
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Department of Economic

LOIVERSITY OF CANTERBURY

CHRISTCHURCH, NEW ZEALAND

ISSN 1171-0705

.-r•AINt FOUNDATION OF

‘GRICULTURAL arVONOM ICS

LAMAR 6,0

"171/FEB 05 1992

PRE-TEST ESTIMATION IN A REGRESSION

MODEL WITH A MISSPECIFIED COVARIANCE MATRIX

K. V. Albertson

Discussion Paper

No. 9115



This paper is circulated for discussion and comments. It should not be quoted without
the prior approval of the author. It reflects the views of the author who is responsible for
the facts and accuracy of the data presented. Responsibility for the application of material
to specific cases, however, lies with any user of the paper and no responsibility in such
cases will be attributed to the author or to the University of Canterbury.



Department of Economics, University of Canterbury
Christchurch, New Zealand

Discussion Paper No. 9115

November 1991

PRE-TEST ESTIMATION IN A REGRESSION
MODEL WITH A MISSPEC1FIED COVARIANCE MATRIX

K. V. Albertson



PRE-TEST ESTIMATION IN A REGRESSION

MODEL WITH A MISSPECIFIED ERROR

COVARIANCE MATRIX

K.V. ALBERTSON
*

Department of Economics
University of Canterbury

November, 1991

Abstract

We consider the effects of incorrectly assuming a scalar error covariance
matrix in a linear regression model in the context of a pre-test for linear
restrictions on the coefficients. Because of this misspecification the
(true) size and power of the pre-test may differ from their assumed values,
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1. Introduction

A pre-test situation arises in econometrics when the outcome of a

statistical test determines which estimator is to be used for the

parameter(s) of interest. For example, in the general linear model,

y = Xg + e,

where y is T x 1, X is T x K, non-stochastic and of full rank and e is

assumed to be N(0, o'21 T), a test may be used to determine the validity of
 J

exact linear restrictions described by

Ho : Rg = r vs H
A
: Rg * r.

Here, R is J x K and of rank J, r is J x 1, and both are non-random. If,

based on the outcome of the test, the restrictions are rejected, ordinary

least squares (OLS) is used to estimate g. Otherwise restricted least

squares (RLS) is used. The OLS and RLS estimators of g are b = (X'X)-1X'y

and b = b + (X'X) 1R' (R(X'X)
-1
R')

-1
(r - Rh) respectively.

It is well known that, given the assumptions of the model, a UMPI test

of these restrictions can be constructed using the statistic

u - 
(Rb-r)1(RS-1111)-1(Rb-r)(T-K)

(y-Xb)'(y-Xb) J
(1)

where S X'X. This statistic has a central F(J,T-K) 
distribution under the

null hypothesis and a non-central Fs
(3,T-K;A) 

distribution under the

alternative hypothesis, where the (numerator) non-centrality parameter is

(R13-r)'(RS-1111)-1(Rg-r)x =
ar
2

(2)

A pre-test estimator (PTE) of g can be constructed using this statistic

. and the OLS and RLS estimators of g. This PTE can be written

= l
b if u < c(a)
b if u a c(a),13

where c(a) is the critical value chosen for the test when the nominal test

size is a. Bancroft (1944), Brook (1976), Wallace and Ashar (1972), Wallace

(1977) and Judge and Bock (1978, 1983), among others, discuss the properties



of this estimator.

Recently, several authors have considered the properties of pre-test

estimators in models which are misspecified in various ways: see, for

example, Ohtani (1983), Mittelhammer (1984), Giles (1986) and Giles (1991a 6

b, 1992), among others. This paper extends the aforementioned studies by

considering the consequences of failing to take into account a non-scalar

error covariance matrix in the general linear model when applying a pre-test

for exact linear restrictions.

The true covariance matrix of the error term is unknown and the tests

and estimators applied to the model are based on the assumption that e -

N(0, 0.2I ). However, if e - N(0, SI), with D * m2I , the assumed properties

of the test statistic, and the OLS, RLS and PT estimators no longer hold.

The hypothesis to be tested involves J independent linear restrictions, and

the test is based on the usual statistic given in (1) above, because the

researcher is unaware that the model is misspecified.1

In section 2 the bias and risk of the two component estimators (OLS and

RLS) are stated, and results are given which are used to calculate the (true)

size and power of the pre-test and the bias and risk of the PTE. Details of

the specific models used to evaluate these formulae are contained in section

3 and the numerical results obtained are summarized in section 4. Section 5

concludes the paper.

2. The power of the test and properties of the estimators

A
Let the bias and risk (under quadratic loss) of an estimator g

A
for an unknown parameter vector g be defined as 13(g) = E(g) - g and

p(E) = Ep-gY(g-e)] respectively.

It is well known that the OLS estimator of the ft vector is not biased by

the misspecification of the error covariance matrix and that its risk is

given by p(b) = tr(S-1X1DXS-1).

2



The bias and risk of the RLS estimator are given by B(b) = -113 and

p(b) = p(b) - tr(2S-irf2XC - CX'faC) + 6'17'70, where 3 E (R13-r) (i.e., the

hypothesis error), n s s-liv(Rs-lRi)-1 and C m (RS-1R' )RS-1. Using

this notation we can write the test statistic in (1) as a ratio of two

quadratic forms in the normal random vector Es e + Xna :

Z'XCX' (T-K) u -
"'MZ J

where M E (I — XS-1X'), and N(X718, 0). If XCX'11 and mn are idempotent

and orthogonal then u is distributed as an F random variable, under Ho (see

Searle (1982 p.356)). In general, however, XCX'rl and mn are neither

idempotent nor independent and u is not F-distributed under the null.
1 1

Now consider the T x T symmetric matrix 0 a 02(XCX'-(jc(a )M)02 . This
(T-K)

matrix hasTreal eigenvalues, denoted A, (i = 1,...,T), andaTxT
1 

orthonormal eigenvector matrix, T. The eigenvector corresponding to AI is

the i'th column of T, denoted T.
1

Following Koerts and Abrahamse (1969) it is easily shown that
T 2

Pr.(u < c(a)) = Pr.(z'Az < 0) = Pr.( E A 
i 

x,

10 ) 
< 0), where A = diagiy,

(, 
i=1

z 
=(-1/2) 

and the non-centrality parameters of the independent x2

1 (-1/2) 2
variates are 0 E(T1c2 Xi) . Using these formulae we can calculate

the true size and power of the test using, for example, the algorithms of

Imhof (1961) or Davies (1980).

In the well specified pre-test problem the test statistic is F'
(J,T-K;A)

distributed, as noted above, and the overall level of hypothesis error in the

model is represented by the non-centrality parameter, A, given in (2) above.

If the error covariance matrix is misspecified the distribution of the test

statistic can be represented by a weighted sum of x2
(
.,
1_u ) 

. variables and we
, 

can define a unit measure of the level of hypothesis error in the model as

Os E0 1: 
1(
T 0

(-1/2)
)00

)2
.

2

(i:A 0) (1:A >0)

3



If 0 = T
2
I then 0 = A and Pr.(z'Az < 0) = Pr. (F" < c(a)).

(1, T-K; X)

Theorem 1

Under the stated assumptions, the bias and risk functions of the PTE are

B(st) = - s (RS
-1
IV)

-1
RS

-1
X'

S2(1/2) 
P 7'0X-ria
3

and p(g) = tr(S-1r0XS-1) -2 tr(Cr0(1/2)-1- Bri2(1/2)XS-1)

+ 2(8177'CX'0(1/2)TP3T' 
Q(-1/2)xna)

+ tr(CX'0(1/2)T B T'0(1"2)XC)

respectively, whereBis aTxTmatrix with ij'th element

and

with

B
Cr 0(-1/2))073) iT n 1/2 xnap ; when i#jf (-) ,

31 j

; when i=j
p . (T nxn5)2 p
31 k 1 ' ) 51

{ 

P
3 

diag{P
31
}

P
mi 
= Pr. (X x

2
'

0 
+ E A • Y

2

(1,0 ) 
< 0), m = 3,5,

(m, ) J- t

(3)

(4)

2 2 ,
< 0 1,J = 1,..,T.and P = Pr.(Alx(0j3, Ax 0) 6, + E A x 

2 
,

31j k 11,0
1 1 j k=1,j

Proof

See Appendix A.

As c(a) 4 0 (co), (3) and (4) collapse to the risk and bias of the

unrestricted (restricted) estimators. These formulae can also be shown to be

equivalent to those for the PTE in a correctly specified model (e.g., Judge

and Bock (1978)); that is when 0 = T2I .

As these expressions are complicated it is difficult to determine the

effects of the misspecification without numerical evaluations. This has been

done using the SHAZAM package (White et al. (1990)) and Davies' (1980)

algorithm on a Vax 6340 computer.

4



3. The models

We consider the effects of the misspecification of the error covariance

matrix on the risks of the OLS, RLS and PT estimators in a number of models.

Several different data sets are used in each model as the associated formulae

are data dependent. The data are described in Appendix B.

3.1 Autoregressive Errors 

We consider testing the significance of one or more of the regressors in

the quarterly regression model

yt= xtt3 ut;
t = 1,...,T,

where x
t 
is the t'th row of the matrix X, and u

t 
is generated either by an

AR(1) process, (1 - plOut = ,or an AR(4) process, (1 - P4L4)ut = Et,
where -1 < pi < 1, (I = 1,4), e - N(0, 0.2IT) and Liut = .The exclusion

restrictions are written in the usual way as Ho: RO = r vs HA: RO * r.

Bounds on the true size of a test for restrictions in the general linear

model with an ARMA process in the error term are calculated by Kiviet (1980),

while the effects of an AR(1) process in the errors on the true size of a

Chow test are considered by Consiglieri (1981) and Giles and Scott (1991). It

has been argued that an AR(4) process may also be common in regressions using

quarterly data (e.g., Thomas and Wallis (1971) and King (1989)).

3.2 Moving Average Errors 

The situation we consider is as above, except that the error term is

generated by the MA(1) process ut = (1 + TL)et, where -1 < T < 1 and e -

N(0, w2IT). The effect of such a process on the true size of a Chow test is

also considered by Giles and Scott (1991).

3.3 Heteroscedastic Errors 

Model _W. We consider the application of the Chow (1960) test for

structural change in the model

5



ye[ 
yI1

x o
1

[ I

g

[

E
1 xt3 +

y
2

OX
2

(31
2 2 

E

I 0
where E - N 0, T

2 [ T
1

I
1 0 VI

. T2 1 T = T = T/2.
1 2

The parameter y measures the degree of heteroscedasticity in the errors.

In this case the null and alternative hypotheses are

Ho: gi = g2 VS HA: gi

The properties of the Chow test in the presence of heteroscedasticity of

this form are considered by Toyoda (1974) and Schmidt and Sickles (1977),

among others. Giles and Lieberman (1991b) calculate bounds on the true size

of the test in this case.

In our study, the other five models consider the case of testing the

significance of one or more of the regressors in the model

y = x f3 + e
' 

t = 1,...,T,
t t t

where x
t 
is the t'th row of the matrix X and var(e

t
) is some function of a

variable zt. The exclusion restrictions are written as Ho: Rg = r vs HA: Rg

* r. The five models differ in the functions which are used to form the

error covariance matrix. If 7 is defined as a constant parameter, tr as a

linear trend variable and X as one of the columns of the X matrix, the five

different functional forms considered are;

I 0

Model (b) var(e) = T 
2

1 10 VIT

[
T = T =
1 2

T/2.

2

Model (c) var(e) = f (z ) = TY
t c t t'

Model (d) var(e
t
) = f (z ) = T

2
eXp(TX

t
),

d t

Model it' var(e) = f (z ) = T2tr
t 

7
e t t'

Model (f) var(et) = ff(zt) = T
2
exp(Ttrt).

For models (c) to (f) the measure of heteroscedasticity, y, is defined as

6



=

f ( max(z) )
1 t=1. . T t

,I = c, d, e or f.
f 

1 • 
( 

1 
min(z) )

t=. T • t• •

A value of y of greater than unity implies that the error variance is

increasing as zt increases, while a y value of less than unity implies that

the error variance is decreasing as zt increases.

4. Numerical Results

The nominal test size is fixed at 5% in the discussion which follows.

There is no size correction applied to the test as we wish to determine the

consequences of assuming that the error term is well behaved when in fact it

may not be. For the purposes of this discussion the term "power" refers to

the size uncorrected power of the test.

Typical OLS, RLS and PTE risk functions for a regression model that is

correctly specified (i.e., y = 1, pl,p4,T = 0) are shown in Figures 1, 3 and

5, Appendix C.
2 

Quantitatively, the presence of an autoregressive, moving

average or heteroscedastic process in the error term may increase, or

slightly reduce, the risks of the estimators for each value of O.

Qualitatively, the misspecification introduces a bias in the pre-test power

function and changes the relative dominance of the three estimators.

The effect of the misspecification on the true size and power of the

pre-test depends on a number of different factors, including the number of

regressors in the model, the particular characteristics of the regressors and

the form of the true error covariance matrix. For example, if the

significance of a (group of) trended regressors is being tested, the true

4 size and power of the test increase with increasing T, in the case of MA(1)

errors, or with increasing p1,
3 

in the case of AR(1) errors. The converse

may occur if the regressors are not trended. As the value of pi or T,

decreases below zero the opposite effect is observed with the (true) size and

power of the test falling for most regressor sets.4



In general, if the errors are generated by an AR(4) process, the power

of the pre-test is reduced if the absolute value of p4 is close to unity. An

exception to this is the case of testing the joint significance of a set of

seasonal dummy variables where the true size and power of the test increase

with increasing values of p4. The opposite effect is observed as p4

decreases below zero. Figure 2 illustrates the effects of a downward

distortion in the power function on the PTE risk. Comparing Figure 2 with

Figure 1 we see that the PTE risk is closer to the RLS risk at each level of

0 than is assumed to be the case.

When the errors are heteroscedastic, an increase in the degree of

heteroscedasticity appears likely to increase the true size and power of the

test for small values of 0, and to reduce the power for large values of 0, if

there are three or more regressors. In models with less than three

regressors, there is no consistent pattern.

When the errors are generated by an AR(1) process, any increase in the

value of pl generally has the effect of decreasing the range of 0 over which

it is preferable to pre-test rather than to simply ignore prior information

and estimate using OLS. With some regressor sets OLS may strictly dominate

both the RLS and the PT estimators. In this case the imposition of valid

restrictions serves to increase the estimator risk.
5

Conversely, if pi decreases the range of 0 over which it is preferable

to pre-test generally increases, making the use of the PTE more attractive

relative to OLS. An example of this is shown in Figure 4. Comparing Figure

4 with Figure 3 we see that the PTE dominates OLS over a larger part of the 0

space than is assumed to be the case and also that there exits a range of 0

over which the PTE dominates both of its component estimators. This is in

contrast to the usual result, that in a correctly specified model the PTE of

0 is never the minimum risk estimator and will have higher risk than both of

its two component estimators over some part of the 0 range.
6 

When the errors
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A

are formed by a moving average process, increasing values of T appear to have

little or no effect on the relative dominance of the estimators.

In the models with heteroscedastic errors, increasing levels of

heteroscedasticity are more likely to increase the range of 0 over which the

PTE risk is lower than the OLS risk than to reduce it, particularly if the

regressor variables are trended. There are instances, however, when the

converse occurs. In some cases the RLS and PT estimators may become

completely dominated by OLS as shown in Figure 6. However, no general result

is apparent as the effect of the misspecification varies with both the type

of heteroscedasticity and the form of the regressor variables.

Other things being equal, an increase in the sample size leads to a

reduction in estimator risk for each value of 0. However such an increase may

not alleviate the distortions introduced to the models as a result of the

misspecification. The (size uncorrected) power of the test may, in fact, be

reduced by such an increase if the misspecification is severe and0 is close

to zero. Also, the range of 0 over which the PTE has a lower risk than the

OLS estimator may be further reduced or increased by an increase in sample

size.

In general the effects of increasing the sample size are ambiguous,

particularly with real or non-trended data. This may be because the

additional data points may change the characteristics of the regressor set

and all of the models considered are very sensitive to the form of the data.

5. Conclusion

The practical implications of the misspecification vary depending on the

type of misspecification and the regressors. Because of this, little can be

offered by way of a general prescription. Some points, however, can be made.

When the errors are generated by an AR or MA process with positive

coefficients, and the regressors whose coefficients are included in the

restrictions are trended, the PTE may be strictly dominated by OLS, in which

9



.„

case it is better to ignore the prior information. Even if the PTE is not

strictly dominated, the 0 range over which the risk of the PTE is lower than

OLS is generally reduced (compared to the correctly specified model). The

regret associated with using OLS rather than the PTE in that 0 range is

reduced also, as the pre-test power function is likely to be distorted

upwards and the test will tend to over-reject valid restrictions. Hence,

although in practice the degree of distortion is unknown, it may be

preferable to ignore the prior information rather than pre-test if an

autocorrelation problem is suspected.

Conversely, if the errors are generated by an AR or MA process with

negative coefficients, or if the regressors whose coefficients are included

in the restrictions are not trended, the power of the pre-test is likely to

be reduced by the misspecification and the PTE will dominate OLS over a

greater portion of the 0 range compared to the correctly specified model.

Therefore it is likely to be preferable to pre-test rather than ignore the

prior information in this case.

On the basis of these results, it appears advisable to test for such

processes before any testing of linear restrictions is carried out. If the

linear restrictions involve the coefficients of trended regressors, it may be

wise to choose a critical value such that the test has a higher power against

a positive AR or MA process than against a negative process, as the costs of

failing to correct for a positive process are the greater of the two. The

converse is true if the restrictions involve the coefficients of non-trended

regressors. However, it should be noted that there are further implications

associated with such multiple pre-testing (eg, see King and Giles (1984) and

Giles and Lieberman (1991a)).

If the errors are possibly heteroscedastic, there is no general

prescription as, although increasing heteroscedasticity may increase the

pre-test size, the power of the pre-test will be reduced in models with more

10



than two regressors. Also, as we have seen, the PTE may be strictly

dominated by OLS, in which case the prior information should be ignored.

However, given that the true error covariance matrix is unknown, the effect

of the misspecification on a given model cannot be determined.

Because of the effects of the misspecification on the (true) size and

power of the test, any attempt to apply an "optimal" critical value, such as

is suggested by Brook (1976), will not necessarily lead to an "optimal"

pre-test risk. This is analogous to the findings of Giles, Lieberman and

Giles (1990), who generalise Brook's result to the case where the model is

misspecified by the exclusion of relevant regressors, and Wong and Giles

(1991) who consider the problem of determining the optimal critical value for

a pre-test in a model with Multivariate Student-t disturbances.

11



Footnotes
1

Other pre-testing papers which consider a possible non-scalar error
covariance matrix include Greenberg (1980) and Mandy (1984), who consider the
problem of testing for a heteroscedastic process in the error term, and Fomby
and Guilkey (1978), King and Giles (1984), and Giles and Lieberman (1991a),
among others, who consider the problem of testing for the presence of serial
correlation in the error term. The problem considered in this paper differs
from their problems in that the pre-test is applied, not to determine whether
or not the error term in the model is well behaved, but to determine the
validity of linear restrictions.

2
Although the risk functions are data dependent, there are no significant

qualitative differences in these functions for the majority of the different
regressor sets considered in this study if the model is well specified. This
is not the case if the model is misspecified.

3
A similar result is found by Consiglieri (1981) and Giles and Scott

(1991) in the case of the size of the Chow test, and this is consistent with
Kiviet's (1980) results.

4
This is also consistent with Giles and Scott's (1991) results.

5
A similar result is obtained by Giles and Giles (1991) in the case of

estimating the regression scale parameter if a sufficiently asymmetric loss
function is used. It is also partially analogous to Mittelhammer's (1984)
result that in a model misspecified by the exclusion of relevant regressors
the RLS and PT estimators may be dominated by OLS.

6
Another example of the possible dominance of a PTE is given in Ohtani

(1983), who shows that, in a model in which a relevant, unobservable,
variable has been replaced by a proxy variable, there may exist a region in
which the PTE risk is lower than the risks of its two component estimators.
Other examples are given in Giles (1991a & b), Giles and Giles (1991), and
Wong and Giles (1991).

12
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APPENDIX A

To prove Theorem 1 we require the following lemma.

Lemma

Let W(x) be an indicator function such that W(x) =

Then, using the notation of section 2,

a) E[z1,1,(z'Az)] =
3

b) E[zeT(z'Az)] = B.

Proof

0 if x a 0
1 if x < 0'

a) Consider the i'th element of the T x 1 vector E[zT(z'Az)],

E[zICZ'AZ)] = W(A Z2 + E z2)].
t I I

Covar(z) = I and therefore z is independent of z, i * j. Hence
1

E[zIT(ZiAZ)] = E
01
[ E[z W(X z2 + E A z2)]]

1 t
1

E EN1i2(-1/2)X7)8,11(XiX2(3,E) ) E Ajz2j)1
01 i 01

by Lemma 2 of Judge and Bock (1978, p.320).

Now, because E[T(x)] = Pr(x < 0) by definition,

E[z Cz'Az)] 
= p T,c2(..1/2)Kria,

= 1.....T,
31 1

therefore E[zT(z'Az)] = PT'0 112 XT.

3
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b) Consider the ij'th element of the T x T matrix E[zz'W(z'Az)].

It is straightforward to show that when i =

E[ziziT(z'Az)] = p + 
(T; n(-1/2) xria) 2p5

by Lemma 2 of Judge and Bock (1978, p.320), and that, when i *

E[z z (z'Az)] 
= y

k
t,,(-112

X)
)

718 iT u Xna)P ,. I. 
31 j

by Lemma 1 of Judge and Bock (1978, p.320).

Proof of Theorem 1

The PTE can be written A = 1 if u c(a)

b + S-1111 (RS-1R' )-1(r-Rb) if u < c(a)

Because u < c(a) z'Az < 0, we can write this as

= b + S-1R' (R.S-1R')-1(r-Rb)W(z'Az).

= (3 + S-1Xle + Ti(r-1113-RS-1re)W(z'Az)

= 13 + S-ire - CX'f2(1/2)Tvli(z'Az).

The bias of the PTE is

B() = E(Th - (3 = S-1X' E(E) - CX'11(1/2)TE[z4,(z'Az)

-1 -1 -1 -1 (1/2) (-4/2)= - S R' (RS R') RS X1 C2 TP
3
Y'f2 Xrp3,

by the Lemma given above.

The risk of the PTE is

p(A) = (-13)]

= E[E'XS-1S-1X'e - 2e1XS-1CX'S2(1/2)TzT(z'Az)

+ erc2(1/2)XCW(z'Az)CX'S2(1/2)Tz].

(1/2).rz _ xna,Now, because e 
= c2 

p(A) = tr(S-IX'nxs-1 - 2tr(CX10(1/2)787, i)(1/2)XS-1)

+ 23171'CX1 
n(1/2)Tp31.,n(-1/2)

+ tr(CX11-2(1/2)Thri2(1/2)XC)

by the Lemma given above.
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Appendix B

The Regressor Data

As the bias, risk and power functions are data dependent, a number of

real and artificial regressor series have been chosen to evaluate the test

and estimator properties. The artificial regressor series are,

a) Random variables formed through the application of an AR(1) process

(autocorrelation coefficient = 0.5) to standard normal data,

b) Log normal data, based on the standard normal distribution,

c) Exponentially trended data, (16.182% increase per period),

d) Standard normal data,

e) Linearly trended data,

f) Uniformly [0,1] distributed data.

For the heteroscedastic models the real regressor series chosen were,

g) Australian real GDP, (annual, 1960-89),

h) Australian money supply, (quarterly, 1960q1-89q4),

i) New Zealand real GDP index, (quarterly 1972q2-90q2).,

J) AustralianS - U.S.$ spot rate, (quarterly, 1960q1-90q1).

For the autoregressive and moving average models the real regressor

series chosen were,

k) Australian CPI, (quarterly 1960q1-90q2),

1) Australian real retail trade, (quarterly 1960q1-90q1),

m) Australian trade balance, (quarterly 1960q1-90q2).

All real regressor series taken from the N.Z. Statistics Dept.

I.N.F.O.S. database, source 0.E.C.D., except source N.Z. Statistics Dept.
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Appendix C
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