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ABSTRACT

The risk properties of estimators of the scale parameter after a
pre-test for homogeneity of the error variances in the two sample
linear regression model has received quite an amount of attention in
the literature. This literature typically assumes normal disturbances
and a properly specified model. In this paper we consider that both
equations may be mis-specified by the omission of relevant regressors
and that the error distributions may belong to a wider class than the
normal distribution. We derive and analyse the exact risk (under
quadratic loss) of the pre-test estimator of the scale parameter for
the first sub-sample.

1. INTRODUCTION AND MODEL FRAMEWORK

We consider a simple heteroscedastic linear regression model in which
the error variance is constant within each sample but it may be

different between the samples,
nl_(ho° By . Z 0 7
Y2 0 % |k 0 2|7
y=XB+2Zy +e
where for i=1,2, A is a (Tixl) vector of observations on the

dependent variable, Xi is a known (Tiin) non-stochastic design matrix

of rank ki (<Ti)’ Zi is a fixed (TiXpi) matrix of full rank, 7, is a




(pixl) coefficient vector, and Bi is a (kix“ vector of unknown

parameters. Let T=T1+T2.

We assume that E(e.)=0, and that E(e.e.’):ozl . Let g{>=rrz /o2
i ii e. T, e’ e,

so that

Eee’) = : . )

€22
We suppose that e has a non-normal distribution of the form
f(e)=J'°°fN(e)f(-r)dr, where fN(e) is f(e) when e~N(0,122), and f(t) is
0]

supported on [0,®). Then c~: =E('rz), 0'2 =¢E('rz), and e has an
elliptically symmetric distribution2 (ESDN) wl’}en ¢#1 but a spherically
symmetric distribution (SSDN) when the error variances are equal.l’2
This is the commonly called scale mixture of normal distributions
family, of which the multivariate Student-t (Mt) distribution is the
most well known member. The Mt family arises if f(t) is an inverted

gamma density with, say, scale parameter o2 and degrees of freedom

2
parameter v. We then write e~Mt 0.(vo-;/(v-2))2 . For this member the
marginal distributions are univariate Student-t with thicker tails
than under a corresponding normality assumption for v<w. The kurtosis

increases as v decreases and v=w corresponds to normality.

. Rather than model (1) being estimated we suppose that the
proposed model is
y=XB+u , u~N[o,rr2 z] (3)
€2

which the researcher assumes is correctly specified. In fact, (3) is

lA discussion of this family of distributions is beyond the scope of
this paper. See, for example, Kelker (1970), Muirhead (1982), and
Dickey and Chen (1985).

2It would be relatively straightforward to extend our analysis to the
case of different mixing distributions for each sample when we have
independent mixing distributions. It is unclear, however, how we
would proceed if they are dependent.




mis-specified as u~ESDN(Z'a',0': ). Note that (3) reflects the fact
2

2_2 s . . .

=0‘e ,  i=1,2. The researcher is interested in estimating

i i

2 . . . .

o, but he is uncertain of the homogeneity of the error variances and
1

so conducts a pre-test of
Hy:¢=1 vs H:¢<1, (4)

where ¢ is a measure of the hypothesis error and we assume, for

that %

simplicity, a one-sided alternative hypothesis though the analysis

could be easily extended to the two-sided case.

Assuming the usual least squares estimators of the error
variances, the reseacher, mistakenly proceeding as if (3) is properly

specified, has three options for the estimation of 0‘: :
1
(1) He could assume that the variances are equal and use the

so-called always pool estimator of (rz , s; :

1
2

2 _ 2
Sy = (vlsl + vzsz]/(vl-wz) (5)

2 . =T - = . i
where si—(yi—Xibi) (yi Xibi)/vi' vi_Ti ki' and bi--(Xi Xi) Xi Yy
i=1,2.

(2) He could proceed as if the error variances are unequal,
ignore the second sample, and use the so-called never pool estimator

2 .

ofcrz,sN.

°

(6)
(3) He could undertake a preliminary test of the validity of Hy
and use s: if he accepts HO or sé if he rejects HO. As the researcher
assumes that model (3) is correctly specified, he uses the usual J
test for homoscedasticity, given by J = s2/s% and proceeds as if

2°°1
f(J)=¢ lf(F‘(v v))’ where F is a central F variate with v, and
2’1

(VZ’VI) 2
) degrees of freedom. Under this option, he is in fact using the

pre-test estimator slz,:

s2ifJ>c
N o
[0,c

Ns? + 1
s:if.lsc> 7oA

2
c’w)(.l )sN




where I[ 1(J) equals one if J lies within the subscripted range,

zero otherwise, and c¢ is the critical value of the pre-test
©

corresponding to a nominal test size of « such that [ f(l-‘(v v ))=oc.
c 2''1

Assuming normal disturbances, e~N(0,o'§Z), and a correctly

specified design matrix, the risk of slz,, defined as

p(cr2 .s-"’)=E.(sz-a~2 )2, is considered by Bancroft (1944), Toyoda and
31 P P &

Wallace (1975), Ohtani and Toyoda (1978), and Bancroft and Han

(19831).3 Figure 1 presents a typical relative risk function under
their assumptions, where the relative risk is R(s;)=p(0‘zl,s;)/u‘;.4

We see from Figure 1 that it is only preferable to pool the
samples around the neighbourhood of the null hypothesis and that we
should never use the never pool estimator, as there is a family of
pre-test estimators with ce(0,2) which strictly dominate this
estimator (see Toyoda and Wallace (1975)). Ohtani and Toyoda (1978)
prove that the pre-test estimator which uses c=1 has the smallest risk

of this dominating family.

Giles (1992) extends these aforementioned studies to the error
distribution framework considered in this paper, though she still
maintains the (unrealistic) assumption of a correctly specified design
matrix. In the case that she examines we know that the test statistic
J maintains the same null and non-null distributions as under normal
disturbances from the results of King (1979) and Chmielewski (1981).

Figure 2 illustrates typical relative risk functions under Mt

disturbances [e~Mt[O,(vc~;/(v-2))Z]] when v=5.

3A related, though not identical, pre-test problem is considered by

Yancey et al. (1983) and Ohtani (1987). Both of these studies also
assume normal errors.

4We lose no loss in generality in considering relative risk; the

results could equally be interpreted as the risk functions when 0'2=1.
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Figure 1. Relative risk functions for s:l, s:, and s; when e~N(0,o-;2),
v1=16, v2=8. kl=k2=3'

Relative Risk

Figure 2. Relative risk functions for s;,
2
e Mt(O.(vo-Z/(v-Z))z], vl-16, v2=8, k1=k2=3, v=5.




We see from Figure 2 that for non-normal disturbances we should
sometimes always pre-test, even if the error variances are equal.
Giles (1992) proves that the optimal critical value to use in these

circumstances is c=l.

In this paper we recognise that in reality departures from the
standard regression assumptions are likely to occur simultaneously and
we, accordingly, examine the risk properties of s;, s:, and s; when
the disturbances are elliptically symmetric and we have omitted
relevant regressors from the design matrix. The impact of excluding
regressors on the risk functions of the estimators of the "error
variance for this particular pre-test problem has yet to be examined
in the pre-test literature, even under normality. Other studies,
though, have investigated the effect of this mis-specification after
other pre-tests (see, for exampl;.. Ohtani (1983), Mittelhammer (1984),
Giles (1986), Ohtani (1987), Giles and Clarke (1989), and Giles
(1991b)).

To undertake this task we need to first examine the distribution
of the test statistic J, which is now no longer a function of a
central F variate under either the null or the alternative hypotheses.
We consider this in the next section. We follow in section 3 with the
derivation of the exact risk functions, and then in section 4 with
some numerical evaluations of these risk functions, assuming for the
purpose of this discussion that the variance mixing distribution is
inverted gamma so that our errors are Mt. The final section provides

some concluding remarks.

2. THE DISTRIBUTION OF J WITH OMITTED REGRESSORS

If the model is mis-specified in the way investigated here then both

the null and the non-null distributions of J depend on v the

v,
1 2
degree of mis-specification of the design matrix, and the variance
mixing distribution, f(r). This is shown by Theorem 1 and Corollary

1




Theorem 1. Under the stated assumptions, the density function of

_2,2.
J—sz/s1 is

v1/2+s v2/2+r v2/2+r-1

S
) e, o6 1 V2 J

r
©
_ -l 1 72
f)=¢"% = 3 -

r=0 s=0 2,1 (v +v,)/2+r+s
r!s!B[—z+r,——2-+s] [vl+v21] 172

v

o 2 .
J e-(91+92)/1 [rz]'(NS)f(-c)dr , . (8)
(o)

et 7 7 =1 - ’ -1,
where 91-7121Mlzl7l/(2¢). 62-1222M22272/2, Mi--I.I.i Xi(xixi) X{, and

B(.;.) is the beta function.
Proof. See the appendix.

Corollary 1. Under the null hypothesis, ¢=1, and

v ./2+s Vv _/2+r v_/2+r-1
© eservl V2 12

fH =35 =z 102 1 2

v v
r=0 s=0 2 1 (v, +v_)/2+r+s
r!s!B[ —2+r,—2+s] [ vl+v2.l} 12

00 2
x J’ e (010*85)/T [zz]"”s’f(r)dr , )
O

‘Z'M.Z

10°71%1M %772

where 6
Proof. As 61=910 when ¢=1, (9) follows from (8).

2 2 _2 2_2
If e~N(0,o-22) and, say, o-ez—a-z and o-el—crl, then from (8)

= -l e,
g =¢ f[F (10)

(Vz,vi;hz,?\l)]
where Ai=6i/tr;, i=1,2. Note that (10) does ﬁot collapse to a central
F density under ~H0; that is, the standard assumption that J has a
central F density under H0 is invalid if we have omitted relevant

regressors, irrespective of our assumption on the distribution of the




disturbances. So, there will be a difference between the nominal and

true sizes of the test.

In this section we have established the distribution of the test
statistic J which we use to test for the homogeneity of the error
variances. In the next section we derive the exact risk functions of

. 2
the never pool, always pool, and pre-test estimators of O -
1

3. THE RISK FUNCTIONS

Theorem 2. If we use the mis-specified model (3) rather than

the true model (1) when e~ESDN(0,aZ ) and the pre-test is of HO in
(4) then 2
¢2[vl(v1+2)E(r4)—vf[E(r2)]2+sels(fz)+4efJ/vf
= [¢2 [vl(v1+2)E(r4)+4(v1+2)61E(tz]-2vl(vl+v2) {E(rz)] 2
+ [zel-E(rz)(vlwz)] 2] +2¢ [vlsz(r4)-vz(vl+v2) [E(tz)] z
+2v2E(12)(61—62)+49162]+v2(v2+2)E('r4)+4(v2+2)62E(rz)+49;]
/(v1+v2)2

P [a‘z_ ,s;] = [<;$2(vl+vz)2 [vl(vl+2)E('r4)—vf [E(Tz)] 2+86lE(12)+49§]

1

© " .
2 4T i 2. T 2.T
(+J [¢ vz[-(2v1+v2)(vl(vl+2)r Qo4+4‘(v1‘+2‘)611 QO6+491008]

2 2T T 2 4T
+2E(T )vl(v1+2)[vl1: 002+261004]]+2v1¢[v1v2'c 022

2, 2.T 2. T 2, T
-vz(vlwz)E('r )T Q20+2v162‘t 042-2(v1+v2)62E(r )040




2. T 2.T 2 4T
+2V2911.' 02 4+491921: Q 4 4] ] [vz(v2+2)t Q 40

2, T 2. T 2 2
+4(v2+2)'r 92060+492080]]f('r)dt]/[vl(vlwz) ]

T _ r . : .
Q; j= Pr.[ (v2+i,v1+j;7\21,7xh)s[VZ(V1+J)C¢]/ (VI(V2+1)]]

i,j=0,1,2,... and A._=6./7°, i=l,2.
1T 1

Proof. See the appendix.

Remarks:

(1) Aside from depending on the arguments of the model v and

vz, the risk functions depend on first, the true error variances :rz
1

and 0':2 via ¢; secondly, they depend on f(t); thirdly, p[a‘:l,s;]
depends on the nominal significance level of the pre-test; and
finally, the risk functions depend on the degree of mis-specification
in each sample, via 61 and 92.

(2) The data enter the risk functions only through 91 and 92.
(3) It is straightforward to show that (11)-(13) collapse first
to the appropriate expressions derived by Giles (1992) when the design
matrix is in fact correctly specified, and secondly, to the risk
functions derived by Toyoda and Wallace (1975), for example, when (3)
is the valid model specification.

o Then

the risk of the pre-test estimator collapses to that of the

(4) If a=0 then c=w and Q‘fj=1 so that we never reject H

always pool estimator. Conversely, if a=l then c=0 and Q-;J.=O so that
we always reject HO and the risk of the pre-test estimator equals that

of the never pool estimator.

. 2 2)]_,. 2 _2)]_ A 2 _2)]_
(5) lim [p [o“e ,sp]] =lim [p [o-e ’SN]] =0 while lim [p [(re ,sA]]- [vz(v2+
¢+0 1 @0 1 ¢-0 1
2)E(T4)+4(v2+2)92E(12)+46§] /| (v1+v2)2>0. Pre-testing leads us to

follow the appropriate strategy of ignoring the prior information when




that information is very false.

(6) p[cr: .s;] is independent of 92 and therefore bounded as
1

ez»m, for a given value of 61. However, this risk function is bounded
as elm. for a given value of 6

. 2 2| .
o> Similarly, p[a'e .sp) is unbounded

1
as el-m, given 62. I

Intuitively, if the model for the second sample is badly mis-specified

. 2 _2 . .
but it is bounded (by p[o-el,sN]) as 62 o, given 6

relative to the model for the first sample, then pre-testing will lead
us to ignore the second sample, which is the appropriate strategy.

or as

p[o-: ,s:], on the other hand, is unbounded as 8 -»w, given 62,
1

1

Gz*w. given 91- 2 2 2 2 2 2 2 2
Further, [p [o-el,sA] -p [o-el,sN]] and [p [o‘el,sA] -p [o‘el,sp]] are
unbounded as el-»m, given 6, or as ez-m. given el. while
[p[o-:l,s:’]-p[o':l,s;]] is bounded (and equal to zero) as ez-wa, given

91, but it is unbounded as el-»oa, given 92.

particular, that the risk of the always pool estimator can be

These results imply, in

infinitely higher than that of the never pool estimator and the

pre-test estimator even if the error variances are equal. That is,

there is no guarantee of a reduction in risk by imposing valid prior
information if we have omitted relevant regressors. This accords with
the results of, for instance, Mittelhammer (1984) and Giles (1991b) in
the case of estimating the coefficient vector in the classical linear
regression model after a pre-test for exact linear restrictions.

(7 For any given degree of mis-specification through the
omitted variables, there exists a family of pre-test estimators which
strictly dominate the never pool estimator, and of this family of
dominating estimators the pre-test estimator which uses c=l has the
smallest risk.S This generalises the result of Ohtani and Toyoda

(1978) and it holds for all 91 and 6., and for all feasible members of

2

sThough not included in this paper, it is straightforward to
analytically prove this result using the approach outlined by Giles
(1991a,b, 1992). Details are available from Giles (1990) or the
author.




the lZSDN family.

Further, these same pre-test estimators can also strictly
dominate the always pool éstimator, given el and 62. The condition
under which this result occurs depends on Vi Vo 91, 62, «, and on
the variance mixing distribution f(T).

(8) The risks of s; and s: have two possible ¢ interset:'cions:6
= 4, 2,)2 2000
¢i = (v1/v2) v [vlsz('r ) vz(vl+v2) [E('r )] +2v2E(r )(6l 62)+46182]

+ vf[vlvzs(r‘)-vz(vlwz)(E(r’)] 2+zv25(rz)(el-ez)melez]'z

4 2 2
+v2[(2v1+v2)[v1(v1+2)E(t )+491(V1+2)E(T )+4el—2v1(v1+v2)

172)
xE(tz){le('rszel]] [vz(v2+2)E(r4)+4(v2+2)62E(12)-4e§]} }

/[(2v1+v2) [vl(vl+z)1-:(r“)+4el(vl+z)x~:(rz)+4ef}

-2vl(v1+v2)E(r2) {le(rz)+zel]]

= wik , (14)
i=1,2. Let ¢l=w+»< and ¢2=w—:c. Giles (1992) shows that if the
disturbances are ESDN but the design matrix is correctly specified
then there always exists two possible events but only one feasible
intersection - neither the always pool estimator nor the never pool
estimator can strictly dominate each other. However, when relevant
regressors have been excluded there are four possible events: (i)
0<p,<l, ¢ (i) ¢l 9,<0; (il) 0<p<l, ¢,<0; (iv) @1, $,>1.

If vp v 91, and 62 are such that cases (ii) or (iv) result then the

>
always pool estimator is strictly dominated by the never pool
estimator for all ¢e(0,1]. We discuss this result further in the

following section.

6 . 4 2 2
We require (2vl+v2) [vl(vl+2)E(r )+461(v1+2)E(r )+491] -2vl(vl+v2)

xE(t%) [le(Tz)+29J] + 0.




4. NUMERICAL EVALUATIONS OF THE RISK FUNCTIONS

To illustrate the risk functions we have numerically evaluated them
for the special case of Mt disturbances, which arise when T is an

inverted gamma variate. Then e~Mt[0, (vo-;/(v-z))z] and
th[a-:l,s;] = 2¢zo-;[vzvl(vl+v-2)+47\1v(v—2)(v—4)
+zaf(v-z)2(u-4)]/[vf(v-z)z(v-4)] (1s)

2 2) _ af.2[ 22 2 o V(1o _
th[‘Tel’sA] = a'z[gp [vzv (v 4)+2v1v (vl+v 2) 47\lv(v 2)(v 4)(V2 2)

+4>\i(v-2)2(v-4 )] +2¢ [vzv2 [Zvl—vz(v—4)] +2v2v(v-2)(v-4)(h1->\2)
+47\1A2(v—2)2(v-4)] +v2(v2+2)v2(v-2)+4(v2+2)?\2v(v-2)(v-4)

+4>\;(v-2)2(v—4)] / [(v1+v2)2(v-2)2(v-4)}

2 2) _ af, .2 2[ 2 _ V(1
th[vel,sP] = 0-2(2¢ (v1+v2) [vlv (v1+v 2)+4Alv(v 2)(v-4)

+47\f(v-2)2(v-4)] +<[>2v2 [-(v-z)(2v1+v2) [vl(vl+2)v20040

+4(v +#2)u(v-4)Q +4af(v-z)(v-4)o +20(v-4)v (v +,)

061 082}

) 2 2 2
x (vvaOZI+ZA1(v-2)QO42] ] +2v1¢ [vlvzv (v-Z)QZZO-vz(vlwz)V

x(v-4)Q +2v1>\2v(v-2)(v-4)0 —2(v1+v2)?\2v(v-2)(v-4)0

201 421 402

2
+2v2)\1v(v-2)(v-4)0241+4>\1A2(v—2) (v—4)Q442]

+4(v2+2)A2v(v—4)Q

400

2 2
+v1(v—2) [vz(v2+2)v Q 601

+4?\;(v—2)(v—4)0802] ] /[vf(vlwz)z(v-z)z(v-z;)]

(2A2/v)r(le/u)sr(v/2+r+s+n—2)

v/2+r+s+n-2

r!s![1+2(kl+hz)/v) T'(v/2+n-2)




xIw ((v2+i)/2+r;(vl+j)/2+s) i,j,n=0,1,2,... ,

Ai=9i/o';_ (i=1,2) and Iw(.;.) is Pearson’s incomplete beta function

with w=c¢v2/(v1+c¢v2).

We have evaluated (15)-(17) for a wide range of the arguments :
vl=v2=20; vl=16, v2=8; vl=25, v2=10; k1=k2=3, 4, 5; a=0.01, 0.05,
0.30, 0.50, 0.75 and those values of « associated with a critical
value of unity; v=5, 10, 100, o; Ale[O,Zol; AzeIO,ZO]; and ¢€[0.05,1].
The FORTRAN computer programs, executed on a-VAX 6230 computer, used
various subroutines from Press et al. (1986) and Davies’ (1980)
algorithm. Figures 3 to 8 present some typical results; full détails
of which are available on request. These figures consider v=5 and v=w
(normal errors) for three degrees of mis-specif icétion: first, when
regressors are excluded from the model for sample one but not from
that for sample two ().l=3, 7\2=0); secondly, when the design matrix for
sample one is correctly specified but that for sample two is not
(Al=0, 7«2=3); and thirdly, when both models are mis-specified to the
same degree (7\1=7\2=3). As in Figures 1 and 2, we consider risk
relative to o‘é and parameterise with respect to 7\1 and A, rather than

2

with respect to 91 and 62 to eliminate the scale parameter vg.
Equivalently, the figures represent the risks of the estimators when

2
0‘2—1.

The figures illustrate the features discussed in the previous
section. In particular, they highlight that the always pool estimator
can be strictly dominated by both the never pool estimator and the
pre-test estimator. Then, as the never pool estimator is itself
always strictly dominated by at least the pre-test estimator which
uses c=l, it is always preferable to pre-test and to use a critical

value of unity.

Giles (1992), in the correctly specified design matrix case,
shows that the pre-test estimator which uses c=l can strictly dominate

both of its component estimators for relatively small v. Our

13




numerical evaluations support her findings but they also suggest that
the always pool estimator will be strictly dominated by the pre-test
estimator which uses c=1 if the models for either sample are, or for
both samples is, sufficiently mis-specified, irrespective of the value

of v.

Regarding the possibility of the strict dominance of the always
pool estimator by the never pool estimator, which is infeasible in the
properly specified model, our numerical evaluations suggest that this
result depends not only on the degree of mis-specification but also on
the other arguments in the problem. Specifically, it will typically
be observed if v1=v2, AZ»AI, and v is relatively large. Intuitively,
the gain in information from the second sample in terms of additional
degrees of freedom is outweighed by the loss in the ‘quality’ of the
information due to the relatively higher specification error in the
second sample. For small values of v we find there is still a small
¢-range, in the neighbourhood of HO' over which it is better to always

pool the samples than to never pool them.

If, however, the mis-specification in the first sample is
significantly higher than that in the second sample then there is a
¢-range over which the always pool estimator has smaller risk than the

never pool estimator, irrespective of the value of wv. Ceteris

paribus, the width of this range increases with v and with 7\1.

5. CONCLUDING REMARKS

In this paper we have considered the risk properties of estimators of
the error variance after a pre-test for homogeneity, when the joint
distribution of the unobservable errors in each sample is SSDN but it
is assumed to be normal, and there is simultaneously a possible
mis-specification of the design matrix. We showed first that the
classical test for homoscedasticity in our model is no longer valid
when regressors have been omitted. Then, both the null and non-null
distributions of -J depend on vy v2,
of the design matrix, and the variance mixing distribution, f(z).

the degree of mis-specification

14
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Our analysis of the risk functions of the never pool, always

pool, and pre-test estimators of o: showed first that the dominance
1
of the never pool estimator by a family of pre-test estimators is

robust to the mis-specification of the design matrix and of the error
distribution. It is straightforward to show that the pre-test
estimator which uses c=1 has the smallest risk of this family of
dominating pre-test estimators irrespective of the degree of
mis-specification of the design matrix or of the form of the variance

mixing distribution.

We showed secondly that if we have excluded variables then the
never pool estimator can also strictly dominate the always pool
estimator. This result is impossible when we have properly specified
the model, and it suggests that the risk of the always pool estimator
is (qualitatively) less robust to the mis-specification than is the

never pool estimator.

Practically, our analysis suggests, given that the degrees of
model mis-specification and hypothesis error are unknown, that it is
generally preferable to pre-test rather than to impose or ignore the
prior information without testing. Then the optimal critical value is
unity irrespective of the degrees of freedom of the model. Typically
this critical value results in a (nominal) size that is far greater

than the usual test sizes of 1% or 5%.

It remains for future research to consider the extension of this
analysis to the two-sided alternative hypothesis case. The
sensitivity of the results to the particular form of non-normality
also requires attention. In particular, it is unclear whether they

will extend to the case of iid non-normal disturbances.
APPENDIX

Proof of Theorem 1.

o)
f(J) =OJ' fN(J)f(‘r)dr,




where fN(J) is the density function of J when e~N(0,7°%). Under this

normality assumption

.. [ (2171+e1)/\/$] [ [ 2171/\/6] . ]
e* = ~ N , T IT
(Zy7ye;) 2373

s vl(Z

’ E X4 * o
+e2) M2(2272+e2) ~ v,e Mze

’ *7 LS ]
S| v2(2171+e1) M1(2171+e1) v,e Mle .
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where MI and Mi are (TxT) idempotent matrices partitioned as MI =

M1 (0] (o] (o]
and ME = with r(M’;)=r(Mi)=vi. i=1,2. Under the

o o (0] M2
normality assumption, it is straightforward to show that the quadratic
forms (e"Mie‘/tz) and (e"MIe*/-rz) are independent with (e*’M?e‘/‘rz)
2 _ 2 . _,-1 ’
xv.;k. and AiT-ei/r ,  i=1,2. So, fN(J)—¢ f F(v V.0 /12,9 /Tz) .
i"it 2’r2 1
Given the density function of a doubly non-central F variate and using

(A.1) equation (8) follows directly. =

Proof of Theorem 2.
P["Zl'srfx] - E[s;,] -z¢E(rz)E[s§J +¢2[E(12)]2 (A.2)

0
and E(s;] ZJ EN[S;]f(T)dT, where EN[S;] =E[s§] when e~N(O,1'22). Then,
. 2 N w22
e*~N(0,T IT), e Mle /T xvl;}\lr

* N R /2 2)= 2
, EN(e Mle /T7) vl+2AlT. and so E[SN]
Using the same approach, E [s;'] =

2
-¢{le(r) + 291]/v1.
2 4 2 2) , 2 I
¢ [Vl(vl+2)E(T) + 4(v1+2391E(1’) + 491]/v1. Substituting these

expressions into (A.2) yields p[c-z ,s;].
1

P [0':1,5;] =E [s;] -2¢E(1:2)E {S.:] +¢2 [E(Tz)] 2 (A.3)

00
and E[s;] zI EN[SZ] f(t)dT, where EN[S:J =E[s:] when e~N(O,1:22). Then,

. 2 * )k /2, 2 * \*ak rl)= e
e*~N(0,t I.r), e Mie /T xvi;kir, EN(e Mie /t%) vi+2Air (i=1,2), and
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2_ (Bt MPatiak! MEak 2y_
so as Sp (¢e Mie*+e M3e )/(vl+v2) we have EN(SA)
2 . . . .
T [¢(v1+27\lt)+v2+27\ZT]/(vl+v2). Integrating this expression with

. 2, 2 2
respect to T gives E(s A)--- [¢ (le(t )+Zel] + sz(r ) o+ 292]/(v1+v2).
T 4 2 4 2
Similarly, E(s A) = [q‘: [Vl(vl‘l-Z)E(T ) + 4(vl+2)elE(‘r ) +
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2 4 2 2 4
491]+2¢[v1v2E(r) +2v192!-:(r) + 2vzelE(r) + 496] + v2(v2+2)E(1:) +
] /(vl+v2)2. Substituting these expressions into

2 2
4(v2+2)62E(r) + 40

2
(A.3) completes the derivation of p[O': ,s:].
1

Finally,

p[az ,s;] - E[s;)-2¢E(12)E[s;]+¢z[l-:(tz)]z ) (A.4)

°
Using the aforementioned notation we write slz,=[¢(vl+v2)(e"M‘l’e') +

t 14 o ¥ - EXAVEPS ] */ ok */ * o
[vle Mze ¢V2e Mle ]Ilo,cq&l[(vle Mze )/(vze Mle )]]/[vl(vlwz)).

Using Lemma 1 of Clarke et al. (1987) EN[(e"MEe‘/rz) x

Ti0,c61
’ ’ - T T 2 —
x Lo cpp| (V" Mae™)/ (v e Mfe"]] = VQp2 * 2 Q4 SO EN[SP]_

2 2, T T
[¢(vl+v2)(v11: +291) + vVt (Q20-¢Qoz) + 2v19

* * o ¥ */ * o - T T * 7 * o ¥ 2
[(vle M2e )/(vze Mle )]]-vzozo + 2}\21040 and EN[(e Mle /t°)

T
2040

T . . 2 . : .
2v261¢004]/ [vl(vlwz)] from which we obtain E[SP] by integrating with

R . 4] _ 2 2 4
respect to T. Likewise, EN [sp] = [ ¢ (vl+v2) [ vl(vl+2)t +
2 2 2 4T 2T
4(v1+2)elt + 491]- ) v2(2vl+v2) [vl(v1+2)r Qy + 4(v1+2)el1: Qe *

2.T 2 4. T 2.T 2.T 2 4. T
461008] ¥ VY2lvpt DT Qqq + 4Vp*208,T Qg + 492080] v ["1"2T %2

2. T 2 . .
+ 2v162-c 042 + 2v29 + 4619 ]]/ [v (v, +v, )] which we integrate

T T
1924 2%a )/ |1 V1*2
with respect to T to obtain E[s;].
into (A.4) completes the proof. L]

Substituting these expressions

ACKNOWLEDGEMENT

The author thanks David Giles and Mike Veall for helpful comments on

the material pertaining to this paper.




REFERENCES

Bancroft, T.A., (1944). On biases in estimation due to the use of
preliminary tests of significance. Annals of Mathematical
Statistics, 15, 190-204.

Bancroft, T.A. and Han, C-P., (1983). A note on pooling variances.
Journal of the American Statistical Association, 78, 981-983.

Chmielewski, M.A., (1981). Invariant tests for the equality of K scale
parameters under spherical symmetry. Journal of Statistical
Planning and Inference, S, 341-346. .

Clarke, J.A., Giles, D.E.A. and Wallace, T.D., (1987). Estimating the
error variance in regression after a preliminary test of
restrictions on the coefficients. Journal of Econometrics, 34,
293-304. .

Davies, R.B., (1980). The distribution of a linear combination of xz
random variables (Algorithm AS 1S5). Applied Statistics, 29,
323-333.

Dickey, J.M. and Chen, C-H., (1985). Direct subjective-probability
modelling using ellipsoidal distributions: in Bernardo, J.M.,
DeGroot, M.H., Lindley, D.V. and Smith, A.F.M. (eds.), Bayesian
statistics 2. Amsterdam: North-Holland.

Giles, D.E.A., (1986). Preliminary-test estimation in mis-specified
regressions. Economics Letters, 21, 325-328.

Giles, D.E.A. ahd Clarke, J.A., (1989). Preliminary-test estimation of
the scale parameter in a mis-specified regression model. Economics
Letters, 30, 201-205.

Giles, J.A., (1990). Preliminary-test estimation of a mis-specified
linear model with spherically symmetric disturbances. Ph.D.
thesis, University of Canterbury.

Giles, J.A., (1991a). Pre-testing for linear restrictions in a
regression model with spherically symmetric disturbances. Journal
of Econometrics 50, 377-398.

Giles, J.A., (1991b). Pre-testing in a mis-specified regression model.
Communications in Statistics: Theory and Methods 20, 3221-3238.

Giles, J.A., (1992). Estimation of the error variance after a
preliminary-test of homogeneity in a regression model with
spherically symmetric disturbances. Journal of Econometrics,
forthcoming.




Kelker, D., (1970). Distribution theory of spherical distributions and
a location-scale parameter generalization. Sankhya 4, 32, 419-430.

King, M.L., (1979). Some aspects of statistical inference in the
linear regression model. Ph.D. thesis, University of Canterbury.

Mittelhammer, R.C., (1984). Restricted least squares, pre-test, OLS
and Stein rule estimators: Risk comparisons under model
misspecification. Journal of Econometrics, 25, 151-164.

Muirhead, R.J., (1982). Aspects of multivariate statistical theory.
New York: John Wiley & Sons.

Ohtani, K., (1983). Preliminary test predictor in the linear
regression model including a proxy variable. Journal of the Japan
Statistical Society, 13, 11-19.

Ohtani, K., (1987). Some small sample properties of a pre-test
estimator of the disturbance variance in a misspecified linear
regression. Journal of the Japan Statistical Society, 17, 81-89.

Ohtani, K. and Toyoda, T., (1978). Minimax regret critical values for
a preliminary test in pooling variance. Journal of the Japan
Statistical Society, 8, 15-20.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T.,
(1986). Numerical recipes: The art of scientific computing. New

York: Cambridge University Press.

Toyoda, T. and Wallace, T.D., (1975). Estimation of variance after a
preliminary test of homogeneity and optimal levels of significance
for the pre-test. Journal of Econometrics, 3, 395-404.

Yancey, T.A., Judge, G.G. and Mandy, D.M., (1983). The sampling
performance of pre-test estimators of the scale parameter under
squared error loss. Economics Letters, 12, 181-186.










