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1. INTRODUCTION

Applied statisticians and econometricians frequently choose the

ultimate specification of a multiple linear regression model on the basis

of preliminary tests on that model. For instance, they may test the

validity of exact linear restrictions on the model's parameters and then,

depending on the outcome of the prior test, use either the Ordinary Least

Squares estimator (OLSE) or the Restricted Least Squares estimator (RLSE).

This procedure leads to the use of a "preliminary test" estimator (PTE).

The PTE is the OLSE if we reject the hypothesis that the restrictions are

correct or it is the RLSE if we cannot reject this hypothesis.

Unfortunately, however, many researchers fail to recognize that they are

reporting a PTE, which has different sampling properties than either of its

component estimators.

The use of pre-test estimators is common in a range of statistical

applications, as is evidenced by the extensive bibliographies of Bancroft

and Han (1977) and Han et al. (1988). The finite sample properties of many

pre-test estimators (typically their biases and risks under quadratic loss)

have been examined in the literature. In each case, the sampling

properties of the PTE depend on, among other factors, the size (and hence

critical value) selected for the preliminary test. This suggests, if a

researcher is going to pre-test, that he should use a critical value that

is "optimal" in some sense, rather than use arbitrary test sizes of say 17.

or 57..

One such procedure is to use a critical value according to the

mini-max regret criterion used by, for example, Gun (1967), Sawa and

Hiromatsu (1973), Ohtani and Toyoda (1978), and Giles et at. (1991). In

particular, assuming a correctly specified model and normally distributed

disturbances, Brook (1976) examines the choice of optimal critical value
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(OCV) according to the mini-max regret criterion when the pre-test is of

the validity of exact linear restrictions on the model's coefficients. He

finds that the OCV is approximately equal to two irrespective of the number

of restrictions under test or the degrees of freedom of the model. This

result has obvious practical appeal.

This result, of course, does not imply a constant test size, as this

will vary across different degrees of freedom and numbers of restrictions.

Further, the OCV of two rarely results in a test size of 17. or 57. - the

optimal test size can be as high as 307., and for less than five

restrictions it is always more than 107..

Brook's result depends on the often unrealistic assumption that the

disturbances are normally distributed. Frequently we use data series which

exhibit more kurtosis than implied under normality. This paper addresses

this issue by extending Brook's analysis to the case of Multivariate

Student-t disturbances.

2. MODEL FRAMEWORK AND RISK FUNCTIONS

We consider the classical linear regression model y = X13 + e, where y

is a (Txl) vector of observations on the dependent variable, X is a (Txk)

full rank matrix of non-stochastic regressors (k<T), and e is a (Txl)

vector of disturbance terms. We test m independent linear restrictions

expressed by the hypotheses, Ho : Rf3 = r against HA: R13 r, where R is

(mxk), of rank m; r is (mxl); and both R and r are non-stochastic. This

testing structure includes, for example, testing the individual

significance of one or more regressors and testing the joint significance

of the regressors. We assume e has a multivariate Student-t (Mt)

distribution with degrees of freedom v and scale parameter cr
2 
= 1, for

simplicity (and without any loss of generality). Then f(e) =
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] -1 p+e, -(v+T)/2[vv/2_ 
((V+T)/2) [Tr

v/2 r(w2) 
The mean and covariance

matrix of e, for v > 2, are E(e) = 0 and E(ee' ) = v/(P2)IT. Normal errors

correspond to v = co. For v < co the marginal distributions have more

kurtosis than when v = co.

The validity of the restrictions is tested using the usual

F-statistic, f = (Rb-r)' [RS-1R1]-1(Rb-r)/ms2, where S = X' X; b = S-1X' y is

the OLSE of g; s2 = (y-Xb)' (y-Xb)/v; and v = (T-k). This is the uniformly

most powerful invariant size - a test of Ho when e is distributed according

to any member of the elliptically symmetric family (see King (1979)), of

which the Mt distribution is a member. It is straightforward to show that

f F(m,v) under Ho and that its distribution under HA for Mt disturbances

is

v mrr Ei2+r-1
co (2x/v)r r(— m v f

f
Mt
(f ) =  

2 
E

m+vr=0 - r
r ! ( 1+2A/v ) B (1-121+r ; r (5) (v+mf)-2-4-r

(see Ullah and Phillips (1986), Sutradhar (1988), or Giles (1991)). A =

(R13-r)' [RS-1R' ](R13-r)/2 is the usual non-centrality parameter under normal

errors and is a measure of the hypothesis error (A = 0 when R13 = r), and

B(.;.) is the Beta function. When e - N(0 I) f - F'
(rn,v;A).

In practice, the researcher tests the validity of the restrictions

prior to deciding whether to use the OLSE, b, or the RLSE, b* = b +

S1 
R' [RS

-1 
R' 
]-1 

(r-Rb). Consequently, the estimator we use is conditional
- 

on the preliminary test of Ho and we are actually reporting the PTE:

{ b if f > c(a)

b=
b* if f c(a)

where c(a) is the critical value of the test associated with an a%
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significance level. Thus, a researcher has three options for estimation in

this model framework: a) ignore the a priori restrictions and apply OLS, b)

impose the a priori restrictions and apply RLS; or c) apply OLS or RLS

depending on the outcome of the pre-test.

We follow the usual approach in the associated literature and compare

the sampling properties of G, b, and b* on the basis of predictive risk

under squared error loss. This enables the analysis to be explicitly

independent of the regressor data. For any estimator, g, of 13, we define

this risk as p(Xg,E(y)) = E [(Xg-E(y))' (Xl;.-E(y))1 , which is equal to the

risk of g itself if the regressors are orthonormal.

Giles (1991) derives the risk of Xb, Xb*, and X6 for Mt disturbances:

pmt(Xb,E(y)) = kv/(v-2) (2.1)

Pmt(XV,E(y)) = ((k-m)v+2X(v-2))/(v-2) (2.2)

pmt(X6,E(y)) = (kv-mvP21+2X(v-2) (2P - )/(v-2) (2.3)

co (2A/v) rr (12+r +j -2)
2 

where Pii = E
r=0 ,,12+r+j-2

r! (1+2X/v)

for i,j = 0,1,2, ... I(.,.) is Pearson's incomplete beta function with

x = cm/(v+cm).

When v = co the disturbances are normally distributed, and (2.1)

(2.3) collapse to the expressions given by, for instance, Brook (1976) and

Judge and Bock (1978). Figure 1 illustrates the risk functions when v = 5,

m = 3, v = 24 and k = 5. This figure is qualitatively similar to that

which results under normal errors, though there are some quantitative
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differences (see Giles (1991)).

One of the key results under normal disturbances is that it is never

preferable to pre-test; that is, the risk of the pre-test estimator never

dominates both of its component estimators. Consequently, if A were known,

the optimal strategy in terms of minimizing risk under quadratic loss, is

The use the RLSE for A e [0,
m
2
- and the OLSE for A > 

m
2
- e risk so traced

is termed the "minimum risk boundary".

As Figure 1 illustrates, there are many cases with Mt disturbances,

for which these results qualitatively carry over. However this need not

occur. When v < co there are situations for which the pre-test estimator

can dominate both of its component estimators. This is possible as first,

p
Mt(Xb,E(y)) = pMt

(Xb*,E(y)) when A = mv/(2(v-2)), secondly p
Mt(Xb,E(y)) =

2vP
21mv 

p
Mt
(XS,E(y)) for A

1 
such that A e P

1 ( 4(v-2) ' 2(v-2)P
22 

)' 
and as 

21 
can

be greater than P22, 2vP21(2(v-2)P22) can be greater than 2v/(2(v-2)).

This implies that for those cases for which P21 > P22 there exists a region

over which the pre-test estimator

estimators.'

Figure 2 illustrates such an example.

can dominate both of its component

Our numerical evaluations of

the risk functions suggest that the existence and magnitude of the

dominating region for the pre-test estimator depends on the values of m and

v (but not v). In particular, the value of m for which the dominating

region occurs, decreases as v decreases. For example, when v = 50 we find

that the pre-test estimator can dominate both of its component estimators

for m > 10. However, when v = 5 it can result for m 2:: 4. Further, (a) the

dominating A-range, say [A*.A+1, increases as m increases; (b) the minimum

risk boundary is no longer given by minfp(Xb,(E(y)),p(Xb*,E(y))1, though

the potential risk gain of the pre-test estimator over this boundary is

relatively small; (c) there is no strictly dominating pre-test estimator
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over [X*,X+]. That is, the risk functions of the pre-test estimator for

c E (0,03) cross within [X*,X+1.

3. MINI-MAX REGRET CRITERION

Unfortunately, X is typically unobservable and the restricted

estimator can have an infinite risk. This suggests that the optimal

strategy is to pre-test and use a critical value which draws the risk of

the pre-test estimator "as close as possible" to the minimum risk boundary.

In this paper we use Brook's (1976) mini-max regret criterion as our notion

of "as close as possible". This is similar to the criteria used by Gun

(1964) and Sawa and Hiromatsu (1973) and is equivalent to that used by

Giles et al. (1991). We define the regret associated with using the

pre-test estimator as

p(XG,E(y)) - p(XV,E(y)); As mv/(2(v-2))
R(XG) =

p(XG,E(y)) - p(Xb,E(y)); A > mv/(2(v-2))
We define XL as the value of X s mv/(2(v-2)) such that R(X6) is maximized

and d as that value of R(X6). We define X as the value of X >

mv/(2(v-2)) such that R(X6) is maximized and du as that value of R(X6).

It is well known that an increase in c(a) decreases dL but increases

d while the opposite results from a decrease in c(a). The mini-max regret

procedure exploits this result and finds the critical value c(a) = c*(a)

such that du = dL and both are simultaneously minimized. That is, the OCV

must satisfy:

R(X6)1 .min 1 max R(X6) = min max
my myc X s  

2( v-2) 
c IA>

Figure 3 depicts the criterion. Brook (1976) obtains the OCVs according to



this procedure for normal disturbances. Giles (1991) shows that Brook's

OCV is not invariant to the values of v. This is clear from both of

Figures 1 and 2 -dL * du for Brook's OCV and in fact di., is always greater

than d for finite v. Consequently, the OCV for finite v will be higher

than Brook's OCV as we wish to decrease di.. and increase du until they are

equal and simultaneously minimized.

The use of this criterion for Mt disturbances has the same

justification as that for normal disturbances when there is no region of

the dominance of the pre-test estimator. When the pre-test estimator can

dominate both Xb and Xb*, the minimum risk boundary is no longer given by

min(f)(Xb,E(y)) p (Xb*,E(y)) Nevertheless, given the aforementioned
X

points (b) and (c), the criterion still achieves (in an overall sense) our

desired aim of bringing the pre-test estimators risk function "as close as

possible" to the minimum risk boundary.

4. OCV'S AND DISCUSSION OF THE RESULTS

OCV's, c*, are reported in Table 1 for several values of m,v and v.

These were calculated using a FORTRAN program written by the authors and

executed on a VAX 6340. Subroutines from Press et at. (1986) were used to

evaluate the gamma and incomplete beta functions. Once the OCV was

determined, its corresponding size (a*) was calculated using Davies' (1980)

algorithm. Table 1 also gives the normal errors case (v = co) for

comparative purposes.

The results suggest first, that the OCVs are not constant over all

values of v. For a given m and v, the OCV is higher the lower is v.

This implies a* decreases with decreases in v, ceterls paribus. Optimally,

the pre-test estimator will select the restricted estimator more often when

v < co than for when v = co. Nevertheless, we still typically maintain that
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pre-testing at the 17. and 57. levels is not recommended. At best, the

arbitrary choice of a 57. significance level is only approximately

appropriate for relatively high m (say, m a 4) and high v (say, v a 60)

with small v, while the use of a 17. significance level is never appropriate

for the range of arguments investigated in Table 1.

Secondly, the results suggest that for a given v, the OCVs are

relatively invariant to m and v, and that Brook's rule of thumb of an OCV

of approximately two holds reasonably well for v a 20. Thus, if v is

known, the results are as easy to apply in practice as is Brook's rule.

For example, use c* 2.4 for v = 5, c* =•-• 2.1 for v = 10, and c* 2.0 for

v z: 20 regardless of m and v.

5. RISK COMPARISONS

We have calculated the OCV's according to the mini-max regret

criterion, and we have suggested rules that are straightforward to apply in

practice when v is known. What if v is unknown? We could estimate v and

assume that our results are still approximately valid. Alternatively, we

consider whether there. is a critical value that will be approximately

optimal according to the mini-max regret criterion for all values of v.

The obvious candidate is Brook's OCV. Accordingly, we have evaluated the

risk functions for each of the cases presented in Table 1. Figure 4

illustrates a typical result. Our evaluations suggest that there is

relatively little difference between the risk functions using the OCVs we

arrived at for finite v and those computed by Brook for normal errors.

Thus if v is unknown, the applied researcher could be (practically) content

with using Brook's OCV for all values of v.
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6. FINAL REMARKS

Pre-testing is typically practised by applied researchers. It is

therefore important to investigate the consequences of this practice and,

given the impact of c(a) on the sampling properties of the pre-test

estimator, to determine an optimal choice of critial value. We have

focussed our attention on this issue using the mini-max regret criterion

when the disturbances are Mt.

Our results show that Brook's practically appealing rule of thumb, of

a critical value of approximately two in value, is not invariant to the

value of v. Nevertheless, we offer equally practical prescriptions when v

is known. Further, if v is unknown, our results suggest that a researcher

could be (practically) content to continue to use Brook's OCV.
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FOOTNOTES

1. Giles' (1991) bounds for the Mt case are incorrect. Her bounds imply

that the pre-test estimator can never dominate both of its component

estimators. This was also supported by her limited numerical

evaluations.
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Table 1 Optimal Critical Values

v=5 v=10 v=15 v=20 v=50 v=100 v=00
m v c* a* c* a* c* a* c* a* c* a* ei a* c* • a*

2 2.535 0.252 2.187 0.277 2.104 0.284 2.068 0.287 2.008 0.292 1.990 0.294 1.990 0.294
0.1934 2.445 2.122 0.219 2.046 0.226 2.012 0.229 1.956 0.235 1.939 0.236 1.939 0.2368 2.394 0.160 2.089 0.186 2.016 0.193 1.984 0.197 1.931 0.202 1.914 0.204 1.910 0.20416 2.366 0.144 2.071 0.169 2.000 0.177 1.970 0.180 1.918 0.185 1.902 0.187 1.900 0.18724 2.357 0.138 2.065 0.164 1.995 0.171 1.965 0.174 1.914 0.179 1.898 0.181 1.890 0.18260 2.345 0.131 2.058 0.157 1.990 0.164 1.959 0.167 1.908 0.172 1.893 0.174 1.890 0.174120 2.341 0.129 2.055 0.154 1.988 0.161 1.957 0.164 1.907 0.170 1.891 0.172 1.890 0.172

2 2.675 0.272 2.317 0.302 2.233 0.309 2.195 0.313 2.134 0.319 2.115 0.321 2.090 03244 2.541 0.194 2.210 0.226 2.132 0.234 2.098 0.238 2.041 0.245 2.023 0.247 2.000 0.2508 2.454 0.148 2.143 0.180 2.070 0.189 2.038 0.193 1.985 0.200 1.968 0.202 1.960 0.20316 2.412 0.122 2.109 0.154 2.038 0.163 2.006 0.167 1.954 0.174 1.938 0.176 1.930 0.17724 2.399 0.112 2.098 0.145 2.028 0.154 1.996 0.158 1.945 0.165 1.929 0.167 1.920 0.168- 60 2.383 0.101 2.087 0.133 2.017 0.142 1.986 0.146 1.935 0.153 1.919 0.156 1.910 0.157120 2.378 0.097 2.083 0.129 2.014 0.138 1.983 0.142 1.932 0.149 1.916 0.152 1.900 0.154

4 2.582 0.191 2.246 0.225 2.168 0.235 2.133 0.239 2.075 0.246 2.057 0.249 2.040 0.2518 2.490 0.135 2.169 0.170 2.093 0.180 2.059 0.184 2.004 0.192 1.987 0.195 1.970 0.19716 2.444 0.102 2.135 0.136 2.062 0.146 /029 0.150 1.974 0.159 1.958 0.161 1.942 0.16424 2.429 0.090 2.125 0.124 2.052 0.133 2.020 0.138 1.966 0.146 1.950 0.149 1.934 0.15160 2.411 0.076 2.114 0.108 2.043 0.117 2.011 0.122 1.958 0.130 1.942 0.133 1.926 0.135120 2.405 0.071 2.110 0.103 2.040 0.1124 2.008 0.116 1.956 0.124 1.940 0.127 1.924 0.129

4 2.607 0.188 2.267 0.224 2.188 0.234 2.152 0.238 2.094 0.246 2.076 0.248 2.060 0.2518 2.512 0.125 2.188 0.161 2.112 0.171 2.077 0.176 2.020 0.184 2.003 0.187 1.990 0.18916 2.463 0.087 2.153 0.121 2.079 0.131 2.046 0.136 1.991 0.145 1.974 0.147 1.960 0.14924 2.446 0.074 2.143 0.107 2.070 0.116 2.037 0.121 1.983 0.129 1.966 0.132 1.950 0.13560 2.426 0.058 2.131 0.088 2.060 0.097 2.028 0.102 1.975 0.110 1.959 0.112 1.940 0.115120 2.418 0.052 2.127 0.082 2.057 0.091 2.026 0.095 1.973 0.103 1.957 0.106 1.940 0.108

8 2.528 0.117 2.202 0.154 2.125 0.164 2.090 0.169 2.033 0.178 2.015 0.181 1.998 0.18316 2.476 0.076 2.166 0.110 2.092 0.120 2.058 0.125 2.003 0.133 1.985 0.136 1.969 0.13924 2.457 0.062 2.154 0.093 2.082 0.103 2.049 0.108 1.994 0.116 1.977 0.119 1.961 0.12160 2.434 0.045 2.142 0.073 2.071 0.082 2.040 0.086 1.986 0.094 1.970 0.096 1.954 0.099120 2.426 0.039 2.138 0.066 2.068 0.074 2.037 0.078 1.984 0.086 1.968 0.088 1.952 0.091

8 2.555 0.103 2.227 0.139 2.149 0.150 2.114 0.155 2.055 0.164 2.037 0.167 2.020 0.17016 2.497 0.057 2.187 0.087 2.113 0.097 /079 0.101 2.023 0.110 2.005 0.112 1.990 0.11524 2.474 0.041 2.174 0.068 2.101 0.076 2.069 0.081 2.014 0.088 1.997 0.091 1.980 0.09460 2.445 . 0.023 2.158 0.044 2.089 0.051 2.058 0.055 2.005 0.061 1.988 0.063 1.970 0.066120 2.434 0.018 2.152 0.036 2.085 0.042 2.054 0.046 2.003 0.052 1.986 0.054 1.970 0.056
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Figure 1. Predictive Risk Functions - v=5, m=3, v=24, k=5.
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Figure 2. Predictive Risk Functions - v=5, m=8, v=120, k=10.
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Figure 3. Mini-max Regret Criterion
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