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ABSTRACT

The risk properties of estimators of the scale parameter after a
pre-test for homogeneity of the error variances in the two sample
linear regression model has received quite an amount of attention in
the literature. This literature typically assumes normal disturbances
and a properly specified model. In this paper we consider that both
equations may be mis-specified by the omission of relevant regressors
and that the error distributions may belong to a wider class than the
normal distribution. We derive and analyse the exact risk (under
quadratic loss) of the pre-test estimator of the scale parameter for
the first sub-sample.

1. INTRODUCTION AND MODEL FRAMEWORK

We consider a simple heteroscedastic linear regression model in which

the error variance is constant within each sample but it may be

different between the samples,

[ y2 ]Y1

or

=
[ Xi 0 ] [ 131 ]
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y = X13 + Z7 + e

where for i=1,2, yi is a (Tixl) vector of observations on the

dependent variable, Xi is a known (Tixki) non-stochastic design matrix

of rank ki (<Ti), Z. is a fixed (Tixpi) matrix of full rank, 7i is a
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(pixl) coefficient vector, and gi is a (kixl) vector of unknown

parameters. Let T=T
1
+T
2
.

We assume that E(e )=0, and that E(e.e.' )=T2 I . Let 0=cr2
e 

/cr2
ii el e2i T i

so that

(7
2 
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e
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= cr
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We suppose that e has a non-normal distribution of the form

f(e)=J'" f,,,(e)f(t)dt, where fN(e) is f(e) when e-N(0,T2Z), and f(T) is
0 "

supported on (0,c0). Then cr2 
.E(T2), 

a. =0E(T
2
), and e has an

e2 1
elliptically symmetric distribution (ESDN) when O*1 but a spherically

symmetric distribution (SSDN) when the error variances are equal.1'2

This is the commonly called scale mixture of normal distributions

family, of which the multivariate Student-t (Mt) distribution is the

most well known member. The Mt family arises if fed is an inverted

gamma density with, say, scale parameter (3-22 and degrees of freedom

parameter v. We then write e'Mt(0,(vo.22/(v-2))E). For this member the

marginal distributions are univariate Student-t with thicker tails

than under a corresponding normality assumption for v<03. The kurtosis
•

increases as v decreases and v=c0 corresponds to normality.

, Rather than model (1) being estimated we suppose that the

proposed model is

y = Xg + u , u-N(0,cr2 (3)
e2

which the researcher assumes is correctly specified. In fact, (3) is

'A discussion of this family of distributions is beyond the scope of
this paper. See, for example, Kelker (1970), Muirhead (1982), and
Dickey and Chen (1985).

2
It would be relatively straightforward to extend our analysis to the

case of different mixing distributions for each sample when we have
independent mixing distributions. It is unclear, however, how we
would proceed if they are dependent.
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mis-specified as u-ESDN(ZT,c72 E). Note that (3) reflects the facte2

that 0'
2 
=0'
2 

i=1,2. The researcher is interested in estimatingu. e.'
1 1

2
cr
ei
but he is uncertain of the homogeneity of the error variances and

so conducts a pre-test of

Ho : = 1 vs Hi : < 1 , (4)

where 0 is a measure of the hypothesis error and we assume, for

simplicity, a one-sided alternative hypothesis though the analysis

could be easily extended to the two-sided case.

Assuming the usual least squares estimators of the error

variances, the reseacher, mistakenly proceeding as if (3) is properly

specified, has three options for the estimation of
el

(1) He could assume that the variances are equal and use the

so-called always pool estimator of o-
2 

' 
S
2 
:

e
l
 A

SA
2 

(ViS 
2 2 • 
i + V2S2)= /(Vi

+v 
2) (5)

2
where si=(yi-Xibi)' (y.-Xibi)/vi, v

i
=T

i
-k., and b =(X ' X.) 1X.' y.,

i=1,2.

(2) He could proceed as if the error variances are unequal,

ignore the second sample, and use the so-called never pool estimator
2 2

of s
N 
:

2 2
sN = si (6)

(3) He could undertake a preliminary test of the validity of Ho
2

and use sA if he accepts H
0 

or s
2 

if he rejects H
o
. As the researcherN

assumes that model (3) is correctly specified, he uses the usual J

test for homoscedasticity, given by J = s22/s21, and proceeds as if

f(J)=0-1f(F is a central F variate with v2 and(v2,vi)
), where F

(v2'vl)
vi degrees of freedom. Under this option, he is in fact using the

pre-test estimator

1 s if J > cN2

2 = 1( 0, C1( )SA I(c,03)(j)sN
2 2

sA if J c

2 _
Sp -

3
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where I 
1
(J) equals one if J lies within the subscripted range,

[.,.
zero otherwise, and c is the critical value of the pre-test

co
corresponding to a nominal test size of a such that I f(F

(v2, vl)
)=a.

Assuming normal disturbances, e-N(0,cr22E), and a correctly

specified design matrix, the risk of sp2, defined as

p(cr
2 

,S
2 
)=E(s

2
-cr
2 
)
2
, is considered by Bancroft (1944), Toyoda andCl P P Cl

Wallace (1975), Ohtani and Toyoda (1978), and Bancroft and Han

(1983).
 

Figure 1 presents a typical relative risk function under

their assumptions, where the relative risk is R(sP=p( 2 ,sp2 )/cr24. 4a. 
el

We see from Figure 1 that it is only preferable to pool the

samples around the neighbourhood of the null hypothesis and that we

should never use the never pool estimator, as there is a family of

pre-test estimators with CE ( 0,2) which strictly dominate this

estimator (see Toyoda and Wallace (1975)). Ohtani and Toyoda (1978)

prove that the pre-test estimator which uses c=1 has the smallest risk

of this dominating family.

Giles (1992) extends these aforementioned studies to the error

distribution framework considered in this paper, though she still

maintains the (unrealistic) assumption of a correctly specified design

matrix. In the case that she examines we know that the test statistic

J maintains the same null and non-null distributions as under normal

disturbances from the results of King (1979) and Chmielewski (1981).

Figure 2 illustrates typical relative risk functions under Mt

disturbances [e-Mt (0, ( vcr22/( v-2 ))E) when v=5.

3
A related, though not identical, pre-test problem is considered by

Yancey et al. (1983) and Ohtani (1987). Both of these studies also
assume normal errors.
4
We lose no loss in generality in considering relative risk; the

results could equally be interpreted as the risk functions when a-2=1.

4



Figure 1. Relative risk functions for sN2, sA2, and sp2 when e—N(0,cr22E),

v
1
=16
' v2=8' 

k
1
=k
2
=3.

Figure 2. Relative risk functions for sN2, sA2,

v
1
=16, v

2
=8, k

1
=k
2
=3, v=5.2



We see from Figure 2 that for non-normal disturbances we should

sometimes always pre-test, even if the error variances are equal.

Giles (1992) proves that the optimal critical value to use in these

circumstances is c=1.

In this paper we recognise that in reality departures from the

standard regression assumptions are likely to occur simultaneously and

we, accordingly, examine the risk properties of sN2, sA2, and sp2 when

the disturbances are elliptically symmetric and we have omitted

relevant regressors from the design matrix. The impact of excluding

regressors on the risk functions of the estimators of the error

variance for this particular pre-test problem has yet to be examined

in the pre-test literature, even under normality. Other studies,

though, have investigated the effect of this mis-specification after

other pre-tests (see, for example-, Ohtani (1983), Mittelhammer (1984),

Giles (1986), Ohtani (1987), Giles and Clarke (1989), and Giles

(1991b)).

To undertake this task we need to first examine the distribution

of the test statistic J, which is now no longer a function of a

central F variate under either the null or the alternative hypotheses.

We consider this in the next section. We follow in section 3 with the

derivation of the exact risk functions, and then in section 4 with

some numerical evaluations of these risk functions, assuming for the

purpose of this discussion that the variance mixing distribution is

inverted gamma so that our errors are Mt. The final section provides

some concluding remarks.

2. THE DISTRIBUTION OF J WITH OMITTED REGRESSORS

If the model is mis-specified in the way investigated here then both

the null and the non-null distributions of J depend on v1, v2, the

degree of mis-specification of the design matrix, and the variance

mixing distribution, f(r). This is shown by Theorem 1 and Corollary

1.

6



Theorem 1. Under the stated assumptions, the density function of
2 2.

J=s
2
/s

1 
is

v /2+s v /2+r v
2
/2+r-1

-1 
c°co e vs or 1

f(J) = E E  1 2 1 
v2
2

r=0 s=0 v2 v1
r!s!B -+r•

'
-+s) vi+v2.1) (v1+v2)/2+r+s

2  2

oo 2

e-(eff°2)/T -(r+S)f(r)dr ,

0

- (8)

where 0 =7' Z' M Z 7 420) 0 =7' Z' M Z 7 /2 M.=I -X..X.)-1X' and1 1 1 1 1 1 2 2 2 2 2 2 ' 
W

T. i'

B(.;.) is the beta function.

Proof. See the appendix.

Corollary 1. Under the null hypothesis, 0=1, and

v /2+s v /2+r v
2
/2+r-1

os or 1
e10

 
o2
 
v 
1 

v2
2

f(J) = E E
r=0 s=0 

r!s!B( --+r. +s v2 vi ) vi+v2J) (v1+v2)/2+r+s--
2 ' 2

03
x 

e
-(0

10
+0
2
)/T2

N2)-(r+s)
f(t)d-r (9)

0

where 0
10 
=7' Z' M

1 
Z
1 
7
1 
/2.

1 1 

Proof. As 01=010 when 0=1, (9) follows from (8).

If e-N(0,cr
2
E) and, say, cr

2 
=0r
2 
and Cr

2 
=C P
2 

then from (8)
b

fN(3) = 
(F(;2,v1;X2,A1))

where A.=0./cr
2 

i=1,2. Note that (10) does not collapse to a central2'
F density under -Ho; that is, the standard assumption that J has a

central F density under Ho is invalid if we have omitted relevant

regressors, irrespective of our assumption on the distribution of the

7
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disturbances. So, there will be a difference between the nominal and

true sizes of the test.

In this section we have established the distribution of the test

statistic J which we use to test for the homogeneity of the error

variances. In the next section we derive the exact risk functions of

the never pool, always pool, and pre-test estimators of

3. THE RISK FUNCTIONS

Theorem 2. If we use the mis-specified model (3) rather than

the true model (1) when e-ESD
N
(0,cr2 

e2
E) and the pre-test is of Ho 

in

(4) then

(0.2 ,s 2)
= .02 (Vi(Vi+2)E(T4)-V2i (E(T2)) 2+ E ) 2 (11)

e
l 
N 

")+40
1
/v

1

p(cr: ,s A2) =1

+(201-E(T2)(v1+v2)) 1 +20 [viv2E(T4)-v2(vi+v2) (E(T2)) 2

+2V2E(T2)(01-02)+40102] +V2(V2+2)E(T4)+4(V2+2)02E(T2)+40

/(V1+V2)2 (12)

p ((rez ,sp2) (02(vi+v2. 2
[Vi(V1+2)E(T4)-V21. (E(T2)) 2+8015(1'2)+402d

1

+r (02v
2 
[-(2v

1
+v
2
) (v

1
(v

1
+2)T4Q0T4+4(vi+ 

)° T2QT06+41321QT08)
0

+2E(T2)VI(V1+2) (V
IT2QT02+2e1QT04) I +21'21° [V1V2T4QT22

-v2(v1+v2)E(T2)T2QT20+2v1e2T2QT42-2(v1"2)e2E(T2)QT40
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where

+2v20
1T2 

-Q
24+4°1612T2QT44] +v21 [v2(v2+2)T4QT40

+4(v2+2)T2e
2C760+4e22QT80]) f (r)dr) (V2i(V1+V2)1

Q 
= Pr. [F"

j ( v +i,v + j•
'
X2T'lt (v2(v1+i)ci6) (v1(v2+i))i 

j=0,1,2,... and A. =0 ./T2, i=1,2.
it 1

Proof. See the appendix.

(13)

Remarks:

(1) Aside from depending on the arguments of the model vi and
2v2, the risk functions depend on first, the true error variances Cr
e
l

2 2and 
cr.e2 

via 0; secondly, they depend on f(t); thirdly, picr2 ,s)

1 el PJ
depends on the nominal significance level of the pre-test; and

finally, the risk functions depend on the degree of mis-specification

in each sample, via 81 and e2.

(2) The data enter the risk functions only through 01 and 02.

(3) It is straightforward to show that (11)-(13) collapse first

to the appropriate expressions derived by Giles (1992) when the design

matrix is in fact correctly specified, and secondly, to the risk

functions derived by Toyoda and Wallace (1975), for example, when (3)

is the valid model specification.

(4) If cc=0 then c=oo and Q=1 so that we never reject H
o. 

Then

the risk of the pre-test estimator collapses to that of the

always pool estimator. Conversely, if cc=1 then c=0 and Ciri j=0 so that

we always reject Ho and the risk of the pre-test estimator equals that

of the never pool estimator.

i p sp2)
-- 1 im [p (cr2 ,s2)]=0 while 1 im [p ,sAzi 

] 
= (v2(v2+ 

.0 L 1 0.0 
e
l 
N 

0 1 )

2)E(T4)+4(v
2
+2)0

2
E(T2)+402) /(v

1 
+v
2 
)2>0. Pre-testing leads us to

2 

follow the appropriate strategy of ignoring the prior information when

9



that information is very false.

(6) p(cr2 ,s2) is independent of 0
2 

and therefore bounded as
e
l 
N

0
2
4co, for a given value of 

0. 
However, this risk function is bounded

1 
as 0k-a, for a given value of 0

' 2 
Similarly, +2

e
l 
'52) is unbounded
P

as 0
1
4co, given 0

2' 
but it is bounded (by +

2
,S
2
) ) as 0

2
403, given 0

1.e
l 
N

Intuitively, if the model for the second sample is badly mis-specified

relative to the model for the first sample, then pre-testing will lead

us to ignore the second sample, which is the appropriate strategy.

p (cr2 ,s 2)
A 

on the other hand, is unbounded as 0
1 
- 
'

>co given 02, or as
ei ' 

02-oco, given 
01' , z

Further, [p (cr2 , s 2. - p 
e 

,$)] and 
s)]

tj 
are

ei A 

unbounded as 01
 
-co, given 02, or as 02-co, given 01, while

1(z z 2) ..13 Icre2 21
is bounded (and equal to zero) as 024co, given

1 N 1
01, but it is unbounded as 01403, given 02. These results imply, in

particular, that the risk of the always pool estimator can be

infinitely higher than that of the never pool estimator and the

pre-test estimator even if the error variances are equal. That is,

there is no guarantee of a reduction in risk by imposing valid prior

information if we have omitted relevant regressors. This accords with

the results of, for instance, Mittelhammer (1984) and Giles (1991b) in

the case of estimating the coefficient vector in the classical linear

regression model after a pre-test for exact linear restrictions.

(7) For any given degree of mis-specification through the

omitted variables, there exists a family of pre-test estimators which

strictly dominate the never pool estimator, and of this family of

dominating estimators the pre-test estimator which uses c=1 has the

smallest risk.5 This generalises the result of Ohtani and Toyoda

(1978) and it holds for all 01 and 02, and for all feasible members of

5
Though not included in this paper, it is straightforward to

analytically prove this result using the approach outlined by Giles

(1991a,b, 1992). Details are available from Giles (1990) or the

author.

10



the ESDN family.

Further, these same pre-test estimators can also strictly

dominate the always pool estimator, given 01 and 02. The condition

under which this result occurs depends on v1, v2, 01, 02, a, and on

the variance mixing distribution f(r).

(8) The risks of si24 and s2A have two possible 0 intersections:6

Oi = (vi/v2)/ vi [v1v2E(T4)-v2(v1+v2) (E(12)) 2+2v2E(T2)(01-02)+40102]

[± v21 [viv2E(T4)-v2(vi+v2) (E(T2)) 2+2v2E(T2)(01-02)+4010212
+v2 [(2vi+v2) lvi(vi+2)E(T4)+401(v1+2)E(T2)+4021-2vi(vi+v2)

XE(T2) (VIE(T2)+201)1 [V2(V2+2)E(T4)+4(V2+2)02E(T2)-4022]I 

1/21

/[(2V1-1-1/2) (Vi(Vi+2)E(T4)+401(V1+2)E(T2)+4021)

-2V1(V1+V2)E(T2) (ViE(T2)+201)1

= cv±ic , (14)

i=1,2. Let 01=u+ic and 02=w-ic. Giles (1992) shows that if the

disturbances are ESD
N 

but the design matrix is correctly specified

then there always exists two possible events but only one feasible

intersection - neither the always pool estimator nor the never pool

estimator can strictly dominate each other. However, when relevant

regressors have been excluded there are four possible events: (i)

0<01<1, 02>1; (ii) 0?1, 02<0; (iii) 0<yyl, 02<0; (iv) it,?1, 02>1.

If v1, v2, 01, and 02 are such that cases (ii) or (iv) result then the

always pool estimator is strictly dominated by the never pool

estimator for all 0E(0,1]. We discuss this result further in the

following section.

6
We require [(2v

1 
+v
2 
)(v

1 
(v

1 
+2)E(T4)+40

1 
(v

1 
+2)E(T2)+402) -2v

1 
(v

1 
+v
2 
)1 

xE(12) (v
1
E(T2)+20

1
)] 0.
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4. NUMERICAL EVALUATIONS OF THE RISK FUNCTIONS

To illustrate the risk functions we have numerically evaluated them

for the special case of Mt disturbances, which arise when T is an

inverted gamma variate. Then e-Mt (val/(v-2))E) and

pMt 
(cr
2 
,S
N
2
) = 20

2
Cr
4 (

1,
2
V
1 
(v

1 
+v-2)+4X

1 
v(v-2)(v-4)e 2 

1

+2X2i(v-2)2(v-4)) / (v2i(v-2)2(v-4)) (15)

1
0.e
2 ts 2

A
) = 0.4 

2 
"2

.2
[21,2

vMt
(1,-4)+2V1112(Vi+1)-2)-4X11,(1,-2)(1,-4)(172-2)

1

+4X2i(v-2)2(v-4)1 +20 [v2v2 (21/1-v2(v-4)) +2v2v(v-2)(v-4)(X1-X2)

+4A1A2(v-2)2(v-4)] +v2(v2+2)v2(v-2)+4(v2+2)A2v(v-2)(v--4)

pmt (cr2e ,sp2) =
v-

1

+4A2(v-2) (v-4)] +02v
2 
[-(v-2)(2vi+v2) lvi(v. +2)v

2
0

1 -040

+4(vi+2)v
(v-4)Q

061+4X21(v-2)(v-4)Q082) +2v(v-4)v1(v1+v2)

x (v1vQ021+2X1(v-2)Q042)1+2v21(k [v1v2v2(v-2)Q220-v2(v1+v2)v

x(v-4)Q
201

+2v
1
X
2
v(v-2)(v-4)Q421-2(v

1
+v
2
)X
2
v(v-2)(v-4)Q402

+2v
2
X
1
v(v-2)(v-4)Q241+4X

1
X
2
(v-2)

2
(V-4)Q

442]

+v2i(v-2) [v2(v2+2)v2Q400+4(v2+2)X2v(v-4)Q601

+4A22(v-2)(v-4)Q8021) / (v21(vi+v2)2(v-2)2(v-4))

where

w w (2A
2 
/v)r(2X

1 
/v)sr(v/2+r+s+n-2)

Q. E E
jn

r=0 s=0 /p) 
v/2+r+s+n-2r ( v/2+n2)r!sql+2( X

1 
A
2
) -

12

(16)

2

(17)



xI
w 
((v
2
+0/24-r; (v

1
+ j)/2+s) j,n=0,1,2,••• ,

A•=0./cr
2 

(i=1,2) and I
w
(.;. ) is Pearson's incomplete beta function1 1 2

with w=c0v2/(v1i-c0v2).

We have evaluated (15)-(17) for a wide range of the arguments :

v1=v2=20; v1=16, v2=8; v1=25, v2=10; k1=k2=3, 4, 5; cc=0.01, 0.05,

0.30, 0.50, 0.75 and those values of a. associated with a. critical

value of unity; v=5, 10, 100, co; A1E[0,20 I; A2E[0, 20]; and OE[0.05,1].

The FORTRAN computer programs, executed on a VAX 6230 computer, used

various subroutines from Press et a/. (1986) and Davies' (1980)

algorithm. Figures 3 to 8 present some typical results; full details

of which are available on request. These figures consider v=5 and v=co

(normal errors) for three degrees of mis-specification: first, when

regressors are excluded from the model for sample one but not from

that for sample two (A1=3, A2=0); secondly, when the design matrix for

sample one is correctly specified but that for sample two is not

(A
1
=0, A

2=
3); and thirdly, when both models are mis-specified to the

same degree (A1=A2=3). As in Figures 1 and 2, we consider risk
4

relative to cr2 and parameterise with respect to A1 and A2 rather than

with respect to 01 and 02 to eliminate the scale parameter cr22.

Equivalently, the figures represent the risks of the estimators when

CT 
2
= 1 .
2

The figures illustrate the features discussed in the previous

section. In particular, they highlight that the always pool estimator

can be strictly dominated by both the never pool estimator and the

pre-test estimator. Then, as the never pool estimator is itself

always strictly dominated by at least the pre-test estimator which

uses c=1, it is always preferable to pre-test and to use a critical

value of unity.

Giles (1992), in the correctly specified design matrix case,

shows that the pre-test estimator which uses c=1 can strictly dominate

both of its component estimators for relatively small v. Our

13



numerical evaluations support her findings but they also suggest that

the always pool estimator will be strictly dominated by the pre-test

estimator which uses c=1 if the models for either sample are, or for

both samples is, sufficiently mis-specified, irrespective of the value

of v.

Regarding the possibility of the strict dominance of the always

pool estimator by the never pool estimator, which is infeasible in the

properly specified model, our numerical evaluations suggest that this

result depends not only on the degree of mis-specification but also on

the other arguments in the problem. Specifically, it will typically

be observed if v1?--v2, A2>>A1, and v is relatively large. Intuitively,

the gain in information from the second sample in terms of additional

degrees of freedom is outweighed by the loss in the 'quality' of the

information due to the relatively higher specification error in the

second sample. For small values of v we find there is still a small

0-range, in the neighbourhood of Ho, over which it is better to always

pool the samples than to never pool them.

If, however, the mis-specification in the first sample is

significantly higher than that in the second sample then there is a

0-range over which the always pool estimator has smaller risk than the

never pool estimator, irrespective of the value of v. Ceteris

paribus, the width of this range increases with v and with A.

5. CONCLUDING REMARKS

In this paper we have considered the risk properties of estimators of

the error variance after a pre-test for homogeneity, when the joint

distribution of the unobservable errors in each sample is SSDN but it

is assumed to be normal, and there is simultaneously a possible

mis-specification of the design matrix. We showed first that the

classical test for homoscedasticity in our model is no longer valid

when regressors have been omitted. Then, both the null and non-null

distributions of J depend on v1, v2, the degree of mis-specification

of the design matrix, and the variance mixing distribution, f(r).

14



Figure 3. Relative risk functions for sm2, sA2,
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Our analysis of the risk functions of the never pool, always

pool, and pre-test estimators of cr2 showed first that the dominance

of the never pool estimator by a family of pre-test estimators is

robust to the mis-specification of the design matrix and of the error

distribution. It is straightforward to show that the pre-test

estimator which uses c=1 has the smallest risk of this family of

dominating pre-test estimators irrespective of the degree of

mis-specification of the design matrix or of the form of the, variance

mixing distribution.

We showed secondly that if we have excluded variables then the

never pool estimator can also strictly dominate the always pool

estimator. This result is impossible when we have properly specified

the model, and it suggests that the risk of the always pool estimator

is (qualitatively) less robust to the mis-specification than is the

never pool estimator.

Practically, our analysis suggests, given that the degrees of

model mis-specification and hypothesis error are unknown, that it is

generally preferable to pre-test rather than to impose or ignore the

prior information without testing. Then the optimal critical value is

unity irrespective of the degrees of freedom of the model. Typically

this critical value results in a (nominal) size that is far greater

than the usual test sizes of 17. or 57..

It remains for future research to consider the extension of this

analysis to the two-sided alternative hypothesis case. The

sensitivity of the results to the particular form of non-normality

also requires attention. In particular, it is unclear whether they

will extend to the case of iid non-normal disturbances.

Proof of Theorem 1.

f(J) =0,r3fN(J)f(r)dr,

APPENDIX
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where fN(J) is the density function of J when e-N(0,T2E). Under this

normality assumption

and so

e* 
[ (Z1T1+e1)/i4; 1 1[

N
' TIT

J =
2
s1 v2(Z1T1+e1) Mi(ZiTi+ei) v2e*' Me* .

where MI and MI are (TxT) idempotent matrices partitioned as MI =

(Z
2
a'
2
+e
2
) Z

2
1
2 1

2
S2 V

1
(Z
22

+e
2
)1M

2
(Z
22

+e
2
) v

1 
e*' We*

2

M 0i1 [ 0 0 1
and M* =

2 
with r(MI)=HMi)=vi, i=1,2. Under the

0 0 0 M
2

normality assumption, it is straightforward to show that the quadratic

forms (e*' M*e*/T2) and (e*' M*e*/-r2) are independent with (e" Mte*/T2)2
2 2 . 

1 
^.Xvi;xit and Ait=0i/T , 1=1,2. So, fN(J)=0 f F( v2,v1;02/r 2,01/T2)

Given the density function of a doubly non-central F variate and using

(A.1) equation (8) follows directly.

Proof of Theorem 2.
(0_2 ,s 2) = E (sN4) _20E(T2)E (sN2) +02 (E(T2)) 2

N (A.2)

co
2 2

and E (s) =I E
N
(s
N
) f(r)d-r, where E

N 
Is 2) =E Is 2) when e-N(0,T2E). Then,
N N" 0e....N(0,T2y, 0,, mle./T2,,xv2 .A

, EN(e*' Mile*/T2)=v1+2Xit, and so E isN2)
I' IT

4=q5(v1E(T2) + 20
1
)/v

1
. Using the same approach,

02 (V
1
(V

1
+2)E(T4) + 4(v

1
+2)0

I
E(T2) + 40)/v. Substituting these

1 1

expressions into (A.2) yields p(Cr2 ,S 2 ) .

el N

p icr: , sA2)
= E (sA4) -20E(T2)E 

(sA2) +02 (E(T2)) 2
(A.3)

1

03
2

and E =1 E,,,
"
(sA) f(t)dt, where EN (s) =E (s) when e-N(0,T2E). Then,

0 
e*-N(0,T2IT), Mre*Pr2̂ 'Xv2i;Ait, EN(e" Mfe*/T2)=v.+2A. (i=1, 2 ), and

IT
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2
2SO as sA=(00" Mr+e*' Mle*)/(v1+v2) we have E

N
(s
A)=

r2 (
k(v1+2x1T)"2+2A2t ) /(v1+v2).

Integrating this expression with
c 

respect to T gives E(s2 )= HviE(T2)+201) + v2E(t2) + 20
2
] /(v

1
+v
2
).

A
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4 
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2
. Substituting these expressions into

2 

(A.3) completes the derivation of p (o-2 ,s 2) .
el A

Finally,

p (cr: ,s12,) = E (spa) _20E(T2)E (sp2) +02 (E(T2)) 2

1
(A.4)

Using the aforementioned notation we write si2,40(vi+v2)(e*1 Mlle) +

[v1e*1 Me* - v2e*' M*IeMe*]Ito, col ((vie*' Mle*)/(v2e*1 Mte*))) / (vi(vi+v2)) .
2

Using Lemma 1 of Clarke et a/. (1987) E
N 
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2
) x

2
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which we integrate

with respect to T to obtain E (s). Substituting these expressions

into (A.4) completes the proof. •
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