W. (1955). Lesf analysis as a guide to the nutrition of bananas. Emp. J. kxp. Agric. 23: 11-16.

Murrey, D.B. (1960). The effect of major nutrients on growth and leaf analysis of the benans. Tropicel Agr. 37: 97-106.

Samuels, G. (1967). Influence of using various sugarcane leaves and parts of the sugarcane leaf on chemical composition. J. Agr. Univ. P.R. 54 (1) 22-8.
Samuels, G. (1969). Poliar diagnosis for bugarcane. Agric. Reaearch Publ., Rio Piedrag, Puer to Rico.

Banford, W.G. (1962). P1neapple crop-log concept and development. Better Crops with Plant Food 46: 32-43.

Twyford, I.T. and Coulter, J.K. (1964). Foliar diagnobis in banana fertilizer trials. Plant Anslysis and Fertilizer Problems 4: 357-70.

Table 1. - The Diatribution of Nutrient Elementa in the Plaintain Leaf*

Element Determined	Distribution of element in lear \% dry-weight basi							
	O-" Base	-12",	12-18',	18-24"	24-30"	, 30-36"	36-42"	$\begin{gathered} 42-48^{\prime \prime} \\ \text { T1D } \end{gathered}$
	Leaf blade							
N	4.27	4.47	4.67	4.82	5.07	4.96	4.82	4.81
P	. 32	.28	.27	.26	.25	. 27	. 26	. 27
K	7.06	6.71	6.36	6.09	5.93	5.79	5.70	5.49
Ca	. 64	. 72	- 81	.77	.89	.89	. 84	. 66
Mg	. 28	.33	. 28	. 29	. 24	.27	. 28	. 33
	M1drib							
N	1.33	1.35	1.39	1.53	1.66	1.75	1.95	2.03
P	. 12	. 12	. 12	. 11	.13	.15	. 15	. 1
K	12.96	13.09	12.23	12.33	11.79	11.68	11.66	-
Ca	. 55	.68	- 7	72	. 80	. 81	.86	\cdots
Mg	. 18	.14	.13	.14	.15	.15	.16	-

Table 2. - The Influence of Leat Rank or Number on the Distribution of Nutrient. Element in the Plaintain Leaf *

Leaf Number	Leaf nutrient content on a $\%$ dry-weight basia				
	N	P	K	Ca	Mg
	Blade				
2	4.33	0.27	5.72	0.39	0.31
3	4.57	. 28	5.31	. 58	. 34
4	4.66	.27	5.00	.75	. 31
5	4.76	. 27	4.88	. 84	. 30
Average	4.58	.27	5.18	.64	. 34
	M1drib				
2	1.25	0.12	9.34	0.35	0.29
3	1.31	. 12	9.90	. 49	. 31
4	1.32	. 13	9.93	.58	. 32
5	1.42	. 12	10.40	. 84	. 34
	1.33	. 12	9.89	.75	.32

* Average of 3 samplings at 5, 6, and 8 months of age.

Table 3. - The Difference in Nutrient Uptake by Plaintain Leavea by Leaf Radk a

Fertilizer	Nutrient content, \% drymeight, for leaves blade No.			
Element Lbe, acre	2	3	4	5
Hitrogen (N)				
N 404	4.37	4.63	4.75	4.83
101	3.91	4.33	4.58	4.68
Difference	. 46	.30	.17	. 16
Phosphorous (P)				
$\mathrm{P}_{2} \mathrm{O}_{5} \quad 112$	0.29	0.27	0.27	0.26
0	. 29	.27	.26	. 26
Difference	0	0	. 01	0
Potassium (K)				
$\mathrm{K}_{2} \mathrm{O} \quad 404$	6.68	6.20	5.96	5.92
104	6.62	6.03	5.51	5.52
Difference	. 06	.17	. 45	. 37

* Mean of leaf samplings at 6 and 9 monthe.

