

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

**PROCEEDINGS
OF THE
CARIBBEAN FOOD CROPS SOCIETY**

**12th ANNUAL MEETING
JAMAICA**

1974

VOLUME X11

STORAGE DISEASES OF CUSH-CUSH YAMS IN GUADELOUPE

P. Ricci-J.P. Torregrossa-J. Fournet

INRA-Antilles Guyane
Petit-Bourg, Guadeloupe.

Cush-cush yam in Guadeloupe (P.W.I.) is consumed mainly at Christmas and not at all after April. The reason is found in the poor keeping qualities of the crop. The loss occurs by drying and by diseases and pests. Among them the most important are ones caused by Penicillium and mealy bugs. This paper presents some possibilities of control we could propose.

1. Importance of Penicillium rot

Fourteen samples of one hundred tubers each were observed during a month in natural conditions (temperature 23°C, relative humidity 60-100%). We noticed 2 to 37% of rotted tubers with an average of 10%.

On 70% of the rotted tubers rots were due to Penicillium oxalicum.

On 6%, rots were due to Fusarium oxysporum and F. solani.

We have isolated in these cases as contaminants, some bacteria and nematodes (genera Aphelenchoides and Aphelenchus).

This is a confirmation of the importance of Penicillium oxalicum as a rot factor in cushion storage. There is no significant differences in susceptibility towards P. oxalicum among the main varieties used at the INRA plant breeding station. That is to say: INRA 3, 6, 22, 23, 25, 32, 35, 40, IRAT-22, Indian St. Laurent Yam, Indian Yam, Red cushion. It is possible to control the decay with fungicides. TABLE I shows that benomyl less than 0.3g/l AM could protect cushion tubers quite well during storage.

2. Importance of Mealy Bugs

During storage the population of Planococcus citri is frequently observed. The first larval stages are difficult to detect, but the presence of adult females (pink-white rounded body, 2-3 mm large) is easily observed in the skin hollows; they multiply rapidly when the tubers germinate. The mealy bugs spread then very quickly from one tuber to the others. Their effect is clearly seen on seed-tubers, which are killed or weakened, and on consumption tubers, the commercial value of which is greatly reduced.

Control could be obtained from using an insecticide (like malathion) or keeping the tubers in a cool dark room (temperature about 18°C). This practice gives good results in reducing

the multiplication of the mealy bugs (Fig. 1)

the germination of the tuber (Fig. 2)

the loss in dry matter (Fig. 3)

In conclusion we could propose:

For seed tuber: 24 or 48 h after harvest, wash the tubers in water and dip them 10 minutes in 0.5g/l malathion and 0.1g/l benomyl.

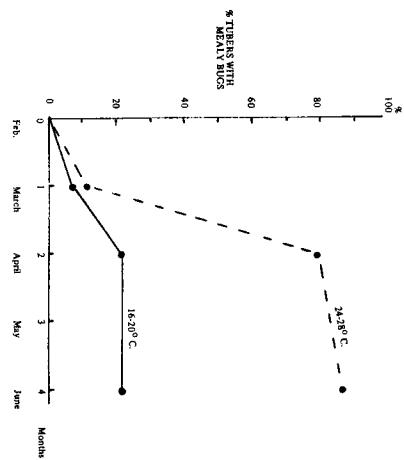


Figure 1. Effect of storage temperature on the variation of the percentage of tubers contaminated by *Phanacoccus citri* mealy bugs.

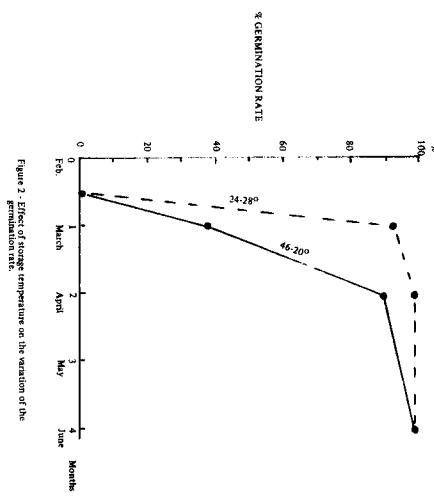


Figure 2. Effect of storage temperature on the variation of the germination rate.

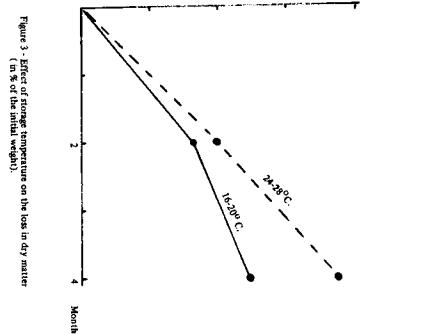


Figure 3. Effect of storage temperature on the loss in dry matter (in % of the initial weight).

For tubers to be used as food: The day after harvest wash the tuber in water, dip them 10 minutes in 0.25 g/l thiabendazole and store at 15°C (R.H.: 60-80%).

ACKNOWLEDGMENTS

We thank Dr. Coursey (Tropical Products Institute, London) and Mr. Panis (Station de Zoologie et Lutte biologique INRA Antibes) for the specific determination of Penicillium oxalicum and Planococcus citri respectively.

TABLE 1. Effect of 10 minutes' dipping in fungicides, at different times after inoculation by E. oxalicum, on the number of rotted tubers after a month (10 tubers by observation).

fungicide	thiabendazole			benomyl		
	0.1	0.3	1	0.1	0.3	1
concentration (g/l m.a.)						
delay between treatment and inoculation	1 day	1	0	0	0	0
	2 days	0	1	0	0	0
	3 days	4	3	1	0	0
	5-6 days	10	9	7	4	5
control		10			10	